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Abstract

The Common Component Architecture (CCA) provides a means for software developers to manage the com-

plexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance

computing. In the scientific computing context, component models also promote collaboration using independently

developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to

them. The CCA supports parallel and distributed computing as well as local high-performance connections between

components in a language-independent manner. The design places minimal requirements on components and thus

facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to

minimize the impact on application performance. The focus on high performance distinguishes the CCA from most

other component models. The CCA is being applied within an increasing range of disciplines, including combustion

research, global climate simulation, and computational chemistry.
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1 Introduction

Historically, the principle concerns of software developers for high-performance scientific computing have centered on

increasing the scope and fidelity of their simulations, and then increasing the performance and efficiency to address the

exceedingly long execution times that can accompany these goals. Initial successes with computational simulations

have led to the desire for solutions to larger, more sophisticated problems and the improvement of models to reflect

greater levels of detail and accuracy. Efforts to address these new demands necessarily have included improvements to

scientific methodology, algorithms, and programming models, and virtually always each advance has been accompa-

nied by increases in the complexity of the underlying software. At the same time, the computer industry has continued

to create ever larger and more complex hardware in an attempt to satisfy the increasing demand for simulation capa-

bilities. These architectures tend to exacerbate the complexity of software running on these systems, as in nearly all

cases, the increased complexity is exposed to the programmer at some level and must be explicitly managed to extract

the maximum possible performance. In scientific high-performance computing, relatively little attention has been paid

to improving the fundamental software development process and finding ways to manage the ballooning complexity

of the software and operating environment.

Simultaneously, in other domains of software development, complexity rather than runtime performance has been

a primary concern. For example, in the business area the push has been less for increasing the size of “the problem”

than for interconnecting and integrating an ever-increasing number of applications that share and manipulate business-

related information, such as word processors, spreadsheets, databases, and web servers. More recently, with the fast

pace of the internet boom, the flood of new software technology used in business and commercial applications has

increased both the degree of interoperability desired and the number of applications and tools to be integrated. This

situation has led to extreme software complexity, which at several levels is not unlike the complexity now being seen

in high-performance scientific computing. For example, scientific codes regularly attempt the integration of multiple

numerical libraries and/or programming models into a single application. Recently, efforts are increasing to couple

multiple stand-alone simulations together into multi-physics and multi-scale applications for models with better overall

physical fidelity.

One of the approaches that the business/internet software community has found invaluable in helping to address

their complexity conundrum is the concept of component-based software engineering (CBSE). The basic tenet of
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CBSE is the encapsulation of useful units of software functionality into components. Components are defined by

the interfaces that they present to the outside world (i.e., to other components), while their internal implementations

remain opaque. Components interact only through these well-defined interfaces, and based on these interfaces can be

composed into full applications. Using this methodology enables use of the “plug-and-play” software approach for

creating complex applications. The smaller, task-specific units of software are more easily managed and understood

than a complete application software structure. Logically, many components can provide functionality that is generally

useful in a variety of different applications. In such cases, suitably well-designed components might be reusable across

multiple applications with little or no modification. It is also possible that a number of different components can export

the same interface and provide the same essential functionality, but via different implementations, thereby allowing

these interoperable components to be swapped within an application in a plug-and-play fashion.

These ideas have spawned a number of component architectures, some of which have become so widely used as

to have reached “commodity” status: Microsoft’s Component Object Model (COM) (Microsoft Corporation, 1999),

the Object Management Group’s Common Object Request Broker Architecture (CORBA) Component Model (Object

Management Group, 2002), and Sun’s Enterprise JavaBeans (Sun Microsystems, 2004a).

While having proven quite popular and successful in the areas in which it originated, CBSE has made few inroads

into the scientific computing community. Part of the reason is that serious scientific applications tend to be large,

evolving, and long-lived codes whose lifetimes often extend over decades. In addition to a natural inertia that slows

the adoption of new software engineering paradigms by scientific software developers, current commodity component

models present a variety of issues ranging from the amount of code that must be changed and added to adapt exist-

ing code to the component environment, to performance overheads, to support for languages, data types, and even

operating systems widely used in scientific computing.

The Common Component Architecture (CCA) Forum was launched in 1998 as a grass-roots effort to create a

component model specifically tailored to the needs of high-performance scientific computing. The group’s goals are

both to facilitate scientific application development and to gain a deeper understanding of the requirements for and

use of CBSE in this community so that they can feed back into the development of future component models, in the

hope that eventually this community too may be adequately served by “commodity” tools. In the intervening years,

the Forum has developed a specification for the CCA as well as prototype implementations of many associated tools,
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and the CCA is experiencing increasing adoption by applications developers in a number of scientific disciplines. This

paper updates our previous overview paper in 1999 (Armstrong et al., 1999) to reflect the evolution of the CCA and

our much more detailed understanding of the role of CBSE in scientific computing.

The first half of the paper presents the Common Component Architecture itself in some detail. We will discuss

the special needs of this community (Section 2), and we will describe the CCA model and how it addresses these

needs (Section 3). Section 4 presents the CCA’s approach to language interoperability, and Sections 5–7 describe in

detail how Common Component Architecture handles local, high-performance parallel, and distributed component

interactions, respectively. Section 8 summarizes the current currently-available tools implementing the CCA, and

Section 9 described related work.

The remainder of the paper provides an overview of the the CCA in use. Section 10 outlines the typical way in

which software is designed in a component-based environment, and the process of componentizing existing software.

Section 11 discusses some of the existing work towards the development of common interfaces and componentized

software in the CCA environment. Section 12 described progress on tools to simplify data exchange in coupled

simulations. Section 13 presents an overview of CCA-based applications in the fields of combustion research, global

climate modeling, and quantum chemistry. We conclude the paper with a brief look at the people and groups associated

with the Common Component Architecture effort (Section 14) and a few ideas for future work in the field (Section

15).

2 Components for Scientific Computing

Component-based software engineering is a natural approach for modern scientific computing. The ability to easily

reuse interoperable components in multiple applications, and the plug-and-play assembly of those applications, has

significant benefits in terms of productivity in the creation of simulation software. This is especially so when the

component “ecosystem” is rich enough that a large portion of the components needed by any given application will

be available “off the shelf” from a component repository. The simplicity of plug-and-play composition of applications

and the fact that components hide implementation details and provide more manageable units of software develop-

ment, testing, and distribution all help to deal with the complexity inherent in modern scientific software. Once the

overall architecture of a software system and interfaces between its elements (components) have been defined, soft-
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ware developers can then focus on the creation of the components of particular scientific interest to them, while reusing

software developed by others (often experts in their own domains) for other needed components of the system. Com-

ponentization also indirectly assists with the performance issues that are so critical in this area; by providing the ability

to swap components with different implementations that are tailored to the platform of interest. Finally, components

are a natural approach to handle the coupling of codes involving different physical phenomena or different time and

length scales, which is becoming increasing important as a means to improve the fidelity of simulations.

In the scientific software world, CBSE is perhaps most easily understood as an evolution of the widespread practice

of using a variety of software libraries as the foundation on which to build applications. Traditional libraries already

offer some of the advantages of components, but a component-based approach extends and magnifies these benefits.

While it is possible for users to discover and use library routines that were not meant to be exposed as part of the

library’s public interface, component environments can enforce the public interface rigorously. It is possible to have

multiple instances (versions) of a component in a component-based application, whereas with plain libraries, this is not

generally possible. Finally, in a library-based environment, there are often conflicts of resources, programming models,

or other dependencies, which are more likely as numbers of libraries increase. With components, these concerns can

often be handled by hooking up each “library” component to components providing the resource management or

programming model functionality.

The use of domain-specific computational frameworks is another point of contact between current practice in scien-

tific computing and CBSE. Domain-specific frameworks have become increasingly popular as environments in which

a variety of applications in a given scientific domain can be constructed. Typically, the “framework” provides a deep

computational infrastructure to support calculations in the domain of interest. Applications are then constructed as rel-

atively high-level code utilizing the domain-specific and more general capabilities provided by the framework. Many

frameworks support modular construction of applications in a fashion very similar to that provided by component

architectures, but this is typically limited to the higher-level parts of the code. However, domain-specific frameworks

have their limitations as well. Their domain focus tends to lead to assumptions about the architecture and workflow of

the application becoming embodied in the design of the framework, making it much harder to generalize them to other

domains. Similarly, since their development is generally driven by a small group of domain experts, it is rare to find

interfaces or code that can be easily shared across multiple domain-specific frameworks. Unfortunately, this situation
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is often true even with important cross-cutting infrastructure, such as linear algebra software, which could in principle

be used across many scientific domains. Generic component models, on the other hand, provide all the benefits of

domain-specific frameworks. However, by casting the computational infrastructure as well as the high-level physics of

the applications as components, they also provide easier extension to new areas, easier coupling of applications to cre-

ate multi-scale and multi-physics simulations, and significantly more opportunities to reuse elements of the software

infrastructure.

However, scientific computing also places certain demands on a CBSE environment, some of which are not eas-

ily satisfied by most of the commodity component models currently available. As noted above, performance is a

paramount issue in modern scientific computing, so that a component model for scientific computing would have to

be able to maintain the performance of traditional applications without imposing undue overheads. (A widely used

rule of thumb is that environments that impose a performance penalty in excess of ten percent will be summarily re-

jected by high-performance computing (HPC) software developers.) In contrast, commodity component models have

been designed (primarily or exclusively) for distributed computing and tend to use protocols that assume all method

invocations between components will be made over the network, in environments where network latencies are often

measured in tens and hundreds of milliseconds. This situation is in stark contrast to HPC scientific computing, where

latencies on parallel interconnects are measured in microseconds; traditional programming practices assume that on a

given process in a parallel application, data can be “transferred” between methods by direct reference to the memory

location in which it lives. The performance overheads of the commodity component models are often too high for

scientific computing.

In scientific computing, it is common to have large codes that evolve over the course of many years or even decades.

Therefore, the ease with which “legacy” code bases can be incorporated into a component-based environment, and the

cost of doing so, are also important considerations. Many of the commodity component models may require significant

restructuring of code and the addition of new code to satisfy the requirements of the model. At least partial automation

of this process is supported for some languages, such as Java and more recently, C++; to our knowledge, however,

there is no industry support for generating components from Fortran, which is used in the majority legacy scientific

software. Furthermore, automated analysis of parallel code adds another dimension to the complexity of automating

component generation.
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Finally, also important to high-performance scientific computing are considerations including support for lan-

guages, data types, and computing platforms. The various commodity component models available may not support

Fortran, may require extensive use of Java, and may not support arrays or complex numbers as first-class data types.

They may even be effectively limited to Windows-based operating systems, which are not widely used in scientific

HPC.

The Common Component Architecture (CCA) was conceived to remedy the fact that a suitable component en-

vironment could not be found to satisfy the special needs of this community. Since its inception, the CCA effort

has grown to encompass a community of researchers, several funded projects, an increasing understanding of the

role of CBSE in high-performance scientific computing, a maturing specification for the CCA component model, and

practical implementations of tools and applications conforming to that specification.

3 The Common Component Architecture

Formally, the Common Component Architecture is a specification of an HPC-friendly component model. This specifi-

cation provides a focus for an extensive research and development effort. The research effort emphasizes understanding

how best to utilize and implement component-based software engineering practices in the high-performance scientific

computing arena, and feeding back that information into the broader component software field. In addition to defin-

ing the specification, the development effort creates practical reference implementations and helps scientific software

developers use them to create CCA-compliant software. Ultimately, a rich marketplace of scientific components will

allow new component-based applications to be built from predominantly off-the-shelf scientific components.

3.1 Philosophy and Objectives

The purpose of the CCA is to facilitate and promote the more productive development of high-performance, high-

quality scientific software in a way that is simple and natural for scientific software developers. The CCA intentionally

has much in common with commodity component models but does not hesitate to do things differently where the

needs of HPC dictate (see Section 9 for a more detailed comparison). High performance and ease of use are more

strongly emphasized in the CCA effort than in commodity component models. However, in principal no barriers

exist to providing an HPC component framework based on commodity models, or to creating bridges between CCA
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components and other component models, e.g., Web Services (Christensen et al., 2001; Foster et al., 2002).

The specific objectives that have guided the development of the CCA are:

1. Component Characteristics: The CCA is used primarily for high-performance components implemented in

the Single Program Multiple Data (SPMD) or Multiple Program Multiple Data (MPMD) paradigms. Issues that

must be resolved to build applications of such components include interacting with multiple communicating

processes, the coexistence of multiple sophisticated run-time systems, message-passing libraries, threads, and

efficient transfers of large data sets.

2. Heterogeneity: Whenever technically possible, the CCA must be able to combine within one application com-

ponents executing on multiple architectures, implemented in different languages, and using different run-time

systems. Furthermore, design priorities must be geared toward addressing the software needs most common

in HPC environment; for example, interoperability with languages popular in scientific programming, such as

Fortran, C, and C++, should be given priority.

3. Local and Remote Components: Components are local if they live in a single application address space (re-

ferred to as in-process components in some other component models) and remote otherwise. The interaction

between local components should cost no more than a virtual function call; the interaction of remote compo-

nents must be able to exploit zero-copy protocols and other advantages offered by state of the art networking.

Whenever possible local and remote components must be interoperable and be able to change interactions from

local to remote seamlessly. The CCA will address the needs of remote components running over a local area

network and wide area network; distributed component applications must be able to satisfy real-time constraints

and interact with diverse supercomputing schedulers.

4. Integration: The integration of components into the CCA environment must be as smooth as possible. Existing

components or well-structured non-component component code should not have to be rewritten substantially to

work in CCA frameworks. In general, components should be usable in multiple CCA-compliant frameworks

without modification (at the source code level).

5. High-Performance: It is essential that the set of standard features contain mechanisms for supporting high-

performance interactions. Whenever possible, the component environment should avoid requiring extra copies,
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extra communication, and synchronization, and should encourage efficient implementations, such as parallel

data transfers. The CCA should not impose a particular parallel programming model on users, but rather allow

users to continue using the approaches with which they are most familiar and comfortable.

6. Openness and Simplicity: The CCA specification should be open and usable with open software. In HPC this

flexibility is needed to keep pace with the ever-changing demands of the scientific programming world. Related

and possibly more important is simplicity. For the target audience of computational scientists, computer science

is not a primary concern. An HPC component architecture must be simple to adopt, use, and reuse; otherwise,

any other objectives will be moot.

3.2 CCA Concepts

The central task of the CCA Forum (http://www.cca-forum.org) is the development of a component model

specification that satisfies the objectives above. That specification defines the rights, responsibilities of individual

elements and the relationships among the elements of the CCA’s component model, including the interfaces and

methods that control their interactions. Briefly, the elements of the CCA model are as follows:

� Components are units of software functionality and deployment that can be composed together to form appli-

cations. Components encapsulate much of the complexity of the software inside a black box and expose only

well-defined interfaces to other components.

� Ports are the abstract interfaces through which components interact. Specifically, CCA ports provide procedu-

ral interfaces that can be thought of as a class or an interface in object-oriented languages, or a collection of

subroutines; in a language such as Fortran 90, they can be related to a collection of subroutines or a module.

Components may provide ports, meaning they implement the functionality expressed in the port (called provides

ports), or they may use ports, meaning they make calls on a port provided by another component (called uses

ports). It is important to recognize that the CCA working group does not claim responsibility for defining all

possible ports. It is hoped that the most important ports will be defined by domain computational scientists and

be standardized by common consent or de facto use.

� Frameworks manage CCA components as they are assembled into applications and executed. The framework
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is responsible for connecting uses and provides ports without exposing the components’ implementation details.

The framework also provides a small set of standard services that are available to all components. In order to

reuse concepts within the CCA, services are cast as ports that are available to all components at all times.

3.3 Overview of the CCA Specification

Formally, the CCA specification is expressed as a set of abstract interfaces (CCA Forum, 2003) written in the Scien-

tific Interface Definition Language (SIDL) (Dahlgren et al., 2004, Chapter 3). SIDL is used by the Babel language

interoperability tool (discussed in depth in Section 4), which implicitly defines bindings to the various languages Babel

supports. The current CCA specification is version 0.6.3, and uses the SIDL namespace gov.cca.

Central to the CCA specification is the Services interface. This is the primary means by which components

interact with the framework, allowing the component to inform the framework of port interfaces that the component

intends to use or provide. The Services object also permits a component to avail itself of other services that the

framework may provide, such as information about connections between itself and other components, or the ability to

instantiate and otherwise manipulate other components.

Services provides methods to declare what ports the component will provide and use (addProvidesPort(),

removeProvidesPort(), registerUsesPort(), unregisterUsesPort()), making it possible for the

CCA framework to effectively mediate port connections in applications. These methods are most often used when

the component is instantiated by the framework during assembly of the application, but can also be used at other

times. Services also allows a user to get a handle to a port in order to make method calls on it (getPort(),

getPortNonblocking(), releasePort()). These methods are generally used in the main code of a compo-

nent, bracketing regions of code where calls are made to methods on a port provided by another component. A recent

addition to the Services interface is the ability to register a callback that the framework will invoke immediately

prior to destroying the component (registerForRelease()). This capabiity provides the component an oppor-

tunity perform cleanup operations, though in practice, we find that relatively few components need this capability and

its use is completely optional.

When components are instantiated, they given a reference to a unique Services object which is owned by the

framework. Since each component has a different Services object, the framework can separately control what each
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component “sees” of the rest of the application – for example, the way in which uses ports are connected.

This Services mechanism differs from other component models (e.g., CORBA CCM(Object Management

Group, 2002)) that require components to implement all functionality of the component model within the compo-

nent itself. In the CCA, we have begun simply and augment the Services specification with more methods as the

need arises. Since Services is the responsibility of the framework, extending the Services interface with new

methods will not break existing component code. Components can later take advantage of new features as part of their

normal development process.

To be a CCA-compliant component, it is necessary to implement the CCA’s Component interface, which specifies

just one method, setServices(). When the component is instantiated in a CCA framework, the framework

invokes the component’s setServices() method, passing it an object of type Services. setServices()

is also generally where the component registers the ports it uses and provides. This definition of the Component

interface is characteristic of the CCA’s minimalist approach – the number of new methods required to become a CCA

component (sometimes referred to as surface area (Szyperski, 1999)) is as small as possible, exactly one.

At the user level, components are “typed” and given individual identifiers. Both are strings, with the type being

conventionally the SIDL class name of the component. The identifier is provided by the user assembling the applica-

tion, with the requirement that it be unique within the application. Internally to the CCA framework, components are

identified by unique opaque component IDs, obtained through the ComponentID interface.

As with components, CCA ports are identified by a type and name, both strings. By convention, the type is set to

the SIDL interface name of the port; the name must be unique within the component. The functions that register ports

also accept a TypeMap (a map containing key/value pairs of any basic SIDL data type) specifying properties for the

port. The Services interface also includes a getPortProperties() method to retrieve this information. The

CCA specification includes a Port interface, which is merely a container with no required methods of its own. To

implement a CCA port, the component’s code must inherit from (or extend) Port. Components may provide multiple

ports, and even multiple instances of the same port.

In addition to defining the general CCA port mechanism, the CCA specification also defines a number of specific

ports. GoPort, BasicParameterPort, and ParameterPortFactory are specified conveniences for com-

ponent writers, to standardize some basic operations. The GoPort, with its go() method (with no arguments), is
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a specific type of port that frameworks and application assembly GUIs can recognize as a means to initiate an op-

eration in the component (i.e., start the application). The other two ports facilitate the implementation of user- and

component-accessible interfaces to set input/control parameters that components might need.

The CCA reuses this port mechanism to export services provided by the framework. The only difference between

a framework-provided service port and a port provided by a component is availability: the framework service port

is always available, while the port from a component is available only after a connection has been made. CCA-

defined service ports, such as ConnectionEventService, BuilderService, AbstractFramework, and

ComponentRepository are required of all frameworks. ConnectionEventService lets components know

when connections are made and broken. ComponentRepository is currently a placeholder for a planned inter-

face that will retrieve components from distributed repositories. BuilderService and AbstractFramework

provide a means to programmatically assemble and modify applications (instantiate and destroy components, make

and break connections between ports), and the means for arbitrary code to become a CCA framework. These services

not only allow the easy construction of application builder GUIs, but also allow dynamic behavior of the application

itself, for example, swapping components based on numerical or computational performance (Bernholdt et al., 2004;

Hovland et al., 2003; Norris et al., 2004). BuilderService also enables encapsulation of groups of components

so that they can be treated as a single component. This facilitates management of large component-based applications,

including the assembly of multi-scale or multi-physics simulations, where complex applications representing a partic-

ular length scale or type of physics can be encapsulated and treated as a single component, exposing only a limited

number of ports.

Exactly which ports and components are connected, and in what way, is mediated by the framework (see below),

which is controlled by a script or interactively by the user. Because ports are nothing more than interfaces, components

that reside in the same process — as they almost always do in the HPC case — have direct access to methods, just

as they would in a scientific subroutine library. Except for the usually negligible overhead of virtual function calls,

directly connected components have the same performance as their non-componentized counterparts. This means that

once the component composition phase of an application is finished, an application created from CCA components

has performance characteristics that are little different from that of non-component code.
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Figure 1: A schematic representation of how ports
are connected and used through a sequence of interac-
tions between a component and framework via the CCA
Services object.

3.4 Component Lifecycle

Figure 1 illustrates more specifically how ports are connected and used through a sequence of interactions between a

component and framework via the CCA Services object. For technical reasons, the Services object is owned

by the framework, but since each component gets a reference to a unique instance of Services which it uses

throughout its lifecycle, we picture it here as being associated with the component. In Step 1, Component 1 calls

addProvidesPort() on the Services object (and Component 2 calls registerUsesPort()) to express

their intent. Then in step 2, the CCA Services object caches the information about the port that it received from

addProvidesPort(). In the third step, the framework connects the uses port to the provides port, and the frame-

work copies information about the provides port to the user’s (Component 2’s) CCA Services object. Finally, when

Component 2 wants to invoke a method on the port provided by Component 1, it issues a getPort() call to obtain

a handle to the port. Not shown in the diagram is the releasePort() call, which informs the framework that the

caller is (temporarily) done using the port. A port may be used only after a getPort() call has been made for

it, and before its companion releasePort() call; getPort() and releasePort() can be used repeatedly

throughout the body of the component. This approach is considered better CCA programming practice than acquiring

handles to all relevant ports once at the beginning of the component execution and releasing them only at the end, as

it allows the use of a more dynamic component programming model.

Finally, when not within a getPort()/releasePort() block, connections between uses and provides ports

may be broken and reconnected, and components may be destroyed. In general, components cannot use ports on other

components during the composition phase (e.g., within the component’s setServices() routine) because there is

no guarantee that the components providing those ports have been instantiated and connected to this component’s uses
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port. Framework service ports are always available and can be used at any time.

The framework and the CCA model do not require that all uses ports declared by a component be connected

to provides ports. While there are many cases in which this is an error (akin to a traditional application not being

linked to a library it needs), it also provides a useful flexibility to the component developer. For example, needed

functionality might be provided by any of several different ports, and this approach allows the component to check

which are available (i.e., connected) and use the best one. Some uses ports might be considered optional by the

component developer – to be used if present, but if not, the component should continue without failing. Examples

include an optimization component that will make use of the function’s Hessian (second derivatives) if connected to a

port providing it, but will otherwise use an internally computed approximate Hessian, or a component that will send

its text output to another component if connected (perhaps one that collects and annotates the output of a parallel

application with information about the originating process) but simply will use stdout if not connected.

In everyday use of the CCA model, steps 1–3 above would take place during the composition phase of the applica-

tions. Specifically, steps 1 and 2 would occur in the component’s setServices(), invoked by the framework when

the component is instantiated, and step 3 would take place as the user instructs the framework how to connect the uses

and provides ports for the application, which is typically done through a script or GUI interface that guides assembly

of the application. Step 4 would take place during execution of the component’s code.

While this explanation has portrayed the phases of the lifecycle as collective, with the entire application being as-

sembled, executed, and then disassembled, this is not necessarily the case. As mentioned above, the BuilderService

framework service port allows all lifecycle operations to be under the programmatic control of any component. This

behavior allows the component to proxy the behavior of the framework (e.g., to recover the concept of a “main” pro-

gram, which otherwise is not part of a general component model like the CCA) but is considered advanced use. The

developer of such a component must be keenly aware of the CCA rules and practices governing component behavior

to ensure that all components in the application “see” the expected CCA environment.

4 Language Interoperability

Multi-language programming is a fact of life in scientific computing, making programming language interoperability

an important issue that the CCA must address. Scientific applications often contain combinations of compiled lan-
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guages, such as C, C++, FORTRAN 77 and Fortran 90/95, and scripting languages, such as Perl, Python and Tcl. An

informal survey of scientific coding groups, mostly from DOE labs, found that the average project used more than

three computer languages (Kumfert and Epperly, 2002). Furthermore, as the community builds more CCA-compliant

components, some based on legacy codes, there is every reason to expect the trend toward multi-language applications

to continue.

Unfortunately, getting codes written in different programming and scripting languages to interoperate can be quite

difficult if there is no native support in one or more of the languages. Historically, developers had to write additional

code to “glue” multi-language applications together, most commonly in a pairwise fashion. As a result, changing

interfaces between the languages required changes to the glue code. As the number � of supported languages increased,

the language interoperability burden increased � �
.

This maintenance nightmare has led to a number of efforts to ameliorate the problem. For example, Simplified

Wrapper and Interface Generator (SWIG) (Beazley, 2003) is a tool that enables interactions among a select group of

languages. SWIG allows code written in Perl, Python, Ruby and Tcl to call software written in C or C++, but it does

not enable C/C++ to call Perl, Python, Ruby or Tcl.

Rather than rely on the current norm of pairwise interoperability between a few languages, the CCA has adopted

a tool that reduces the language interoperability burden on component developers and users from � �
to

� � . This tool,

called Babel (Lawrence Livermore National Laboratory, 2004), is able to substantially reduce the interoperability

effort through the use of an intermediate object representation (IOR) implemented in ANSI C (Dahlgren et al., 2004).

Currently, Babel supports C, C++, Fortran 77, Fortran 90/95, and Python. Actually Babel is a “standalone” tool in that

it can be used outside the Common Component Architecture environment.

Babel is an interface definition language (IDL)-based tool that automatically generates code to glue multi-language

components together. It relies on the Scientific Interface Definition Language (SIDL) (Dahlgren et al., 2004) for the

definitions of calling interfaces through defined types (i.e., interfaces and classes) and declared methods. A SIDL file

contains only type and method declarations; a SIDL type is implemented by running the Babel compiler on the SIDL

file and editing the implementation file in one of Babel’s supported languages (i.e., C, C++, etc.). Both SIDL interface

and class are used to define collections of methods representing the calling interface. The difference between the two

is interfaces cannot be implemented directly while classes can — provided they are not abstract. The implementation
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of one or more methods of an abstract class must be deferred to a concrete subclass. Interfaces and classes are grouped

together in packages to provide a namespace concept to prevent symbol name collision. Using a SIDL file, the Babel

compiler generates glue code to handle the translation of arguments and method calls between caller and callee for

any supported language.

Like similar technologies such as CORBA (Object Management Group, 2002) and COM (Microsoft Corporation,

1999), Babel provides the standard hallmarks of object-oriented programming (e.g. object identity, inheritance, poly-

morphism, and encapsulation) in all supported languages even when the features are not native to the language. These

concepts map differently into different languages. For example, object identity is handled with a struct pointer in C,

wrapper objects in C++, Java and Python, 64-bit integers in FORTRAN 77, and a derived type containing a 64-bit

integer in Fortran 90/95.

Babel’s inheritance model is analogous to that of Java (Gosling et al., 1996). A SIDL class can extend, or inherit

from, at most one class and can implement an arbitrary number of interfaces. Single inheritance of classes was chosen

to avoid the confusion that sometimes arises with multiple inheritance. Interfaces can extend multiple interfaces. With

Babel, it is possible to implement each level of a type hierarchy in a different language. This is inherent in Babel’s

object model because all classes specified in SIDL, regardless of their language of implementation, implicitly extend

the SIDL base class, sidl.BaseClass, which is implemented in C.

What makes Babel and SIDL different from other IDL-based tools, such as CORBA and COM, is that they are be-

ing tailored for use in scientific computing. For example, SIDL has built-in support for scientific data types, including

complex types and dynamically allocated, multi-dimensional, arbitrarily strided arrays.

Furthermore, having the IOR implemented in ANSI C has several important benefits for HPC. First, it enables

the generation of glue code that will support fast, single-process communication. Second, using ANSI C increases

the portability of the glue code across high-end platforms. Finally, Babel supports Fortran as a first class language.

Although Fortran is now largely ignored by most of the computing world, including most of the commodity compo-

nent models, it still has a large following in scientific computing, particularly among application developers. Babel

provides native Fortran 90/95 array access to Babel’s internal array data structure using the CHASM array descrip-

tor library (Rasmussen et al., 2001, 2003). Providing native access to array descriptors is challenging because array

descriptor internals are usually compiler specific and undocumented.
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Since component technologies are an evolutionary step beyond object-oriented programming, the CCA has been

able to leverage Babel and SIDL in the development of its component framework. The CCA specification is written

in SIDL, and component developers write SIDL files to describe their ports and the classes that use or provide those

ports. Using SIDL enables the encapsulation of implementation details of CCA-compliant components. Wrapping

the CCA framework in SIDL makes it a relatively simple exercise to create Python components serving as application

drivers, GUIs, and other tasks for which scripting languages are often used in traditional programming environments

(Kumfert, 2003).

The benefits of Babel technologies include its environment, programming language support scalability, and its

potential as a basis for future research. Babel is a portable, language independent, object-oriented programming

environment that enables the CCA to incorporate components written in the most common scientific programming

languages. Furthermore, it provides a scalable approach to support new languages as they rise to prominence. Other

advantages include the ability to leverage Babel to facilitate scientific computing research in areas such as remote

method invocation, specification-level parallelism, and dynamic code insertion. More information about current efforts

on these research areas can be found in Section 15.

5 Fine-Grained Component Interactions

As mentioned previously, one of the major requirements of the Common Component Architecture is that it impose

minimal performance overheads on both local component interactions and component-based parallel applications.

While not explicit in the CCA specification, the design of the CCA makes it possible for straightforward implementa-

tions of the specification to obtain high performance in both contexts.

In the CCA, the framework mediates all connections between uses and provides ports. This makes it possible for

CCA implementations to transparently support both distributed and local connection models. In the distributed case,

getPort() returns a pointer to a proxy for the provides port provided locally by the framework; the framework itself

is responsible for conveying the method invocations to the actual remote port (see Section 7).

In the local case, CCA implementations generally load components into the same process so that they share the

same memory space, while putting them into different namespaces to preserve the separations expected between

components. In this case, getPort() can simply return a pointer to the virtual function table for the port, thereby
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allowing methods on the port to be invoked directly (without further intervention by the framework), and data to be

passed by reference if desired. The CCA term for this approach is direct connection. In component models, most of

which were designed primarily with distributed computing in mind, direct connection optimizations would violate the

component model’s specifications. Some CORBA ORBs provide a less efficient collocation optimization, which does

maintain compatibility with the component model (Schmidt et al., 1999).

Experiments have shown that the overheads for calls between directly connected CCA components are small and

quite manageable in the context of scientific computing (Benson et al., 2003a; Bernholdt et al., 2002b; Norris et al.,

2002). Calls using simple data types (those requiring no translation by Babel) cost the equivalent of a C++ virtual

function call, exactly what is expected for the direct connection implementation described above. This is roughly three

times the cost of a function call in Fortran or C, or about 50 ns on a 500 MHz Pentium III system. For comparison, the

same test with the omniORB CORBA implementation on the same platform required approximately twenty-six times

longer.

Of course there are data types that require more effort on Babel’s part to translate from one language to another –

effort that varies depending on the languages being connected. For example, nearly every language represents strings

differently, so it is generally necessary to allocate memory and copy for every string argument. Babel also allows the

user to specify that arrays always be in a fixed order (row- or column-major), and between some language pairs must

allocate and copy the entire array to enforce this. However, for general scientific computing, it is not difficult to avoid

excess overheads associated with componentization, or to amortize them with a sufficient amount of computational

work in each function invocation. The advice given to developers of CCA-based applications is to be aware of the costs

and factor them into the design of the individual components and interfaces and the overall design of the application.

6 Parallel Components

The CCA approach to supporting high-performance parallel computing is guided primarily by the “Integration” objec-

tive of Section 3.1. The simplest approach to integrating existing parallel code in a CCA environment is to accept the

parallel programming model used in the original code, rather than trying to impose a new CCA-specific one. This ap-

proach offers a number of additional benefits. First and foremost, software developers can continue to take advantage

of the investment they have made in learning how to produce high-performance software in their favorite programming
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Figure 2: A schematic representation of the CCA
parallel programming environment in the sin-
gle component/multiple data (SCMD) paradigm.
Different parallel processes are labeled P0. . . P3,
and the same set of three components has been
loaded into each process. Components in the
same process (vertical dashed box) interact us-
ing standard CCA port-based mechanisms, while
parallel components of the same type (horizontal
dotted box) interact using their preferred parallel
programming model, such as MPI, PVM, Global
Arrays, etc.
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model. For many users, this is probably as important as the more obvious fact that our approach requires a minimal

modification to existing code. Thus, the CCA does not require yet another parallel programming model, which also

greatly simplifies the task of implementing a CCA-compliant environment.

There are a variety of CCA-compliant frameworks that vary in their support of parallel and distributed computing.

At present, a given framework supports either HPC parallel or distributed computing, and parallel plus distributed

applications must be assembled from pieces running in different frameworks, using the BuilderService and

AbstractFramework services defined in the CCA specification. As discussed further below, we expect to move

toward higher degrees of integration and transparency in the coupling of parallel and distributed applications. For now,

however, we focus on the current situation with respect to parallel and distributed computing.

Ccaffeine (Allan et al., 2003, 2002), the main CCA framework implementation for HPC parallel computing, sup-

ports the component analogs of both the single program/multiple data (SPMD) and multiple program/multiple data

(MPMD) models. We refer to these as single or multiple component/multiple data (SCMD or MCMD) models. Fig-

ure 2 depicts the SCMD case; each process is loaded with the same set of components wired together in the same way.

Interactions among components within a given process (vertical direction) take place through the normal CCA means

— by declaring ports and using getPort()/releasePort() around calls to other ports. Interactions among a

component’s parallel cohort (parallel instances of the same component, the horizontal direction in the figure) take

place via the parallel programming model that component uses. Different components within the same application

may use different parallel programming models (with certain restrictions, discussed below). “Diagonal” interactions

– between component A on one process and component B on another process – are not prohibited by the CCA, but

require a degree of coordination that may not be consistent with the notional independence of components (unless a
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Figure 3: A schematic representa-
tion of the CCA parallel program-
ming environment in the multiple
component/multiple data (MCMD)
paradigm. Different parallel pro-
cesses are labeled P0. . . P3. Some
components are loaded into all pro-
cesses (top two rows), while others
(bottom two rows) are loaded only
into subsets of the processes (Group
A and Group B).
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componentization has been carried to a degree that groups of closely intertwined components are used to carry out

certain operations).

In the MCMD case (Figure 3), some components are typically loaded into all processes, while others are loaded

only into subsets of the processes. An example of an MCMD application might be a coupled global climate model,

where atmospheric, oceanic, land, and other elements of the model are run simultaneously on different subsets of the

available processes. These separate elements are managed by a driver component and supported by other components,

which handle the data exchange. In contrast to the disparate elements (atmospheric, oceanic, etc.), the management

and support components are loaded into all processes of the simulation. Because of the inherent complexity of parti-

tioning the process space and of launching parallel jobs with different inputs or executables on every process, MCMD

applications can be most easily created using the CCA’s BuilderService from a so-called builder component.

This component, which might be written in a scripting language, such as Python, would compute the desired partition

of the available processes and then use BuilderService on each process to load and connect the appropriate set

of components. The builder would then invoke the GoPort on the climate model’s driver component to initiate the

simulation.

Ccaffeine also supports threaded parallelism, with the restriction that on each process, only the main thread is

allowed to interact with the framework to manage connections between components. The SCIRun2 framework (Zhang

et al., 2004) is fully thread-safe, thus allowing combinations of MPI-based and thread-based parallelism within the

same component. Currently, neither of these frameworks provides a mechanism for managing resources when more

than one multi-threaded component is competing for processing resources.
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(a) Total execution time (b) Cumulative linear solver time

Figure 4: Component overhead in an unconstrained minimization application on a 250 � 250 mesh: (a) total nonlinear
solution time (b) linear solution time.

The simplicity of the CCA approach to parallel computing offers another significant advantage besides the ease of

incorporating existing parallel software into the CCA environment: the performance of parallel components is virtually

identical to that of the original code. The only overheads imposed by the CCA are those on the local component

interactions, which, as discussed in the previous section, are small, and quite managable. A number of studies have

verified this experimentally:

� Norris and coworkers (Norris et al., 2002) have compared a CCA component implementation and a non-

component library implementation of a nonlinear unconstrained minimization problem solved using an inexact

Newton method with a line search (Norris et al., 2002). Each iteration of the Newton method required function,

gradient, and Hessian evaluations, as well as an approximate solution of a linear system of equations. The over-

head of the component implementation resulted from the extra layer of abstraction (more virtual function calls)

and was most significant for very small problem sizes. The parallel performance on 1 to 16 processes of a Linux

cluster also demonstrate that the SPMD component implementation does not adversely affect parallel perfor-

mance and scalability. Figure 4 compares the component and non-component costs for the overall minimization

simulation and the linear solve phase.

� Katz, Tisdale and Norton (Katz et al., 2002) constructed a simple component-based two-dimensional parallel
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Figure 5: Measured overhead as
a percentage of execution time for
component- vs. library-based imple-
mentations of a Lennard-Jones en-
ergy optimization problem.
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unstructured Adaptive Mesh Refinement (AMR) application and compared it with the library on which the

component was based. Repeated timings (5–10 runs each) on between 2 and 32 processes showed no effect

on the parallel scalability of the application and essentially no difference in run times (some runs showed the

library version slightly faster, while for others the component version was slightly faster).

� Benson et al. (Benson et al., 2003a) analyzed the performance of a molecular optimization problem (Hoare,

1979) similar to the one described in Section 13.3. This application used a two-dimensional Lennard-Jones

potential together with the Toolkit for Advanced Optimization (TAO) (Benson et al., 2001, 2003b) for the opti-

mization and Global Arrays (GA) (Nieplocha et al., 1996; Pacific Northwest National Laboratory, 2004a) for the

linear algebra. Tests were performed with up to 65,536 atoms on up to 170 processes to evaluate the overhead of

the CCA component version with respect to the non-component library-based version of this application. The

largest overhead penalty was less than 0.2% of the total execution time (Figure 5).

The simplicity of the CCA approach to parallel computing also brings with it some issues and possible disad-

vantages that must be mentioned. First, the programming models (and specific implementations) used in the various

components assembled into an application must be “composable”, or able to work together without interference. In

many cases, this issue does not really pose a problem. For example, MPI (Forum, 1994), PVM (Geist et al., 1994), and

the Global Array Toolkit (Nieplocha et al., 1996; Pacific Northwest National Laboratory, 2004a) can coexist without

problems thanks to their compatible execution environments. On the other hand, connecting an MPI-based component
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to one based on OpenMP is unlikely to produce the desired result without careful thought, and perhaps additional

programming. While the composition of parallel programming models in a single application is perhaps more likely

to occur in a component environment than in traditional application development, this issue is in no way specific to

component environments and is outside the scope of the CCA.

In addition, although SIDL bindings exist for MPI, PVM, and Global Arrays, no parallel programming model

has yet been formally componentized in the CCA environment. This means that they must be treated as traditional

libraries, which raises subtle issues in a component environment. Basically, whether the parallel programming (or

other) library is linked to the component instead of the framework itself, and whether the linkage is static or dynamic,

affect whether each component sees the same parallel environment or a completely separate instance of it (Bernholdt

et al., 2002a). In most cases, the desired result of a shared parallel environment requires that the library be linked into

the CCA framework, which is a minor inconvenience (in so far as the framework build must be modified to include the

libraries required by the application(s) of interest), and begs the question of who takes responsibility for initializing

and finalizing such libraries. The present solution is that the framework is also responsible for these actions, which

has proven adequate so far. In principle, they could be moved into a component, but MPI, for example, requires the

application’s command line arguments for its intialization procedure. (This suggests the need for a standardized means

by which components can obtain a copy of the commandline arguments from the framework.)

Finally, for any programming model that provides support for multiple contexts, code is much easier to reuse

when it accepts an externally determined context rather than simply using the default global context (such as MPI’s

COMM WORLD). This is advice often given to those programming in message-passing environments (and just as often

ignored, it seems), which becomes all the more important in component environments, particularly for components

that might be used in the MCMD fashion.

7 Distributed Components

Historically, high-performance scientific computing has focused primarily on local sequential and parallel comput-

ing. However, there is an increasing interest in distributed computing, reflecting the rise of the Internet, web-based

“application service providers”, and Grid computing (Foster and Kesselman, 1998). The CCA’s design objectives

(Section 3.1) support both parallel and distributed computing. The primary distinction between the two paradigms, as
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far as the CCA is concerned, is whether or not components can be directly connected, sharing memory within the same

process. As described above, such direct connection is the primary means by which CCA environments can assure

the highest possible local/parallel performance; in distributed computing, although efficient tools are still important,

the emphasis is on flexibility and the ability to integrate with existing distributed computing standards and environ-

ments. Beyond this, the integration of the HPC parallel and distributed paradigms within a single component-based

environment is an interesting and challenging research issue.

Distributed computing environments raise a number of issues that differ from those in the direct-connect parallel

paradigm:

� Component Interaction: When components cannot be directly connected because they are in separate pro-

cesses, generally in disjoint address spaces, it is necessary for the framework to mediate calls on ports through

mechanisms such as remote method invocation (RMI) (Sun Microsystems, 2004b), remote procedure calls

(RPC) (Birrell and Nelson, 1984), or message passing (Forum, 1994). Numerous such systems are available

(and new ones are continually being developed), with a range of performance and capabilities. In each system,

there is a specialized representation for “handles” to the ports and services of components. These must be glob-

ally unique references which point to objects in remote address spaces. Often these handles are objects that can

function as proxies for remote objects.

� Registration and Discovery: This is the term for the mechanisms that allow components to announce their

availability and to find each other so that they can cooperate within the same application. Though this capability

is necessary for both local/parallel and distributed computing, in the former case, very simple solutions are

quite effective – components are typically loaded from pre-specified locations on a (shared) file system into a

single framework instance. In the distributed case, one cannot count on shared file systems, or even ones that

have similar structure, and the CCA framework itself must execute in distributed fashion, so that component

co-location cannot be the basis of discovery. Registration and discovery (R&D) mechanisms are very much

influenced by the the broader distributed computing environments into which CCA may be integrated.

For example, in an Open Grid Services Architecture (OGSA) (Foster et al., 2002) or Web Services-based en-

vironments, components can be described by Web Services Description Language (WSDL) documents (Chris-

tensen et al., 2001), and registered and discovered in registries such as the Lightweight Directory Access Proto-
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col (LDAP) (OpenLDAP Foundation, 2003) and Universal Description, Discovery, and Integration (UDDI) (UDDI.org,

2003). For Legion-based environments (Grimshaw et al., 1999; Lewis et al., 2003), components have names in a

globally accessible context-space, and can be discovered and filtered based on where they are running, to which

class they belong, their creator, and a range of other component attributes.

� Component Creation: In a distributed environment, the creation of components needed for an application

typically involves remote resources, whereas in a local/parallel situation the resources are local, and typically

pre-allocated (for example, by a queuing system). Distributed frameworks must therefore support dynamic

remote creation and placement (i.e., scheduling) that respects the security (authentication and authorization)

requirements of the component, the application, and the supporting environment.

Given the range of issues and the options for addressing them, including choices of a number of well-established

distributed computing environments into which CCA’s CBSE approach might be integrated, it is not surprising that

there are currently several distributed CCA frameworks supporting a range of capabilities.

7.1 XCAT

XCAT (Govindaraju et al., 2003; Krishnan and Gannon, 2004) is a CCA-based distributed component framework

that uses the Web services model as its basic architecture. It has been implemented in both C++ and Java. Each

provides port in an XCAT component is described using an XML schema and is designed as a Web Service that has

one port type. The XCAT team is currently working on using a WSDL (Christensen et al., 2001) document for this

purpose. WSDL documents will provide a description of the interface and also provide information pertaining to the

communication protocols to which the service is bound. The use of WSDL for XCAT components will enable the use

of well known Web service client toolkits to invoke methods on XCAT provides ports.

In XCAT-Java (version 3.0.6 alpha), component creation and launching mechanisms on remote locations are based

on Globus GRAM via the Java CoG kit (von Laszewski et al., 2001). XCAT-C++ (1.0 beta) uses SSH to instantiate

components on remote locations. Currently, it expects the component executable to be deployed on the resource on

which it needs to be instantiated.

For components in the same address space, XCAT has a built-in mechanism that is optimized for co-location

optimization. Communication among XCAT-Java components is enabled by the XSOAP (Slominski et al., 2001)
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toolkit, which provides an elegant model based on the Java-RMI (Remote Method Invocation) specification (Sun

Microsystems, 2004b). XSOAP and XCAT-Java use the dynamic proxy feature of Java. This feature allows the

generation of stubs and skeletons dynamically. XCAT-C++ uses the Proteus (Chiu et al., 2002) multi-protocol library

to choose the most appropriate communication protocol for each pair of interacting components.

While the XCAT API can be used directly in programs for composition of applications using the component

assembly model, the program must be recompiled whenever the component wiring is modified. XCAT also provides

a binding to Python for XCAT-C++ and Jython (an implementation of Python in Java) (Anonymous, 2003) for XCAT-

Java that can be used to access the XCAT libraries, thereby enabling scientists to change their application composition

without the need for recompilation. This approach also has the added advantage of launching applications from web-

portals.

7.2 SCIRun2

SCIRun2 (version 1.90) (Zhang et al., 2004) is a framework that combines CCA compatibility with connections to

other commercial and academic component models. Based on SCIRun (Johnson and Parker, 1995; Parker and John-

son, 1995; Parker et al., 1997) and the CCA specification, SCIRun2 utilizes parallel-to-parallel remote method invo-

cation to connect components in a distributed memory environment. It is multi-threaded to facilitate shared memory

programming. SCIRun2 also has an optional visual-programming interface. Overall, this framework provides a broad

approach that allows scientists to combine a variety of tools for solving a particular problem. The overarching design

goal of SCIRun2 is to provide the ability for a computational scientist to use the right tool for the right job, a goal

motivated by the needs of biomedical and other scientific users.

The primary innovative design feature of SCIRun2 is a meta-component model that facilitates integration of a

number of classes of tools from various, previously incompatible systems. In the same way that components plug into

CCA or other component-baed systems, SCIRun2 allows entire component models to be incorporated dynamically.

Through this capability, SCIRun2 facilitates the coupling of multiple component models, each of which can bring

together a variety of components. This feature allows the coupling of single-address-space components based on

Babel (see Section 4), and components from SCIRun, as well as CCA components that use the SCIRun2 distributed

computing infrastructure. Special components, called bridges, facilitate interactions between components belonging
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to different models. These bridges can be generated automatically or semi-automatically.

The SCIRun2 framework enables a variety of distributed computing mechansisms to be used together. Natively,

SCIRun2 provides support for RMI-based distributed objects. This support is utilized in the core of the SCIRun2

framework in addition to distributed components. Using the SIDL language, we compile proxy objects that marshal

method calls to remote objects and manage distributed references. For objects that exist within the same address space,

this marshalling framework is completely bypassed, making fine-grained component interactions possible with only

the cost of a C++ virtual function call. For distributed components, the SCIRun2 framework employs a remote slave

framework that manages component creation, registration and discovery on a remote, possibly parallel, computing

resource. We build on the SCIRun2 RMI system and extend the SIDL language to implement parallel-to-parallel

component connections, discussed further in Section 12.

7.3 Legion

Legion is an object-based Grid computing system (Grimshaw et al., 1999; Lewis et al., 2003). The Legion-CCA frame-

work (Lewis et al., 2003) makes use of the Legion object model and run-time system for implementing components.

Legion objects contain their own address space, and are named within a global namespace by Legion Object Identifiers

(LOIDs). Legion class objects define the interface to their instances, and manage them at runtime. Currently, each

CCA component maps to its own Legion object and therefore has its own address space. Components make calls on

others in the CCA framework by invoking methods on the Legion objects that represent them. Programmers specify

CCA components using SIDL, and a stub generator produces wrapper code that allows each component to commu-

nicate with the others in a Legion-based framework. Programmers fill in port definitions and compile the code into a

Legion object that can then run in the Legion-CCA framework as a component.

Each component is linked with both the Legion runtime library and a Legion-CCA library, which delivers the

services required by the CCA specification. For example, the library furnishes an interface for registering and obtaining

provides and uses ports, for instantiating components via a BuilderService, and for maintaining a table of connections

to other components. Many of the library’s functions require outcalls to remote services, but the interface to the

component programmer is provided as a local API. This approach keeps the programming of components that are

intended to run in a distributed environment as similar as possible to the programming of local components.
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Legion provides services that cover all of the distributed computping issues raised at the beginning of this section.

Thus, implementing a particular service is a matter of mapping the CCA request onto the Legion implementation. For

example, component creation is realized by invoking the createInstance() function in the Legion library. This,

in turn, calls the CreateInstance() method exported by the appropriate class object. Component interaction is

implemented on top of the Legion messaging system, which supports remote method invocation. Soon, the registry

and discovery service, although not currently implemented, will be able to take advantage of the Legion context space.

7.4 Distributed Interoperability

Interoperability among distributed frameworks differs significantly from other kinds of interoperability and requires an

additional specification that is not a contract between the framework and the component, but rather a contract among

frameworks. Some of the capabilities required for interoperability among distributed CCA frameworks include:

� Common Communication Protocols: Before two components can communicate, there must be some agree-

ment on the protocols they use. For example, they may choose to use something based on the SOAP stan-

dard (Gudgin et al., 2003) being developed by the World Wide Web Consortium (W3C).

� Common Remote Reference Format: To connect a uses port to a provides port, there must be some way to

refer to the provides port. To connect a uses port from one framework to a provides port of another, the ports

must have a common reference format.

� Common Creation Protocol: The current CCA specification provides a BuilderService to be used for creating

components. A ComponentID is returned upon successful instantiation of the component. In a distributed

framework, once a component has been instantiated, the BuilderService and the new component need to interact

so that the ComponentID can be returned. This interaction requires an additional protocol above that used for

basic communication.

� Common Connection Protocol: When two components are connected, a reference to the provides port is placed

in the uses port of the other component. In a distributed framework, this reference may be to a component in a

different framework. Different frameworks must agree upon the set of RPC calls and the on-the-wire format of

parameters that will be needed to place a reference to the provides port in the uses port. Note that this protocol
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is layered above the common communication protocols.

Part of the ongoing research activity in the distributed CCA effort is aimed at establishing the full requirements

for distributed framework interoperability and determining the most effective way to specify each aspect for inclu-

sion in the formal CCA specification. Rather than “blessing” specific protocols for each capability, we anticipate an

environment that allows frameworks to negotiate among multiple supported options for each capability.

8 Current Status of the Common Component Architecture

Although active research and development of the Common Component Architecture continues, a variety of tools

are currently available that provide a highly functional environment for the development and use of CCA-compliant

components and applications. Indeed, a number of applications groups have already begun such work, some of which

is described below.

Although the CCA Specification, currently at version 0.6.3, continues to evolve and mature, most of the recent

changes have either been clarifications or the addition of capabilities that are considered advanced, and therefore

rarely employed by typical users. For mainstream use, the CCA specification has been largely stable for the last

several years. Backward compatibility of the specification is not currently a requirement, although the impact on

user code is carefully considered before changes are made. For example, the recently added ComponentRelease

interface was one of three alternatives proposed, and was chosen in large part because it had the fewest backward

compatibility problems.

The Babel language interoperability tool, currently at version 0.9.0, is independent of the CCA Specification, but

also is a major dependency for CCA framework implementations. Babel has been evolving fairly rapidly, including

the addition of Fortran 90 support within the last year. Backward incompatible changes are announced in advance and

discussed within the user community, often influencing the implementation time line. The Babel team has defined a

draft set of criteria for the version 1.0.0 release, which includes a guarantee of longer-term stability.

The final core tool in the CCA environment is a framework. As we have described, there are a number of CCA-

compliant frameworks currently available for use (and others which are primarily research vehicles). The primary

frameworks, their versions, and their capabilities are summarized in Table 1. Frameworks depend on specific versions



HPC Component Architecture 32

Table 1: Summary of versions and capabilities of core CCA tools as of June 2005.
Category Name Version Capabilities
CCA Specification cca-spec-babel 0.7.5
Language Interoperability Babel 0.10.0 Supports C, C++, FORTRAN 77,Fortran 90/95, Java,

Python
Chasm 1.1.0 Used by Babel for Fortran 90 array support.

Frameworks Ccaffeine 0.5.6 Local direct-connect and parallel computing (SCMD
and MCMD paradigms)

XCAT-Java 3.0.6 � Local direct-connect and distributed computing com-
patible with Grid- and web-services approaches

XCAT-C++ 1.0 � Uses the Proteus Multi-protocol library and distributed
computing compatible with Grid- and web-services
approaches

Legion-CCA 1.0 Distributed computing compatible with the Legion en-
vironment

SCIRun2 1.92 Local direct-connect, MPI/threaded parallel, and dis-
tributed computing

Graphical Interface ccafe-gui 0.5.5 “Visual programming” interface for assembly of
component-based applications in the Ccaffeine frame-
work

Complete CCA Environment cca-tools 0.5.7 Integrated software distribution including the CCA
specification, Babel, Chasm, Ccaffeine, and ccafe-gui.
It is the recommended way for most users to obtain a
complete CCA environment.

of both the CCA specification and Babel, and consequently tend to evolve at a pace guided by releases of those tools.

A variety of secondary or more specialized tools for the CCA environment are also available or under development.

These include tools which automate much of the relatively mechanical work of setting up the “skeleton” of the files

required to create ports and components, graphical “application builder” interfaces which connect to CCA frameworks,

and tools which facilitate the “componentization” of existing software.

9 Related Work

As has been discussed, the CCA is a component model specialized to meet the needs of the high-performance scientific

computing community. While we are aware of no other similar effort targeting this particular group, we mention in

relation to this work a variety of other component models, as well as other tools and environments that facilitate the

development of large-scale scientific software.

With respect to component models, probably the most relevant ones are the commodity component models, par-

ticularly CORBA CCM (Object Management Group, 2002); Microsoft(TM) COM, DCOM and .NET (Box, 1997);
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Microsoft(TM) Visual Basic (Liberty, 2003); JavaBeans (Englander, 1997); and Enterprise JavaBeans (Roman, 1997).

These models were conceived without high-performance computing in mind and usually restrict the user to a platform

that is not conducive to HPC. Java components are restricted to the Java platform, and COM, DCOM and .NET are, as

a practical matter, restricted to Microsoft operating systems. Neither of these platforms is often associated with high-

performance computing. There have been serious efforts to use CORBA in a high-performance setting with mixed

results (Denis et al., 2001, 2003; Keahey, 1996; Schmidt et al., 1996). Commodity component models usually focus

on generality and flexibility, and their designs do not emphasize performance in an HPC sense. The time scales for

commodity component models are usually based on human perceptions and reaction time, which is roughly five orders

of magnitude slower than modern parallel computer timescales. However, it is important to emphasize that the CCA

considers long-term compatibility with commodity component models important. Indeed, the design of the CCA owes

much to these component models, especially the CORBA CCM.

In the HPC scientific computing area, perhaps the most relevant comparisons can be made to the variety of popular

domain-specific applications frameworks (see Section 2). Cactus (Allen et al., 2000) predates the CCA and originally

grew out of the relativistic astronomy community. It is still fostered by that community but is being generalized to a

more multi-purpose framework. The Earth System Modeling Framework (ESMF) (Killeen et al., 2003) is a similar

effort, targeting global climate simulation (see Section 13.2.2). Both have a predefined data model, specific to their

application area, which is shared by all of the participating components. The means of component composition is

execution order – each component has a “run” or “exec” method that is called in a sequence of the user’s choosing. In

both cases there are specializations to their application area that will not be detailed here. Cactus and ESMF both rely

on an execution engine (sometimes referred to as a “flow executive” (Anonymous, 2004)) that is orchestrated by their

respective frameworks, while the CCA relies entirely on port composition; execution order and timing are left to the

way components use their ports. A third, relatively new, peer component model, Palm/PRISM (Guilyardi et al., 2002),

incorporates both of these ideas. While Palm is a generic component framework, PRISM is a specialization dedicated

to climate simulation. These have a concept similar to ports, where components are composed by matching typed

data structures that flow between components. In addition, Palm has a flow executive that schedules the activation of

components during the calculation.

Beyond peer component models, there are packages that are simply labeled “libraries” or “frameworks”. Hypre (Chow
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et al., 1999; Falgout et al., 2003), Overture (Brown et al., 1999; Henshaw et al., 2002), PETSc (Balay et al., 2003,

1997), POOMA (Reynders et al., 2001, 1996), and Trilinos (Heroux et al., 2003, 2004) are all object-oriented class

libraries that do not embrace the peer component methodology. The goal of these software packages is to make HPC

program construction and execution easier, often in a specific problem domain, e.g., numerical solution of partial dif-

ferential equations (PDEs). Their approaches are to provide a variety of numerical method implementations (Hypre,

PETSc, Trilinos) or to define high-level abstractions for solving a particular kind of problem (Overture, POOMA).

None of these packages aims to provide a specification for a general-purpose peer component model.

10 Using the CCA

Although the CCA effort is rather young, the CCA specification and the basic tools associated with the CCA envi-

ronment are sufficiently stable and robust that a wide range of groups are already using the Common Component

Architecture in their software development efforts. The resulting activities range from the creation of components

and interfaces encapsulating important capabilities for scientific computing, or for particular scientific domains, to the

development of complete component-based scientific applications.

The development of individual components and interfaces for scientific computing is an important activity because

it enriches the pool of available components upon which others may draw to assemble their applications. Often de-

velopers of a specific application recognize that particular components may be of broader interest or those associated

with existing numerical or scientific libraries wish to make their tools available in the CCA environment. CCA appli-

cations are typically built by combining more general, reusable components with some constructed specifically for the

application in question.

It is impossible to convey here the full breadth of work already in progress which utilizes the CCA environment.

However, since the ultimate goal of the CCA effort is to change the way scientific software is developed, this overview

of the Common Component Architecture would be incomplete if it did not at least present a overview of how the CCA

is being used.

In the remainder of this section, we describe the general process of adapting existing code into the CCA envi-

ronment, or of developing a component-based application “from scratch”. Section 11 reviews some of the interface

and stand-alone component development activities. This is followed, in Section 12, by a more in-depth description of
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another important CCA research activity, facilitating the development of coupled simulations. Finally, in Section 13

we sample the diversity of CCA-based application development.

10.1 Designing Component-Based Software

Scientific simulation codes have traditionally combined a set of numerical algorithms to solve physical and mathemat-

ical models for a specific set of problems. In traditional scientific software, these models and algorithms are integrated

under a common design and tightly integrated using common data structures. Their identification as “modules” in an

overall solution strategy, however, is typically straightforward.

Whether component-based or not, the natural decomposition of an application is often recursive in nature and in-

tuitive to practitioners in the field. For example, in a multi-physics code, such as a global climate simulation, disparate

physics are governed by separate sets of partial differential equations (PDEs), and the first stage of decomposition is

typically to distinguish between the different physics (i.e., atmosphere, ocean, etc.). These are further decomposed

based on the general numerical procedures required: solvers, domain discretizations, physics subassemblies, etc. A

third step of decomposition typically involves implementing the details of the specific equations (in physics modules),

mathematical processes, or numerical algorithms. Pervasive data structures and operations associated with them can

often be encapsulated into data objects (in the sense of object-oriented programming) used by many modules of the

application.

Componentization might naturally occur at any level of this decomposition, perhaps at different levels in different

parts of the application. It may evolve as the application architects and developers modify their requirements, find new

opportunities for code reuse, or wish to generalize parts of the code. A coarse-grain decomposition has the attraction

of simplicity in defining interfaces and interactions and is often the first step in componentizing an application. How-

ever, this approach tends to offer fewer opportunities for code reuse because implementation details (the third stage

of decomposition, above) are typically mixed into the higher-level science drivers. Finer-grain decompositions allow

for better exposure of the details of specific physics equations and numerical algorithm choices, making them more

amenable to reuse and easy replacement. However, what one gains in flexibility and reusability, one may lose in sim-

plicity. Such approaches require sophisticated users who understand the tools individually as well as their interactions.

This dilemma is not unique to the CCA. Other component-like toolkits (e.g., AVS, Matlab, LabView) present similar
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issues.

In designing a component-based application, the interfaces between components become a key element of the de-

sign. Interface design is in many respects a social issue – a primary point of cooperation among developers. Depending

on the requirements, interfaces may be designed with varying degrees of generality, ranging from being specific to a

group of components or a particular application, to being useful across a range of applications developed by multi-

ple research groups and possibly across multiple scientific domains. Clearly the level of effort required to develop

an interface scales with its intended generality. However, as is the case with some widely used numerical libraries

(i.e., BLAS, LAPACK, and others), the payoff can be high for a general interface capable of supporting many appli-

cations and a variety of implementations. In most cases, an interface to a CCA component can be a straightforward

translation of the original software’s interface in to SIDL. However, some researchers find that the componentization

step is an opportunity to redesign the interface, based on experience with the original, and use a somewhat thicker

wrapper to adapt the new interface to the existing code within the component. It is also important to realize that differ-

ent aspects of a simulation may lend themselves to different ways of accessing the functionality of a component. This

can be provided by a component having multiple ports implementing related interfaces. For example, a component

that manages unstructured mesh data may have a port for entity-based access to the mesh and another for array-based

access. The former would provide full capability but lower performance due to the generality of the data model used;

the latter would provide high-performance access to more limited functionality.

10.2 Componentizing Existing Software

Once the component architecture has been determined and the interfaces among components specified, it is necessary

to implement the components themselves. The CCA specification is designed to make it easy to adapt existing code

into components. For most scientific codes, the basic strategy is as follows:

1. Write the wrappers that adapt the source code generated from the SIDL interface definitions to the interfaces in

the existing code. The complexity of this step depends on how close the SIDL interface is to the original.

2. Implement the setServices()method for each component. This tells the framework what ports the compo-

nent provides and uses. If the component requires a signal from the framework when it is about to be destroyed,

so that it can perform cleanup operations, the ComponentRelease interface must also be implemented.
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3. Modify existing tightly coupled implementations containing direct method calls so as to access the same func-

tionality through ports. This involves adding getPort() and releasePort() calls and modifying the

original method call to use the port handle returned by getPort() and comply with the new interface. Some

modification of internal data objects may be necessary in order to use them as arguments in calls on other ports

(for example, a native array being adapted to a SIDL array via the borrow() call). As with Step 1, the extent

of modification will depend on the granularity of componentization and on how close the new interfaces are to

the existing ones.

11 Reusable Scientific Components and Interfaces

In addition to developing the CCA model and a suite of tools implementing it, one of the important goals of the CCA

effort is to promote the development of domain-specific interface specifications and parallel scientific components

which can be reused across multiple applications. The existence of reusable components and interfaces gives new

CCA users a base of “tools” to draw upon in the development of their component-based applications.

In this section, we describe some of our current activities in these areas. This work is in collaboration with

applications scientists and domain specialists, with whom we are also exploring research topics including quality of

service issues related to robust, efficient, and scalable performance.

11.1 Common Interface Development

The development of common interfaces that support a large number of applications is critical to the notion of plug-

and-play scientific computing. Common interfaces are especially important for scientific data components, as the

interfaces for numerical tools and application components often include a certain degree of specificity of the data

structures used as input and output arguments. We are working with domain experts in the Terascale Simulation Tools

and Technologies (TSTT) (Glimm et al., 2005) and APDEC (Colella, 2005) groups to develop common interfaces

for two broad areas of scientific data components, namely, interfaces for (structured, unstructured, and adaptive)

mesh access and a descriptor for dense arrays distributed across the processes of a parallel computer. These data-

centric components will define the layout of data across processes and form the lingua franca for other components

that manipulate the data. We are also working with the Terascale Optimal PDE Simulations (TOPS) (Keyes, 2005)
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group to define component interfaces for linear, nonlinear, and optimization solvers. In addition, we engage the high-

performance scientific community at large to participate in similar dialogs in their particular areas of expertise.

11.2 High-Performance Components

We have developed (internally and through collaboration) high-performance production components that are used in

scientific applications, as well as prototype components that aid in teaching CCA concepts. A common theme in

this work is combining application-specific components, as introduced in the previous sections, with more general

purpose ones that can be reused across a range of applications. These freely available components include vari-

ous service capabilities, tools for mesh management, discretization, linear algebra, integration, optimization, parallel

data description and redistribution, visualization, and performance evaluation. We have also developed a variety of

component-based scientific applications that demonstrate component reusability and composability, including several

that employ domain-specific interfaces defined by CCA working subgroups for scientific data and parallel data re-

distribution. Several of these applications implement PDE-based models using either adaptive structured meshes or

unstructured meshes (McInnes et al., 2004), while others solve unconstrained minimization problems that arise in

computational chemistry (Kenny et al., 2004).

These components and applications, many of which are available as from http://www.cca-forum.org/

software.html, serve as part of CCA tutorial material and have provided a starting point for developing inter-

faces in several scientific applications. This software is based on a strong foundation in the form of rich parallel

tools that already used abstractions in their design, including CUMULVS (Geist et al., 1997; Kohl and Geist, 1999),

Global Arrays (Nieplocha et al., 1996; Pacific Northwest National Laboratory, 2004a), GrACE (Parashar et al., 2004),

CVODES (Hindmarsh and Serban, 2002), MPICH (Argonne National Laboratory, 2003), PETSc (Balay et al., 2003,

1997), PVM (Geist et al., 1994), and TAO (Benson et al., 2001, 2003b). A partial list of components follows.

11.2.1 Utilities and Services

� Services in Ccaffeine. B. Allan, R. Armstrong, S. Lefantzi, and E. Walsh (SNL), M. Govindaraju (Binghamton).

The CCA specification treats framework services exactly like CCA components except that the port that embod-

ies the service is always connected to the component. A number of such services are available in the Ccaffeine
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framework. The parameter port service is the most commonly used, and it allows a user to set parameters on a

component interactively. Another service allows the connection of the original “classic” (C++ only) ports to Ba-

bel components, thereby accommodating legacy CCA software. Additional utility services include permitting a

component to access MPI, to receive connection events, and to establish its own interactive window with a user.

� Performance Observation. S. Shende and A. Malony (University of Oregon), C. Rasmussen and M. Sottile

(LANL), and J. Ray (SNL). The TAU (Tuning and Analysis Utilities) performance observation component (ver-

sion 1.6) provides measurement capabilities to components, thereby aiding in the selection of components and in

creating performance aware intelligent components; see (Ray et al., 2004; Shende et al., 2003) for further details.

This component is currently used in combustion applications discussed in Section 13.1. Future plans include

incorporation into a variety of other simulations, including a quantum chemistry application (see Section 13.3),

in order to provide comprehensive inter- and intra-component performance instrumentation, measurement and

analysis capabilities.

11.2.2 Data Management, Meshing, and Discretization

� Global Arrays. M. Krishnan and J. Nieplocha (PNNL). Many scientific applications rely on dense distributed

arrays. The Global Array (GA) library (Nieplocha et al., 1996; Pacific Northwest National Laboratory, 2004a)

provides an extensive set of operations on multidimensional dense distributed arrays. A rather unique capability

is the support in GA for the shared memory programming model, where arrays can be accessed as if they were

located in shared memory. This is accomplished using one-sided communication operations that transfer data

between the local memory of the calling process and the arbitrary sections of distributed/shared arrays.

We developed a GlobalArray component that provides interfaces to the full capabilities of GA, including the

data- and task- parallel operations. This component provides three ports: GlobalArrayPort, DADFPort

and LinearAlgebraPort. GlobalArrayPort offers interfaces for creating and accessing distributed ar-

rays. These interfaces are intended to support the collection of global information and creation of GlobalArray

objects. All details of the data distribution, addressing, and data access are encapsulated in the GlobalArray

objects. The LinearAlgebraPort provides core linear algebra support for manipulating vectors, matrices,

and linear solvers. Some of the linear algebra operations are implemented internally, and others are provided
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through interfaces to third-party parallel linear algebra libraries such as ScaLAPACK (Blackford et al., 1997).

DADFPort offers interfaces for defining and querying array distribution templates and distributed array descrip-

tors following the API proposed by the CCA Scientific Data Components Working Group. The GlobalArray

component is currently used in applications involving molecular dynamics and quantum chemistry, as discussed

in Sections 6 and 13.3; further details are in (Benson et al., 2003a).

� TSTTMeshQuery. L. F. Diachin (LLNL). This component is a prototype of an unstructured, triangular mesh

component that supports the TSTT mesh query interface (Glimm et al., 2005) for access to node and element

geometry and topology information. It uses opaque tags to support user-defined data; further information is

in (Norris et al., 2002). This interface is sufficient to implement linear, finite-element discretization for diffusion

PDE operators. This approach will be extended to several other TSTT-compliant mesh components built from

existing DOE software that support a wide range of two and three-dimensional meshes. Such components will

be used to demonstrate the utility of interchangeable and interoperable meshing infrastructures in the solution

of PDE-based applications.

� FEMDiscretization. L. F. Diachin (LLNL). This component provides linear, finite-element discretizations

for commonly used PDE operators and boundary conditions. It currently employs unstructured triangular

meshes, through the TSTTMeshQuery component, and provides matrix and vector assembly routines to cre-

ate linear systems of equations in simple PDE-based applications; see (Norris et al., 2002) for details. The

FEMDiscretization component approximates advection and diffusion operators as well as Dirichlet and

Neumann boundary conditions, with either exact or Gaussian quadrature. It uses the TSTTMeshQuery and

LinearSolver ports. This interface is expected to evolve as the TSTT discretization library is developed, and

this prototype component will be replaced with a more sophisticated variant that supports multiple discretiza-

tion schemes and mesh types. Such components will be used to demonstrate the utility of interchangeable and

interoperable discretization strategies in the solution of PDE-based applications.

� GrACEComponent. J. Ray (SNL). This component discretizes a domain with a SAMR mesh and implements

regriding to preserve resolution and to load-balance the mesh. As a wrapper around the GrACE library (Parashar

et al., 2004) developed by M. Parashar of Rutgers University,GrACEComponent takes care of all the geometric
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aspects of the mesh (size and location of patches, their resizing due to regriding, and load-balancing). This

component also serves as a factory for a “Data Object” that contains data on all the patches. This data object

takes care of message passing for ghost cell updates. This component is used in the combustion applications

discussed in Section 13.1, and will continue to evolve to incorporate the latest GrACE features.

� HODiffusion and SpatialInterpolations. C. Kennedy and J. Ray (SNL). These components use an underlying

FORTRAN 77 library developed by C. Kennedy that implements high-order (orders 2 – 8) finite difference

stencils, including both first and second derivatives. HODiffusion supports both symmetric and skewed

stencils for collocated and staggered output and calculates high order diffusion fluxes using these stencils. The

SpatialInterpolations component supplies the prolongation and restriction operators between SAMR

patches at two adjacent levels of refinement, where the order of interpolation has to be commensurate with the

spatial discretization in HODiffusion. These components currently handle diffusion transport subassembly

in the combustion applications discussed in Section 13.1; future plans include continued testing on hierarchical

grids.

11.2.3 Integration, Optimization, and Linear Algebra

� CvodesComponent. R. Serban (LLNL). This component includes ports both for a generic implicit ODE integra-

tor (OdeSolverPort) and for an implicit ODE integrator with sensitivity capabilities (OdeSolverSPort).

CvodesComponent is based on CVODES (Hindmarsh and Serban, 2002) and is used for chemistry integra-

tion in the combustion applications discussed in Section 13.1.

� TAOSolver. S. Benson, L. C. McInnes, B. Norris, and J. Sarich (ANL). This component implements a simple

OptimizationSolver interface for unconstrained and bound constrained optimization problems; see (Nor-

ris et al., 2002) and (Benson et al., 2003a) for details. The underlying optimization solvers are provided by the

Toolkit for Advanced Optimization (Benson et al., 2001, 2003b) and include Newton-based methods as well as

limited-memory variable-metric algorithms that require only an objective value and first order derivative infor-

mation. TaoSolver employs external components for parallel linear algebra, where current support includes

both Global Arrays and PETSc. TaoSolver is used within applications involving molecular geometry opti-

mization and molecular dynamics, which are further discussed in Sections 6 and 13.3. TaoSolver is the basis
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for an evolving optimization solver component that will employ linear algebra interfaces under development

within the TOPS group.

� LinearSolver. B. Norris (ANL). This component provides a prototype port for the solution of linear systems.

These interfaces will support common interfaces for linear algebra that are under development within the TOPS

group. Future work will include transitioning this component, as well as others such as TaoSolver and

FEMDiscretization, to use the new TOPS interfaces, so that they can utilize the full suite of linear algebra

software available within the TOPS center.

11.2.4 Parallel Data Description, Redistribution, and Visualization

� DistArrayDescriptorFactory. D. Bernholdt and W. Elwasif (ORNL). This component provides a uniform means

to describe dense multi-dimensional arrays and is based upon emerging interfaces from the CCA Scientific Data

Components Working Group.

� CumulvsMxN. J. Kohl, D. Bernholdt and T. Wilde (ORNL). Building on CUMULVS (Geist et al., 1997; Kohl

and Geist, 1999) technology, this component provides an initial implementation of the MxN parallel data redis-

tribution interfaces that are under development by the CCA MxN Working Group. CumulvsMxN is designed

to span multiple CCA frameworks and to pass data between two distinct parallel component applications. See

Section 12 for further information.

� ParticleCollectionFactory. J. Ray (SNL) and J. Kohl (ORNL). This component is a prototype for MxN parallel

data redistribution of combustion data for use in post-processing in the applications discussed in Section 13.1.

The ParticleCollectionFactory component imitates a patch on a SAMR grid as a “particle,” which

can then be employed for data redistribution and post-processing. Future plans include increasing the robustness

of the code and using it in off-machine, concurrent post-processing.

� VizProxy J. Kohl and T. Wilde (ORNL). This component provides a companion MxN endpoint for extracting

parallel data from component-based applications and then passing this data to an external front-end viewer for

interactive graphical rendering and exploration. Variants provide general-purpose components for interactive

visualization of data based on structured meshes as well as unstructured triangular meshes. Support for particle-
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Figure 6: A schematic of an M � N parallel data redis-
tribution problem. In this case, M=8 and N=27, and the
dark patches illustrate the fact that data originating on
a single process may be redistributed across many pro-
cesses on the receiving end.

“M”

“N”

based data is under development. Using the CUMULVS viewer library and protocols, a variety of commercial

and public domain visualization tools can be utilized as the front-end user interface (Wilde et al., 2002, 2003).

Currently provided front-ends include a simple 2D “slicer” viewer and a 3D viewer for AVS 5; additional

viewers are under development for VTK, AVS/Express and the CAVE.

12 M � N Parallel Data Redistribution

Because parallel simulations are increasingly being coupled to form complex multi-physics and multi-scale applica-

tions, developers face a growing need to efficiently manage the movement of distributed data from one simulation

component to another. Typically, the sending and receiving sides in such couplings utilize different distributions of

data across their parallel environments. When such coupled simulations are run in a multiple program/multiple data

paradigm, even the number of parallel processes on each side may be different ( � and 	 processes, respectively).

The CCA refers to this as the “M � N parallel data redistribution” problem, illustrated in Figure 6.

Solving the M � N problem is a complex and tedious programming task, which involves determining the mapping

of data between the two decompositions (often referred to as the communication schedule) and then efficiently imple-

menting an all-to-all communication using this schedule. At present, such coupling in most such applications is done

in an application-, or domain-specific fashion, limiting the type of data distributions supported. Often, separate M � N

couplers are created for each pair of models in a multi-physics simulation, with no generalized or reusable solutions.

In so far as a component-based environment is intended to facilitate the development of large coupled simulations,

the development of a more general approach to the M � N problem is an important research area within the CCA effort.

Our long-range view of this research bridges applications, components, interfaces, and the core CCA environment.



HPC Component Architecture 44

We are starting with the development of interfaces and component-based implementations that provide a generalized

M � N capability, which applications can call to affect the transfer of data from one group of components to another.

Another approach involves integrating the mechanics of this data redistribution directly into the CCA framework,

thereby removing from the user the need to explicitly invoke the data transfers. This approach can also be generalized

into “parallel remote method invocation” (PRMI), in which not only are data redistributed among disparate process

groups, but method invocations themselves are coordinated between distinct groups of parallel processes. Finally, we

also look beyond “simple” data redistribution toward ways of generalizing the additional interfacial processing, such

as mesh interpolation, time or spatial averaging, and unit conversion. Here we provide an overview of the current

status of progress toward general component- and framework-based M � N capabilities.

12.1 M 
 N Interfaces and Component Implementations

The CCA Forum’s M � N Working Group has developed a prototype interface specification for an M � N component.

This effort has drawn heavily on experiences with two particular tools that offer fairly general M � N-like capabilities,

based on libraries rather than components: CUMULVS (Geist et al., 1997; Kohl, 1997; Kohl and Geist, 1999; Kohl

and Papadopoulos, 1995) and PAWS (Beckman et al., 1998; Keahey et al., 2001). These tools utilize complementary

models of parallel data sharing and coupling. PAWS is built on a “point-to-point” model of parallel data coupling,

with matching “send” and “receive” methods on corresponding sides of a data connection. CUMULVS is designed

for interactive visualization and computational steering, and so provides protocols for persistent parallel data channels

with periodic transfers, using a variety of synchronization options.

The current M � N interface therefore allows the specification of both “one-shot” and “persistent” periodic data

transfers and is structured to allow for “third-party” control of a data redistribution connection. This possibility min-

imizes the modifications necessary for the sending and receiving components to make them “M � N aware.” The

minimal changes involve only providing a descriptor of the parallel data distribution for each data object of interest,

and then “instrumenting” the simulation code with calls to the M � N component’s dataReady() method at points

where the data is in a “consistent” state globally. Such points in the computation occur where it would be appropriate

to transfer data to the recipient, or at points where it would be appropriate for the recipient to accept new data. Control

over the details of the connection – how often data exchange occurs, or even whether it occurs at all – can all be placed
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into a third component if desired.

Implementations of the prototype M � N interface have been built on top of both CUMULVS and PAWS, and

have been used in a number of models and actual scientific simulations. This experience, together with that from

application- or domain-specific M � N implementations (e.g. the Distributed Data Broker and Model Coupling Toolkit

discussed in Section 13.2) and other related efforts (i.e., Chaos (Edjlali et al., 1997; Lee and Sussman, 2004; Ran-

ganathan et al., 1996)), are now being assessed as part of an effort to refine the interface specification and create more

general and efficient implementations.

12.2 Framework-Based M 
 N

Although the component-based M � N capability is powerful, it can also be somewhat cumbersome to use, since it

requires users to modify their code and explicitly manage the transfers. A much more user-friendly approach, which

is also being actively pursued in the CCA, is to subsume the M � N data transfer capabilities into the CCA frame-

work (i.e., as an optional CCA service) and make the framework responsible for ensuring that data is appropriately

redistributed when required by method calls.

The framework-based M � N option raises a number of issues. One is that the framework must somehow obtain

data distribution information for the sending and receiving of data objects. A logical approach, which has been used

in the past (see (Keahey and Gannon, 1997)), is to introduce such information into the interface definition. Research

using Utah’s SCIRun2 CCA framework extends the SIDL language with primitives for parallel data redistributions

and also parallel remote method invocation. A modified version of Babel parses the extended SIDL specifications

and generates appropriate glue code to handle the data redistribution when method invocations are made (Damevski,

2003).

A second issue, alluded to above, is the fact that the framework-based approach extends the problem from “simple”

data redistribution to a parallel remote method invocation. An extremely complex research task is both the specification

and implementation of an environment in which arbitrary subsets of M processes can, in parallel, invoke methods

on arbitrary subsets of N processes, including the ability to designate the appropriate redistribution for all of the

method arguments. In addition to the work using SCIRun2, with PRMI directives in the SIDL, researchers at Indiana

University have developed DCA (Bertrand and Bramley, 2004), an experimental distributed CCA framework based on
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MPI, as a tool to explore PRMI in greater detail.

13 Scientific Applications

Groups adopting the Common Component Architecture environment for the development of their applications do so

for a variety of reasons. For example, they may be particularly interested in the black-box nature of components to

facilitate the creation and evolution of a computational toolkit. They may need more efficient and flexible ways to

assemble complex coupled simulations or want to refactor code to make it more modular. They may be interested in

increasing interoperability with other similar applications in the same scientific domain. Alternatively, they may want

to more easily leverage software developed by experts in other domains.

In this section, we present overviews of CCA-based application development activities in the areas of combus-

tion simulation, global climate modeling, and quantum chemistry. These simulations illustrate the diversity of CCA

applications and reasons for adopting CBSE for scientific computing.

13.1 Combustion Modeling

One of the most successful implementations of the CCA paradigm to date is in combustion modeling. The endeavor,

which started in 2001 within the context of the SciDAC-funded (U. S. Dept. of Energy, 2003) Computational Facility

for Reacting Flow Science (CFRFS) project (Najm et al., 2003), seeks to create a facility for the high fidelity simulation

of flames, involving realistic physical models, nonlinear PDEs, and a spectrum of time and length scales. Given the

complexity of the problem and the multiplicity of physical and mathematical models required for the task, a component

based approach was clearly indicated. CCA was chosen primarily for its high performance and simplicity.

The target is the modeling of combustion problems defined in simple geometries, i.e., logically rectangular do-

mains, employing structured adaptively refined meshes (SAMR). Evolution of the flow quantities (density, momentum,

temperature, species concentrations, etc.) is governed by a set of nonlinear PDEs, which have the general form:

��
��������� ������������������� � � !#"%$ � �&!'�

(1)

where
�

is the vector of flow variables at a given mesh point. Numerically,
$

involves the variables only at the
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Figure 7: Decomposition sequence for the combustion modeling software. (a) shows the coarse decomposition along
numerical lines into explicit and implicit integration subsystems. In (b), the dictates of physics result in the separation
of physical processes as separate subsystems, which are then populated by various elementary physical and mathe-
matical models. In (c), the domain decomposition and domain discretization functionalities are formally removed to
form new subsystems. The process follows closely the general approach described in Section 10.1.

same mesh point, while � involves spatial derivatives which are computed using finite difference or finite volume

schemes and consequently depend upon the mesh point and its close neighbors. The dependence of � on neighboring

points requires that steep variations of
�

be fully resolved in scattered time-dependent regions of the domain, which

is usually achieved by increasing the grid density locally. The SAMR technique employed overlays a uniform coarse

mesh on the domain and dynamically generates a mesh hierarchy of rectangular patches with different grid densities

based on an error threshold. Physically, for the reacting flow systems described by Equation 1, � expresses diffusion

and convection in the flow, and
$

expresses the chemically reacting source terms of the flow.

In order to design a component-based software infrastructure to model reacting flow systems, one needs to consider

and classify two aspects of the simulation: the physics of the system and the numerical scheme that will be employed.

This classification determines the software subsystems of the infrastructure, that is, collections of components that em-

body specific physical or numerical functionality. For the class of reacting flow problems in which we are interested,

the main physics sub-problems are: diffusion and convection ( � ), and chemical reactions (
$

). Numerically
$

(Equa-

tion 1) is stiff, i.e., the ratio of the largest and the smallest eigenvalues of
�$)(*��

is large, while � is non-stiff. Time

integration is “decoupled” by employing an operator-splitting scheme (Sportisse, 2000; Strang, 1968). The stiffness

problem (
$

) was addressed using an implicit backward difference formulation and the non-stiff problem ( � ) using an

explicit integrator. Thus, the numerical scheme naturally divides into two separate integration software subsystems:

the Implicit Integration Subsystem and the Explicit Integration Subsystem (Fig. 7a).

The physics of the problem, on the other hand, dictate a finer decomposition: for the Explicit Integration Subsystem
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Figure 8: The final results of the
decomposition described in Fig-
ure 7 for a reaction-diffusion prob-
lem. Large boxes represent com-
ponents, smaller rectangles repre-
sent provides ports (left justified
within component box) and uses
ports (right justified). Lines con-
nect uses and provides ports. De-
tails can be found in (Lefantzi
et al., 2003b).
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a Diffusion Subsystem and a Convection Subsystem, and for the Implicit Integration Subsystem a Chemical Reactions

Subsystem (Figure 7b). Also, the code is fully parallel with structured adaptive mesh refinement; we need to employ

a “data object” to account for efficient domain decomposition and a “mesh object” to perform the adaptive mesh

regeneration. Both objects are accommodated by the componentized version of the GrACE library (Parashar et al.,

2004) as a separate software subsystem (Figure 7c). This path of classification results in the first design approximation

for the reacting flow toolkit. The next step is a further decomposition of the software subsystems into components,

resulting in a complex software infrastructure where each individual module is reusable and easy to maintain. Details

are beyond the scope of this paper and can be found in (Lefantzi et al., 2003b). A schematic reaction-diffusion code

assembly is presented in Figure 8.

Our experience with developing CCA-based scientific components for combustion modeling has demonstrated the

following:

1. General purpose components, implementing a particular numerical or physical functionality, are reused in vari-

ous code assemblies. References (Lefantzi and Ray, 2003; Lefantzi et al., 2003b) document our experience with

numerical integration components (implementing a number of explicit Runge-Kutta and backward difference

algorithms), physical models (diffusion coefficients of gaseous mixtures calculated via a number of different

approaches), data and mesh objects, along with the rationale for particular code assemblies.
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2. Once a particular decomposition has materialized, the modular nature of component-based codes allows the easy

replacement of an individual component by another that supplies the same functionality but may exhibit different

characteristics, such as higher accuracy. References (Lefantzi et al., 2003a,b; Ray et al., 2003) document how we

exploited this modular nature to experiment with multiple models of diffusion coefficients of gaseous mixtures

(using constant Lewis number approximations, mixture averaged models based on Lennard-Jones potentials,

etc.) and higher order spatial discretizations in the evaluation of the diffusion term ( � in Equation 1).

3. One of the most significant advantages offered by components is the ability to perform “unit” testing, i.e., each

component is tested individually, in the absence of the final assembly where they will be typically used. This

simple testing process with its quick turn-around time allows one to debug and incorporate a verified compo-

nent in the final assembly easily. While this approach is not particular to components, their modular nature

allows their incorporation into the final assembly without any code modification, thus drastically reducing the

possibility of introducing errors.

13.2 Global Climate Modeling

Simulation using coupled climate models is the chief tool used by scientists to understand the Earth’s climate system’s

past (i.e., paleoclimate), its internal variability and sensitivity to external forcings such as insolation and trace chemical

concentrations (e.g., carbon dioxide), and to construct scenarios for its future change. The fact that climate scenarios

are constructed from large history datasets, resulting from long model integrations that span the century-to-millennial

timescale, makes climate modeling a “grand challenge” computational science problem. The high degree of com-

plexity in the number of physical processes modeled and the numerous interactions among the system’s components

(atmosphere, ocean, sea-ice, river, biosphere, and cryosphere) result in a correspondingly high level of software com-

plexity. For these reasons, the climate community is examining better methods to write and maintain their applications.

Several of these efforts employ the CCA in various aspects of the problem (Larson et al., 2004b).

13.2.1 The UCLA Coupled Climate Model and the Distributed Data Broker

An ongoing project at JPL consists of a demonstration of CCA with three specific climate components: the UCLA

Atmospheric General Circulation Model (AGCM) (Wehner et al., 1995), the LANL POP Ocean General Circulation
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Model (OGCM) (Smith et al., 1992), and the UC Berkeley/UCLA Distributed Data Broker (DDB) (Drummond et al.,

2001). Neither the AGCM nor OGCM will be described in detail in this paper. In brief, they are both explicit

time-marching schemes that read in initial conditions, define boundary conditions (held fixed, except at the ocean-

atmosphere interface), and then start marching forward in time. The atmosphere and ocean models need to exchange

flux and state data at their interface. Flux data exchanged include radiative, fresh water, and momentum fluxes. State

data include sea surface temperature and ocean albedo.

The DDB is not as well known as the AGCM and OGCM, so it is described here in a bit more detail. The DDB

is used in two phases. First, components must register with it by signing up to produce and/or consume data. In

this phase, they also describe the global view of the data that they have/want, and the mapping of this data onto the

processes. The DDB then calculates what messages will have to be sent to transfer data. This calculation is done

on a single process at the end of this first phase, but the information about the messages themselves is stored on the

processes that will be sending or receiving data, and the actual data exchange is also distributed. In the second phase,

the messages are actually sent when the components on a given process signal that they have produced or are ready to

consume data. Also, any interpolation (needed if the grids are not coincident or if no data exists at some set of points)

is done by the DDB.

The usual approach to running a simulation using this coupled climate model would be as a multiple program/multiple

data (MPMD) application, with the AGCM and OGCM each running on subsets of the processes, and the DDB running

on all processes to couple the AGCM and OGCM. In this case, using the Ccaffeine framework (Allan et al., 2002), the

AGCM was cast as the overall driver of the simulation (providing a Go port and using ports provided by the DDB),

and the AGCM determined the processes on which the OGCM should be run. An alternative approach would be to

move the driver functionality and partitioning decisions from the AGCM to a separate driver component and use a full

MCMD model for the application. Demonstrations of such capabilities were developed for the Ccaffeine framework,

but have not yet been incorporated.

The DDB component is a domain-specific solution to what the CCA refers to as the “M � N parallel data redistri-

bution” problem. In addition to being directly useful in other applications, both in climate and other fields, experience

with this component also informs the CCA’s efforts to develop a more general parallel redistribution capability (Section

12).
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13.2.2 The Earth System Modeling Framework

The Earth System Modeling Framework (ESMF) (Killeen et al., 2003) is a national effort to develop common soft-

ware utilities (”ESMF infrastructure”) and coupling services (”ESMF superstructure”) in the climate, weather, and

data assimilation domains. The fifteen application testbeds for the ESMF include the Community Climate System

Model (CCSM), the Weather Research and Forecast (WRF) model, and models from the NOAA Geophysical Fluid

Dynamics Laboratory, the National Centers for Environmental Prediction, MIT, and the NASA Global Modeling and

Assimilation Office. Each of these applications either is a multi-component, coupled modeling system or has the po-

tential to be used in such a modeling system. As collaborators on the ESMF project, these groups will use the ESMF

component constructs to represent their atmosphere, ocean, land, sea-ice, data assimilation, and coupler components

and the ESMF regridding and communication utilities to connect these components into applications.

The objectives of ESMF are to facilitate:

� an extensible, hierarchical architecture for structuring complex climate, weather and data assimilation models;

� interoperability of modeling components among major centers;

� lower cost of entry into Earth system modeling for university and smaller groups; and

� sharing of common software utilities and services.

Next-generation Earth modeling systems require the incorporation and evaluation of new physical processes such

as biogeochemistry and atmospheric chemistry, which may be represented as new sets of software components. Thus,

the advances that the ESMF offers – the ability to organize large models, to easily incorporate new components, and to

compare different component implementations (e.g., different representations of the ocean) – are critical capabilities

for scientific progress.

Like the CCA, the ESMF provides a generic component abstraction that connects user-defined components to

the framework through a SetServices() method. Unlike the CCA, the ESMF customizes methods and data

structures for Earth system models, and it provides utilities and services specific to the climate/weather/data assimi-

lation domain. For example, the data exchanged among ESMF components is packed into a data structure called an

ESMF State, which is a container for data types that represent geophysical fields. Since ESMF applications typically
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perform a setup, time step through numerical solution of PDEs, and then shut down, ESMF codes are required to have

Initialize(), Run(), and Finalize() methods.

The ESMF and CCA groups have worked closely together to ensure interoperability between the ESMF and CCA

frameworks, i.e., to guarantee that ESMF components may be used within the CCA, and that the ESMF will be

able to utilize the wide variety of CCA-compliant components that exist or are under development. An ESMF-CCA

prototype, described in more detail later in this section, has been developed that uses the component registration

methodology and GUI from the CCA. ESMF components do not need to be modified, but can simply be wrapped to

become CCA-compatible. This prototype demonstrates that interoperability between the CCA and the ESMF quite

easy, as similar architectural principles underlie both frameworks. Interoperability between these frameworks opens

the exciting possibility of bringing Earth system modeling components into the CCA arena, and of making CCA tools

available to a host of Earth system applications.

ESMF-CCA Interoperability Several notable distinctions exist between the CCA and the ESMF component frame-

works. First and foremost, while the CCA provides a general component model, the ESMF provides a specialized

component model tailored to a specific application domain. Additionally, the CCA enables dynamic composition of

component-based applications at run time, while the ESMF dictates static linkage of a component hierarchy. On the

other hand, the CCA, by its nature, does not provide concrete classes with which to build components, while the ESMF

does (the ESMF infrastructure). In this sense, the CCA is component framework, while the ESMF is an application

framework.

These differences suggest the intriguing possibility of using the CCA component model and the ESMF application

framework to build climate-related applications, thereby bringing the dynamism of the CCA component model to

this community. This would also allow coupling to CCA components from within the ESMF framework, so that

ESMF components could step outside of bounds of the ESMF Initialize()/ESMF Run()/ESMF Finalize()

paradigm if a richer component interface is required. Furthermore, the union of these two frameworks would provide

the CCA community with access to ESMF components.

Bridging the CCA and ESMF to create a joint ESMF-CCA component model is fairly straightforward. ESMF

components are wrapped with a thin layer of C++ code to provide the CCA component veneer. This wrapper allows an

ESMF-CCA application to be composed by selecting from a palette of ESMF-CCA components using the Ccaffeine
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CCA framework. A special version of the ESMF component registration function is provided for all ESMF-CCA

components, to allow them to register their ESMF interface functions (initialize, run, finalize). Once all components

have been created and connected, the CCA framework passes control flow over to the ESMF framework.

A major advantage of this dynamic approach is that components can be easily substituted for one another without

modifying user code (as long as the swapped components conform to the same interface). As it now stands, one must

modify ESMF superstructure components to replace a component, as the complete component hierarchy is coded into

an ESMF application. We recognize that climate and weather models do not typically require run-time swapping of

geophysical components, since it takes on the order of months to tune and validate these applications, and months

to run long climate simulations. However, run-time swapping may be useful for communication and input/output

components.

ESMF Prototypes Using the CCA To demonstrate possibilities for interoperation between the ESMF and the CCA,

we have developed a prototype ESMF implementation on top of CCA tools and CCA-compliant components (Zhou,

2003; Zhou et al., 2003). The CCA components additionally provide the basic methods required by the ESMF (initial-

ize, run, finalize). Data exchange occurs through a self-describing data type similar to ESMF State. We are currently

working on a C++ version of the ESMF component interface so that ESMF components can be used with the CCA

in a straightforward way. A model ESMF-CCA application has been implemented using the Ccaffeine framework;

this project illustrates the case of sequential coupling of an atmosphere model and an ocean model (Figure 9). At the

beginning of a simulation, five components are created: a driver (Climate), the atmosphere (Atm), the ocean (Ocn),

a coupler from atmosphere to ocean (CplAtmXOcn), and a coupler from ocean to atmosphere (CpleOcnXAtm). The

component execution sequence of events is as follows:

1. The atmosphere component provides data at its boundary, exportAtm, to the coupler, CplAtmXOcn.

2. CpleAtmXOcn uses exportAtm, transforms it into importOcn with interpolation routines, and then provides

importOcn to the ocean component.

3. With importOcn, the ocean component runs its solver for the evolution equations and then provides its data at

the boundary, exportOcn, to the coupler, CplOcnXAtm.
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Figure 9: CCA wiring diagram
showing component relationship in
a simulation of coupled atmosphere
and ocean model components of
the ESMF-CCA prototype.

4. The coupler, CpleOcnXAtm, uses exportOcn, transforms it into importAtm, and provides importAtm to the

atmosphere component.

5. The atmosphere component uses importAtm, runs its solver for evolution equations, and then provides its data

at the boundary, exportAtm, to the coupler, CpleAtmXOcn, as in Step 1.

13.2.3 The Community Climate System Model

The Community Climate System Model (CCSM) (Harper and Kauffman, 2004) couples several mutually interacting

models developed through an interagency collaboration between the U.S. Department of Energy and the National

Science Foundation’s National Center for Atmospheric Research. Key modules of the CCSM include models for

atmosphere, ocean, sea ice, land surface, river routing, and a flux coupler. The flux coupler provides the overall

coordination of the coupled model’s execution and a variety of services related to the simulation data: intermodel state

and flux data transfer, interpolation between model grids, calculation of fluxes and other diagnostic quantities, time

averaging and accumulation of flux and state data, and merging of flux and state data from multiple model sources for

use by another model.

Collaboration between the CCSM and the CCA is focused on three areas, prototyping use of CCA at (1) the system

integration level, (2) the model subcomponent level, and (3) the algorithmic level. We are also exploring the use of
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CCA to package portions of the Model Coupling Toolkit (Larson et al., 2004a, 2001; Ong et al., 2002) (the foundation

code on which CCSM’s flux coupler is built) as CCA components. Since CCSM plans to adopt the standard interfaces

being developed by the ESMF project (see Section 13.2.2), this work is also being performed in collaboration with the

ESMF group. The next three sections describe individual projects in this area.

Model Coupling Toolkit The current CCSM flux coupler was implemented using the Model Coupling Toolkit

(MCT) (Larson et al., 2004a, 2001; Ong et al., 2002). MCT is a software package for constructing parallel cou-

plings between MPI-based distributed-memory parallel applications which supports both sequential and concurrent

couplings. It can support multiple executable images if the implementation of mpirun used supports this feature.

MCT is implemented in Fortran 90, and its programming model is friendly to scientific programmers, being based on

a Fortran 90 module that declares MCT-type variables and on the invocation of MCT routines to create couplings.

The first major focus of the MCT-CCA collaboration has been the creation of a migration path between MCT-

based coupling and a CCA-compliant component-based approach (Larson et al., 2005). The approach we are taking

involves the use of the ESMF specification to bridge between the MCT and the CCA’s more generic component

environment. Low-level MCT functionality is being wrapped to provide an implementation of the relevant ESMF-

defined interfaces and adapters to ESMF-defined data objects, such as ESMF State. Currently, we support SCMD

component scheduling and coupling only, but support will soon be extended to MCMD coupling as well.

We have begun the task of describing ESMF-compliant MCT interfaces using SIDL, with the goal of repackaging

MCT as a collection of CCA-compliant components. Prospective MCT-based components include distributed multi-

field data storage, parallel sparse matrix-vector interpolation, global integrals, and averages. In addition to their

use in the flux coupler context, such components can be used within individual models as well, as described below.

Another application of the SIDL interface description is the extension of the MCT’s programming model to languages

other than Fortran 90. This is an example of how the Babel interlanguage interoperability tool can be used in a

context outside of the CCA. Finally, like the Distributed Data Broker, the MCT is clearly another domain-specific

solution to the M � N parallel data redistribution problem. The experience gained from the development and use of the

MCT, as well as comparisons with the DDB, will inform the CCA’s efforts to develop general M � N capabilities. In

addition, once the general M � N interface is more mature, we anticipate using elements of the MCT as the basis for

an implementation of a more general data redistribution component.
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Figure 10: Prototype of a CCA
component-based system integra-
tion of the CCSM.

CCSM System Integration At the system integration level, we are prototyping the use of the CCA to cast the

CCSM’s component models as CCA-compliant components. We have developed skeleton components for the atmo-

sphere, ocean, sea ice, land surface, river routing, and flux coupler. These components can then be instantiated and

connected by using the Ccaffeine GUI (Figure 10); their subsequent execution is similar to the ESMF-CCA prototype

described above. These skeleton components are being expanded to have the capabilities of the CCSM data models

that are used to perform system integration tests on the CCSM coupler. The components will then entail sufficient

computational complexity that we can begin to assess in the coupling context any performance costs associated with

CCA components versus the current coupler.

Community Atmosphere Model An example of a CCA application targeted at the model subcomponent level is

the refactoring of the CCSM’s atmosphere model, called the Community Atmosphere Model (CAM) (University

Corporation for Atmospheric Research, 2004). CAM has been refactored to disentangle its dynamical core from its

subgrid-scale physics parameterizations. This split has allowed a proliferation of dynamical cores, and CAM currently

has three: a pseudo-spectral method, the Rasch-Williamson semi-Lagrangian method, and the finite-volume Lin-Rood

scheme. Standardization of the interfaces to these dynamical cores and the overall subgridscale physics package is

under way. Once complete, these software modules can be packaged as CCA components. This will allow one to use

the CCA to compose and invoke a stand-alone version of the CAM in which the user may plug in the dynamical core
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of choice. Furthermore, the developer of a new dynamical core will need only code it to the interface standard, and it

will be easily integrated into the model for validation.

River Transport Model The river transport model (RTM) in the CCSM (version 2) computes river flow on a 0.5 +
latitude-longitude grid and uses no parallelism in its calculations. Future science goals for the RTM include support

for significantly higher-resolution (up to 100 � the number of catchments) and catchment-based unstructured grids,

support for transport of dissolved chemical tracers, and inclusion of the effects of water storage in the form of reser-

voirs. At the current resolution, the lack of parallelism in the RTM calculation does not retard the overall execution of

CCSM, but the process of coupling to the RTM, which requires gathering (scattering) data to (from) a single process

when sending (receiving) data to (from) the RTM, does impose a bottleneck. This communications cost exceeds the

computation cost of the RTM itself.

To incorporate distributed-memory parallelism in the RTM and meet its science goals, we are developing a com-

pletely new implementation of the RTM using the MCT. In this approach, we view the problem of river transport

as a directed graph with the nodes representing catchments and the directed edges representing the dominant inter-

catchment flow paths. The river transport calculation is then implemented as a parallel sparse matrix-vector multiply,

and the load balance for this operation can be computed by using graph partitioning. Mass conservation is ensured

through the calculation of global mass integrals before and after the matrix-vector multiply. This problem is easily

solved using the MCT. The ESMF-compliant MCT multifield data storage object is used to store runoff and tracer con-

centration data; the MCT’s domain decomposition descriptors are used to describe the load balance; MCT’s parallel

sparse matrix-vector multiply is used to perform the water and chemical tracer transport; and the MCT’s paired global

spatial integral facility is used to carry out the mass balance and mass conservation calculations.

The component-based approach used for key MCT capabilities makes the path to a component-based RTM clear.

Four MCT-based components will be used to implement the RTM: a distributed multifield array to store water and

chemical tracer concentrations; a parallel sparse-matrix vector multiply to compute water and chemical tracer trans-

port; a component describing the physical grid (i.e., the locations and sizes of the catchments); and a paired spatial

integral component to enforce mass conservation.
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Figure 11: A schematic represen-
tation of the CCA chemistry op-
timization component architecture.
Image courtesy of Joseph P. Kenny,
Sandia National Laboratory.
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13.3 Quantum Chemistry

The quantum chemistry community has an extended history of developing large, monolithic codes in which essentially

all of the code, including the mathematical routines, are written by chemists. This practice has been changing, however.

It is becoming much more difficult for any group to maintain expertise in all aspects of the chemistry, mathematics,

and computer science. For example, it is now common for chemistry programs to use basic linear algebra subroutines

(BLAS), which are bundled in libraries that have been developed by mathematicians and computer scientists to perform

well. By using these libraries, chemists can concentrate on the chemical/physical problem at hand instead of worrying

about the performance of the BLAS.

The developers of NWChem (Kendall et al., 2000; Pacific Northwest National Laboratory, 2004b) and MPQC (Janssen

et al., 1998; Sandia National Laboratories, 2004) have joined with others in the CCA effort to examine the use of

components in quantum chemistry. The first challenge chosen was that of optimizing a molecular geometry using

NWChem and MPQC to calculate the energy, gradient, and Hessian (function, first derivative, and second derivative,

respectively), TAO (Benson et al., 2001, 2003b) for the optimization capability, and PETSc (Balay et al., 2003, 1997)

or Global Arrays (Nieplocha et al., 1996; Pacific Northwest National Laboratory, 2004a) for the linear algebra and

management of distributed data structures. The basic component diagram is shown in Figure 11 and discussed in

detail in (Kenny et al., 2004).

Molecular geometry optimizations are a very common part of quantum chemistry applications, and each code has

its own special methods to reach a structure in as few function evaluations as possible. This approach makes it very

difficult to reuse code since the optimization routines can be very tightly tied into the particular program. Our initial



HPC Component Architecture 59

goal in this work was to decouple the optimization problem from the function evaluations so that multiple chemistry

codes could be used with multiple optimization methods. Therefore, when a new optimization method is developed,

it will be available to a wider chemistry community. This approach also allows users to have multiple chemistry

programs available to them through a common interface, thereby allowing users to take advantage of the different

algorithms available for solving a particular chemical problem.

In order to accomplish this goal, of course, interfaces needed to be standardized. In this case, a decision was made

to develop a general quantum chemistry interface that satisfied the NWChem and MPQC developers’ needs as opposed

to developing a broader interface with the whole chemistry community. This decision was made so that initial progress

could be made and experience could be gained. In the future, we anticipate that other chemists will be involved, at

which time the interface will need to be revisited. These interfaces use SIDL specifications and Babel to create server

implementations for both NWChem, which uses Fortran, and MPQC, which uses C++. Other interfaces associated

with the optimization model and with the linear algebra had already been created before the chemistry developers

became involved. These interfaces were used, with a few modifications, for the chemistry problem.

In this approach, initially a very coarse level of componentization was chosen. Very high level capability, such as

setting molecular geometries, wavefunction type, and basis sets and then computing energies, gradients, and Hessians

is made available through the quantum chemistry interface. Now that the developers have experience with the CCA

infrastructure, we will be developing lower level components, such as those for building Fock matrices, calculating

properties, and other mathematical constructs such as eigensolvers and diagonalizers.

We are also currently exploring the use of the MCMD execution model for carrying out independent function

evaluations simultaneously and for increasing flexibility in composing programs. This type of capability will be

critical to applications that rely on methods such as Monte Carlo, combined quantum chemical methods (those that

use varying levels of theory to model different parts of the chemical system), and dynamics simulations where multiple,

relatively independent function evaluations are required.

14 The People Behind the CCA

The small grass-roots effort that launched the CCA has grown into a sizable community of computational science

researchers developing and using CCA technology, represented by the CCA Forum. Members of this community have
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also successfully launched a variety of funded research projects that focus on different aspects of the development and

use of the CCA.

The CCA Forum can be thought of as a combination of a standards body and a user group for the CCA. The Forum

has met quarterly since 1998 and is open to all interested parties. (Meeting information is available on the Forum’s

web site (http://www.cca-forum.org and on its primary mailing list (CCA Forum, 2004).) Meetings, as well

as the mailing list, serve as an opportunity for discussion of issues and experiences relating to the development and

use of the Common Component Architecture. The Forum also defines the CCA specification. Voting privileges are

conferred on all who have attended two of the last three CCA Forum meetings as of the date of the proposal, and voting

takes place via the web over a two week period. At the moment, the Forum has 24 voting members representing 11

different institutions.

The core group that launched the CCA Forum (Argonne, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific

Northwest, and Sandia National Laboratories, Indiana University, and the University of Utah) in 2001 created the

Center for Component Technology for Terascale Simulation Software (CCTTSS) as part of the U. S. Department of

Energy’s (DOE) Scientific Discovery through Advanced Computing (SciDAC) program (U. S. Dept. of Energy, 2003).

The mission of the CCTTSS is to develop a better understanding of the most appropriate ways to use CBSE in scientific

computing, as well as to develop the fledgling CCA ideas and prototypes into a production-quality environment for

use in large-scale applications. Thus, the CCTTSS acts as the anchor for CCA development.

However, the CCTTSS is far from the only funded project relating to the CCA. Other more focused efforts in-

vestigate performance monitoring and tuning and various aspects of distributed computing with sponsorship from the

DOE, NASA, and the National Science Foundation. In almost all cases, CCA users have separate funding through

grant proposals that may or may not have explicitly mentioned CCA.

15 Future Work

The Common Component Architecture is a long-term research and development effort with contributions from nu-

merous separate projects, anchored by the Center for Component Technology for Terascale Simulation Software. It is

impossible to capture in this document the CCA-related research plans of all these projects and individuals. However,

we can point to a number of enduring themes and highlight several specific initiatives that we expect to yield results
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in the near term.

15.1 Understanding of the Role of CBSE in HPC

One of the key initial motivations for the CCA was the fact that CBSE had made few inroads into HPC scientific

computing with existing component environments. As a consequence, an important part of the CCA effort is to gain a

better understanding of how CBSE can be best used in this area. As part of this effort, CCA researchers work closely

with component and application developers not only on the software itself, but also to gain information about the use

of CBSE is effecting the process. The results of this work feed back into the design of the CCA and future component

technologies. They also contribute to the development of “best practices” and other guidance on how to use CBSE in

scientific computing.

15.2 Development of the CCA Specification and Environment

As mentioned previously, the CCA specification is not a static document, but rather evolves as researchers find that

additions or changes are needed. Likewise, the tools that implement the CCA environment are also still very much

under development. New tools to improve or extend the CCA environment are also under development by numerous

researchers.

15.3 Development of Interfaces and Components

Another of the primary motivations for the development of the CCA is to increase software productivity by facilitating

the reuse of components. In this context, a rich library of components that can be used to simplify the creation of

new applications is an attractive feature. Section 11 is a good start, but it is also just a tiny fraction of what could be

made available as reusable components. CCA researchers will continue to engage domain experts to design common

interfaces to promote interoperability and to encourage the development of components implementing these interfaces.

15.4 Parallel Data Redistribution and Parallel Remote Method Invocation

Section 12 described in some detail our ongoing effort to develop generalized tools and capabilities for model cou-

pling and related problems. Work on parallel data redistribution has already been used in several demonstrations and
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applications, and the research is progressing to incorporate the initial lessons learned into an improved interface design

and software implementations. Work on parallel RMI is much newer, but we expect it to produce useful results in the

near term.

15.5 Richer Interface Descriptions

At present, the CCA works with a very basic syntactic definition of component interfaces in the form of method

signatures, which consist of method names, argument types, and some information about memory management re-

sponsibilities. However, the full realization of the potential of plug-and-play components hinges on richer interface

descriptions that enable the explicit specification of semantics and behavior in a form amenable to automated process-

ing (Baudry et al., 2001; Beugnard et al., 1999). Such specifications would enable the exploration and development of

advanced technologies and tools to address CBSE issues such as software correctness. From a component perspective,

software correctness encompasses both the component implementation and its usage. This section describes the focus

of current and long term research on the expressiveness and performance implications of richer interface descriptions.

The definition of the semantics and behavior of components can currently be expressed only through comments.

However, we anticipate the release in mid-2005 of an alpha version of Babel (Dahlgren et al., 2004) that supports the

specification of simple Design by Contract (Meyer, 1997) assertions suitable for interfaces; namely, preconditions,

postconditions, and class invariants. A precondition is a condition, or property, that must be true prior to method

execution. Postconditions are properties that must be true after execution. Finally, class invariants are properties

that must be true before and after each method invocation once a class has been instantiated. The immediate benefit

for component and application developers is enhanced debugging and testing through automated assertion enforce-

ment (Dahlgren and Devanbu).

Furthermore, in order to increase application developer confidence that plug-and-play scientific components ob-

tained from a repository are implemented and being used correctly it is also necessary to retain a certain degree of

assertion checking during deployment. However, the performance overhead under these circumstances can become a

significant issue (Dahlgren and Devanbu, 2004b). Consequently, preliminary work addressing this concern using basic

sampling techniques has already been performed (Dahlgren and Devanbu, 2004a,b). More sophisticated enforcement

mechanisms are the focus of current research.
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Additional challenges associated with richer descriptions include expressiveness and extension. For example, a

common issue for any complex process or computation is determining whether methods are being invoked in the

correct order (Bronsard et al., 1997; Hamie, 1999). For instance, a matrix must be initialized and assembled before it

can be used in computations. Unfortunately, it is easy for developers to forget or misplace a step, making debugging

large or complex applications more difficult. In addition, an extending class may need to expand sequencing constraints

of its ancestors through the insertion of additional steps in the middle of an inherited step. Suitable specification,

efficient enforcement, and extension of such constraints will be a focus area of long term research on richer interface

descriptions.

15.6 Dynamic Code Insertion and Remote Method Invocation in Babel

The fact that Babel sits between the user and provider of a port puts it in a very useful position to allow it to perform

a wide range of operations in conjunction with method calls. The verification of assertions described above is one

example. But one can use Babel’s unique position to dynamically interpose code between caller and callee in a more

general fashion. Hooks are being added to Babel to allow this to be done under user control. A prototype version of

this capability has been used to support integration of the Tuning and Analysis Utilities (TAU) (Malony and Shende,

2000; University of Oregon, 2003) into the CCA environment, thereby “automatically” instrumenting all inter-port

method calls with calls to the TAU routines to start and stop gathering of performance information. Other applications

of this capability are under investigation, including limited forms of aspect-oriented programming (Aspect-Oriented

Software Association, 2004).

Similarly, the boundary between languages, and the boundary between components, is a logical place to implement

remote method invocation (RMI) to provide more direct support for distributed computing. From Babel’s perspective,

RMI is just like any other language backend. Because Babel is between caller and callee, it can serialize the method

invocation over a wire protocol and invoke the method in another process or on another machine.

SIDL already supports method arguments as in, out or inout, and these designations allow the in-process and

RMI layer to optimize the method invocation. Arguments can also be designated as copy to indicate that Babel should

serialize the object for a distributed call rather than only passing a remote reference to the object. Finally, methods can

be designated as oneway so the caller can dispatch the call over the wire without waiting for a return code indicating
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completion of the method.

We are currently integrating an RMI backend using the Proteus multiprotocol message library (Chiu et al., 2002),

which is implemented in C++. Once Proteus has been integrated into Babel, it will enable interoperability between the

CCaffeine and XCAT frameworks.

15.7 Computational Quality of Service

The relative maturity of component-based software infrastructures encourages users to look beyond syntactically con-

necting components to using higher-level information about component properties to compose applications. Some of

these properties pertain to the quality of the services used and provided by components. As more scientific components

are developed, many applications are presented with a pool of algorithms with similar functionality but different re-

source requirements, performance, accuracy, and stability. For example, at the heart of many PDE-based simulations,

a set of nonlinear equations must be solved, usually requiring the solution of many linear systems of equations, whose

characteristics may vary throughout the simulation. By formally specifying the quality requirements of the nonlinear

solution method, as well as the capabilities of different linear solution methods, one can at least partially automate the

complex task of assembling components into applications and adaptively switching them at runtime.

Some nascent efforts on defining a model for the QoS-based composition of high-performance numerical com-

ponents address various aspects of a possible architecture design that enables automated application composition and

run-time application adaptivity (Hovland et al., 2003; Norris et al., 2004). The draft QoS architecture defines spec-

ifications and services for component characterization, component proxy services, component replacement, decision

making functionality, and archival and retrieval of execution information. The quality metrics in this architecture

include traditional ones, such as reliability and computational cost, as well as metrics that are uniquely important to

scientific computations, such as accuracy and rates of convergence. The long term goal of this research is to guide the

design of a methodical and automated approach to component application composition and run-time adaptation.

16 Conclusions

Component-based software engineering is a natural approach to facilitate the development of complex, large-scale,

high-performance scientific simulations. Its adoption in this area has been limited by the lack of a component model
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that meets the special needs of the HPC community; the Common Component Architecture is being developed specif-

ically to address this issue. The CCA supports sequential, parallel, and distributed computing paradigms with minimal

performance overhead and with a special emphasis on facilitating the incorporation of existing code.

Although the project is far from complete, the CCA specification and associated tools have reached a level of

maturity required for adoption by a number of projects across a range of scientific disciplines. We have provided a

brief overview of several such efforts in combustion, climate modeling, and quantum chemistry, as well as offered a

glimpse of the wide range of components currently available or under development.

Our understanding of how best to utilize CBSE in scientific computing advances continuously through our interac-

tions with the various projects utilizing the CCA. However, the field is broad and highly varied, and it will take some

time to gain the necessary breadth and depth of experience. There are also many opportunities on the research front

of CBSE itself, and we outlined a number of areas that CCA researchers are exploring. Nevertheless, clearly much

research and development remain to be done to bring the full benefits of CBSE to scientific computing and ultimately

to make it part of the mainstream for computational science.
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