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Abstract

Emerging high-performance parallel/distributed scien-
tific applications and environments are increasingly large,
dynamic and complex. As a result, it requires programming
systems that enable the applications to detect and dynam-
ically respond to changing requirements, state and execu-
tion context by adapting their computational behaviors and
interactions. In this paper, we present such a programming
system that extends the Common Component Architecture to
enable self-management of component-based scientific ap-
plications. The programming system separates and cate-
gorizes operational requirements of scientific applications,
and allows them to be specified and enforced at runtime
through re-configuration, optimization and healing of in-
dividual components and the application. Two scientific
simulations are used to illustrate the system and its self-
managing behaviors. A performance evaluation is also pre-
sented.

1 Introduction

Emerging high-performance parallel/distributed simula-
tions and the phenomena they model are large, complex,
multi-phased/multi-scale, dynamic, and heterogeneous (in
time, space, and state). These simulations implement var-
ious numerical algorithms, physical constitutive models,
domain discretizations, domain partitioners, communica-
tion/interaction models, and a variety of data structures.
Further, the choices of algorithms and models have perfor-
mance implications which are typically not known a pri-
ori. Advanced adaptive solution techniques, such as vari-
able step time integrators and adaptive mesh refinement,
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add a new dimension to the complexity - the application be-
haviors and its requirements change as the simulation pro-
ceeds. This dynamism, coupled with the complexity and
dynamism of emerging parallel/distributed execution envi-
ronments, poses a new set of application development and
runtime management challenges. For example, component
behaviors and their compositions can no longer be statically
defined. Further, their performance characteristics can no
longer be derived from a small synthetic run as they depend
on the state of the simulations and the underlying system.
Algorithms that worked well at the beginning of the simu-
lation may become suboptimal as the solution deviates from
the space the algorithm was optimized for or as the execu-
tion context changes.

Addressing the challenges outlined above requires that
applications be capable of detecting and dynamically re-
sponding to changing requirements, state and execution
context. In this paper we investigate self-managing high-
performance simulations. We also present a prototype im-
plementation and evaluation of a programming system for
developing self-managing applications based on the DoE
Common Component Architecture (CCA) and the Ccaf-
feine framework [7]. Finally, we present the self-managing
shock hydrodynamics simulation andCH4 ignition simu-
lation as case studies. Specific contributions of this pa-
per include: (1) extension of CCA to enable the defini-
tion of managed components and applications; (2) design
and implementation of a runtime framework to support self-
managing component and application behaviors using dy-
namically defined rules; (3) a three-phase rule execution
model to enable consistent and efficient rule execution for
distributed/parallel scientific applications; and (4) support
for performance driven self-management using the TAU
framework [4].

The rest of the paper is organized as follows. Section 2
introduces the Common Component Architecture (CCA),
investigates the performance characteristics of CCA-based
scientific applications, and discusses their implication on
application management. Section 3 presents a framework
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for the formulation and execution of self-managing scien-
tific simulations based on the Ccaffeine CCA framework.
Section 4 presents the case studies and experimental evalu-
ations. Section 5 discusses related work. Section 6 presents
a conclusion.

2 Component-Based Distributed/Parallel
Scientific Applications

2.1 The Common Component Architecture
(CCA)

Component-based software architectures do address
some of the key requirements of emerging high-
performance parallel/distributed scientific applications.
Specifically, the DoE Common Component Architec-
ture (CCA) and its implementation, the Ccaffeine frame-
work [7], have been successfully used by a number of ap-
plications [13, 14, 15]. CCA supports the provides-uses de-
sign pattern. Componentsprovide functions anduseother
components’ functions viaports. Components are peers and
independently developed. Further, CCA employs theSingle
Component Multiple Data (SCMD)model, where all pro-
cessing nodes execute the same program structure.

Ccaffeine [7], developed at Sandia National Labora-
tories, implements the CCA core specification and pro-
vides the fast and lightweight glue to integrate external and
portable peer components into a SCMD style parallel appli-
cation. Components are created and exist within the Ccaf-
feine framework. They register themselves and their ports
with the framework and are dynamically loaded and con-
nected. As a result, the Ccaffeine framework maintains
complete knowledge about an application. Further, all the
components on the same processor reside in the same ad-
dress space and these components interact with each other
using method calls. Component interaction across proces-
sors use MPI [5].

2.2 Behavior and Performance of Component-
based Scientific Applications

The component-based programming approach not only
reduces the burden of developing scientific applications, but
also benefits their runtime management. With componenti-
zation [7], the behavior and performance of an application
can be interpreted as a composition of individual compo-
nents. For example, the composite performance of a com-
ponent assembly is determined by the performance of the
individual components and the efficiency of their interac-
tion [21]. Therefore, management behaviors can be system-
atically enforced at two separate levels - intra-component
and inter-component.

The execution of scientific applications typically consists
of a series of computational phases. Between two succes-
sive phases, computations within components and commu-
nications between components are paused, and the com-
ponents are reconfigured for the next phase. This pause
between phases has been called aquiet interval. Runtime
management is usually performed during thesequiet inter-
vals to ensure the integrity of the numerical computations.
Changes made to components/applications duringa quiet
intervalare automatically applied in the next computational
phase.

Finally, in case of the Ccaffeine framework, due to
the underlying SCMD model, connections between com-
ponents can be made by directly passing ports (i.e., point-
ers to pure virtual interfaces), which incur negligible over-
heads [7]. As a result, the overall performance of an ap-
plication can be simply viewed as a function of the per-
formance of its constituent components. Further, in case
of scientific applications, the performance of a component
is dominated by the cache performance of its implementa-
tion and the cost of inter-processor communications [21].
Cache performance is defined by the degree of data local-
ity in computation algorithms and is affected by the cache
size and cache management strategies used by the execution
environment. Inter-processor communication costs are de-
fined by software and algorithmic strategies used by the im-
plementation (e.g., combining communication steps, mini-
mizing/combining global reductions and barriers, overlap-
ping communications with computations, etc.), and are af-
fected by factors such as load-balance and communication
channel congestion (due to competing application or possi-
bly malicious attacks).

3 Self-management of Component-based Sci-
entific Applications

As mentioned above, addressing the challenges of
emerging high-performance scientific applications requires
a programming system that enables the specification of ap-
plications, which can detect and dynamically respond, dur-
ing their execution to changes in both the execution environ-
ment and application state. This requirement suggests that:
(1) Applications should be composed from discrete self-
managing components, which incorporate separate specifi-
cations for all of functional, non-functional and interaction-
coordination behaviors. (2) The specifications of computa-
tional (functional) behaviors, interaction and coordination
behaviors and non-functional behaviors (e.g. performance,
fault detection and recovery, etc.) should be separated so
that their combinations are compose-able. (3) The interface
definitions of these components should be separated from
their implementations to enable heterogeneous components
to interact and to enable dynamic selection of components.
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Component-based scientific simulations and the CCA ar-
chitecture address some of these requirements and support
application maintainability and extensibility. The capabil-
ity of dynamically swapping components has been incorpo-
rated into the CCA specification and implemented by the
Ccaffeine framework. However, enabling self-managing
components/applications requires extending CCA to enable
components that can adapt their behaviors and interactions
to their current state and execution context in an autonomic
manner. In this section we describe an extension of the CCA
architecture, and specifically the Ccaffeine framework [7],
to support self-management. Using the approaches pro-
posed in [16, 17, 18], this consists of extending CCA com-
ponents (including legacy components) to support monitor-
ing and control and extending the Ccaffeine framework to
support consistent and efficient rule-based intra-component
and inter-component self-management behaviors.

3.1 Defining Managed Components

In order to monitor and control the behaviors and perfor-
mance of CCA components, the components must imple-
ment and export appropriate “sensor” and “actuator” inter-
faces. Note that the sensor and actuator interfaces are sim-
ilar to those used in monitoring/steering systems [12, 22,
23]. However, these systems focus on interactive manage-
ment through users manually invoking sensors/actuators,
while this paper focuses on automatic management based
on user-defined rules. Adding sensors requires modifica-
tion/instrumentation of the component source code. In case
of third-party and legacy components, where such a mod-
ification may not be possible or feasible, proxy compo-
nents [21] are used to collect relevant component informa-
tion. A proxy provides the same interfaces as the actual
component and is interposed between the caller and callee
components to monitor, for example, all the method invoca-
tions for the callee component. Actuators can similarly be
implemented either as new methods that modify internal pa-
rameters and behaviors of a component, or defined in terms
of existing methods if the component cannot be modified.
The adaptability of the components may be limited in the
latter case. In the CCA based implementation, both sensors
and actuators are exposed via invoking the ‘addSensor’ or
‘addActuator’ methods defined by a specializedRulePort,
which is shown in Figure 1.

Management and adaptation behaviors can be dynam-
ically specified by developers in the form of rules. Two
classes of rules are defined.

• Component rulesaddress intra-component manage-
ment. These rules manage the runtime behaviors of in-
dividual components, including dynamic selection of
algorithms, implementations, data representation, in-
put/output format used by the components, etc., based

class RulePort: public virtual Port {
public:
        RulePort(): Port() { }

        virtual ~RulePort() { }
        virtual void loadRules(const char* fileName) throw(Exception) = 0;
        virtual void addSensor(Sensor *snr) throw(Exception) = 0;
        virtual void addActuator(Actuator *atr) throw(Exception) = 0;
        virtual void setFrequency() throw(Exception) = 0;
        virtual void fire() throw(Exception) = 0;
};

Figure 1. The RulePortspecification.

on the current state and execution context of the com-
ponent.

• Composition rulesaddress inter-component manage-
ment. These rules manage the structure of the appli-
cation and the interaction relationships among com-
ponents based on the current application/system state,
changing requirements, and changing execution con-
text. Intra-component management behaviors include
dynamic composition of components, definition of co-
ordination relationships and selection of communica-
tion mechanisms. For example, composition rules can
be used to add, delete or replace a component.

Management rules incorporate high-level guidance and
practical human knowledge in the form of conditional if-
then expressions, i.e., IFconditionTHEN action. This sim-
ple construction of rules is deliberately used to enable ef-
ficient execution and minimize impact on the performance
of the application. Thecondition is a logical combination
of sensors (exposed by components) and performance data,
and theactionconsists of a sequence of invocations of actu-
ators exposed by components. The rules are interpreted and
executed by the runtime framework, which is discussed in
the next section.

3.2 Enabling Runtime Self-management

To enable runtime self-management, two specialized
component types are defined (see Figures 2 and 3): (1)
Component manager that monitors and manages the behav-
iors of individual components, e.g., selecting the optimal al-
gorithms or modifying internal states, and (2) Composition
manager that manages, adapts and optimizes the execution
of an application at runtime. Both, component and com-
position managers are peers of user components and other
system components, providing and/or using ports that are
connected to other ports by the Ccaffeine framework. The
two managers are not part of the Ccaffeine framework, and
consequently provide the programmers the flexibility to in-
tegrate them into their applications only as needed.

The design of the component manager and composition
manager components are based on the following observa-
tions and considerations.
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CCA Ccaffeine framework

Controllable component

Component manager Composition manager

Driver

Figure 2. A self-managing application com-
posed of 5 components. The black lines
denote computational port connections be-
tween components, and the dotted lines are
port connections constructing the manage-
ment framework.

• Scientific applications may contain tens of compo-
nents, but only a few of them need to be dynamically
monitored and controlled. Therefore, we encapsulate
the manager functionalities into two component types
and provide programmers with the flexibility of inte-
grating them with other components in the applica-
tions. For example, in Figure 3, only componentC1
andC2 are associated with component managers for
dynamic management.

• The manager functionalities are provided by compo-
nents instead of being integrated within the Ccaffeine
framework. This prevents the framework from be-
ing ‘overweight’ and thus avoids the resulting perfor-
mance and maintenance implications.

• By encapsulating the manager functionality into these
components and providing abstract interfaces for in-
voking this functionality, we can modify and improve
the manager functionality without affecting other com-
ponents and the framework. We can either add addi-
tional functionality into the manager components, or
create other components that deal with specific man-
agement functions and integrate them with the man-
ager components via the ‘uses-provides design pat-
tern’ [7].

3.2.1 The Component Manager

Component managers provide theRulePortshown in Fig-
ure 1. They are instantiated only after the other applica-
tion components are composed together. Their instantiation
consists of two steps: first, instances of managed compo-
nents expose their sensors and actuators to their respective

Node x

Node z

Node y
C1x

C2x C1y

C2y

C2z

C1z

Figure 3. Distributed self-managing applica-
tion shown in Figure 2 executed on three
nodes. The black lines across nodes denote
the interactions among manager instances.
The dotted lines are port connections con-
structing the management framework within
one node.

component manager instances by invoking the ‘addSensor’
and ‘addActuator’ methods, and second, component rules
are then loaded into component manager instances, possibly
from disk files, by invoking the ‘loadRules’ method. This
initialization of component manager instances is a one-time
operation.

Management operations are performed during applica-
tion quiet intervals. The managed components (or their
proxies) invoke the ‘fire’ method of theRulePortto inform
the component managers that they have entered into a quiet
interval. This behavior must be explicitly programmed,
possibly at the beginning/end of a computation phase or
once every few phases, to establish the self-management
frequency. Adaptations made during a quiet interval will
be applied during the next computation phase.

3.2.2 The Composition Manager

The composition manager also provides theRulePort
(shown in Figure 1). Composition manager instances are
initialized by the CCA driver component to load in compo-
sition rules (possibly from a disk file) using the ‘loadRules’
method. These rules are then decomposed into sub rules,
and delegated to corresponding component managers. The
driver component notifies composition manager instances
of quiet intervals by invoking the ‘fire’ method. During ex-
ecution of the composition rules, composition manager in-
stances collect results of sub rule execution from component
manager instances, evaluate the combined rule, and notify
component managers of actions to be performed. Possible

4



actions include adding, deleting, or replacing components.
When replacing a managed component, the new component
does not have to provide and use the exact same ports as the
old one. However, the new component must at least provide
all the active ports (those used by other components in the
application) that are provided by the old component.

3.2.3 Rule Execution Model

A three-phase rule execution model [18] is used by the com-
ponent managers to ensure consistent and efficient parallel
rule execution. The three phases of rule execution are (1)
batch condition inquiry, (2) condition evaluation and con-
flict resolution and reconciliation, and (3) batch action in-
vocation.

During the batch condition inquiry phase, each compo-
nent manager queries in parallel all the sensors used by the
rules, gets their current values, and then generates thepre-
condition. During the next phase, condition evaluation for
all the rules is performed in parallel. And rule conflicts are
detected at runtime when rule execution will change the
pre-condition(defined as sensor-actuator conflicts), or the
same actuator will be invoked with different values (defined
as actuator-actuator conflicts). Sensor-actuator conflicts are
resolved via disabling those rules that will change thepre-
condition. Actuator-actuator conflicts are resolved through
relaxing the pre-condition according to user-defined strate-
gies until no actuator will be invoked with different values.

For example, consider componentC1 with 3 algorithms:
algorithm 1 has better cache performance but consumes a
large communication bandwidth, algorithm 2 has compara-
tively more cache misses but only consumes a small band-
width, and algorithm 3 demonstrates an acceptable cache
miss and communication delay but has lower precision. It
is possible that under certain conditions, rule evaluation
may results in the selection of algorithm 1 and 2 at the
same time to simultaneously decrease cache misses and
communication delay, and maintain high-precision compu-
tation. This conflict is detected and resolved by relaxing the
high-precision requirement, and therefore algorithm 3 can
be selected. Further, the framework also provides mech-
anisms for reconciliation [18] among manager instances,
which is required to ensure consistent adaptations in parallel
SCMD applications, since each processing node may inde-
pendently proposes different adaptation behaviors based on
its local state and execution context.

The reconciliation for component rules consists of iden-
tifying and propagating the actions proposed by a majority
of the nodes. If a majority is not found, an error is reported
to the user. Composition rules are statically assigned one
of the two priorities. A high priority means that the re-
composition is necessary, while a low priority means the
re-composition is optional. For the actions associated with

composition rules with high priority are propagated to all
the nodes. If there are multiple high priority rules with col-
lisions, a runtime error is generated and reported to the user.
The actions associated with composition rules with low pri-
ority, a cost model is used to approximate the performance
gain of each action set and the action set with the best over-
all gain is selected and applied by all the nodes.

After conflict resolution and reconciliation, thepost-
condition, consisting of a set of actuators and their new val-
ues, is generated. And then during the batch action invo-
cation phase, the actuators are actually set to the values in
parallel.

Note that the rule execution model presented here fo-
cuses on correct and efficient execution of rules and provid-
ing mechanisms to detect and resolve conflicts at runtime.
However, correctness of rules and conflict resolution strate-
gies are responsibilities of the users.

3.3 Supporting Performance-driven Self-
management

The TAU [4] framework is used for monitoring the per-
formance of components and applications, and supporting
performance-driven self-management. TAU can record in-
clusive and exclusive wall-clock time, process virtual time,
hardware performance metrics such as data cache misses
and floating point instructions executed, as well as a combi-
nation of multiple performance metrics, and help track ap-
plication and runtime system level atomic events. Further,
TAU is integrated with external libraries such as PAPI [2]
or PCL [3] to access low-level processor-specific hardware
performance metrics and low latency timers.

In our framework, TAU APIs are directly instrumented
into the computational components, or into proxies in case
of third-party and legacy computational components, and
performance data is exported as sensors to component man-
agers. Optimizations are used to reduce the overheads of
performance monitoring. For example, as the cache-hit rate
will not change unless a different algorithm is used or the
component is migrated to another system with a different
cache size and/or cache policies, monitoring of cache-hit
rate can be deactivated after the first a few iterations and
only re-activating when an algorithm is switched or the
component is migrated. Similarly, inter-processor commu-
nication time is measured per message by default but this
can be modified using the ‘setFrequency’ method in the
RulePort to reduce overheads. Another possibility is to
restrict monitoring to only those components that signifi-
cantly contribute to the application performance. Compo-
sition managers can identify these components at runtime
using mechanisms similar to those proposed in [26] and
enable or disable monitoring as required. Finally, in case
of homogeneous execution environments only a subset of
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Figure 4. “Wiring” diagram of the shock-hydrodynamics simulation. A second-order Runge-Kutta
(RK2)integrator drives InviscidFlux component – transformation into left and right (primitive) states
is done by Statesand the Riemann problem solved by GodunovFlux. Sundry other components for
determining characteristics’ speeds (u + a, u - a, u), cell-centered interpolations etc. complete the
code.

nodes may be monitored.

4 Case Studies

The operation of the programming system presented
in this paper is illustrated using two applications, (1) a
self-managing hydrodynamics shock simulation and (2) a
self-managingCH4 ignition simulation. An experimental
evaluation of the programming system on a 64 node be-
owulf cluster is also presented. The cluster contains 64
Linux-based computers connected by 100 Mbps full-duplex
switches. Each node has an Intel(R) Pentium-4 1.70GHz
CPU with 512MB RAM and is running Linux 2.4.20-8 (ker-
nel version).

4.1 A Self-Managing Hydrodynamics Shock Sim-
ulation

This application simulates the interaction of a hydrody-
namic shock with a density-stratified interface. The system
is modelled using the 2D Euler equation (inviscid Navier-
Stokes). Details of the equations used and the interaction
are presented in [20, 24, 25]. Figure 4 shows the assembly

of components for the CCA-based implementation of the
simulation. The simulation uses structured adaptive mesh
refinement. In this implementation, the Runge-Kutta time
integrator (RK2) with anInviscidFlux component supplies
the right-hand-side of the equation on a patch-by-patch ba-
sis. This component uses aConstructLRStatescomponent
to set up a Riemann problem at each cell interface, which
is then passed toGodunovFlux for the Riemann solution.
A ConicalInterfaceIC component sets up the problem - a
shock tube with Air and Freon (density ratio 3) separated by
an oblique interface that is ruptured by a Mach 10.0 shock.
The shock tube has reflecting boundary conditions above
and below and outflow on the right. TheAMRMesh and
GodunovFlux are the significant components in this sim-
ulation from the performance point of view, and is used to
illustrate self-managing behaviors in the discussion below.

4.1.1 Scenario 1: Self-optimization via component re-
placement

An EFM algorithm, which is based on a gas-kinetic
scheme [19], may be used instead of the Godunov method
with RK2 in the implementation described above.Go-
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dunovFlux and EFMFlux demonstrate different perfor-
mance behaviors and mean execution times as the size of
the input array size increases, as shown in Figure 5. This
difference in performance is primarily due to the difference
in data locality and cache behaviors for the two implemen-
tations. GodunovFlux is more expensive thanEFMFlux
for large input arrays.
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Figure 5. Average execution time for EFMFlux
and GodunovFlux as a function of the array
size (machine effects have be averaged out).

The appropriate choice of algorithm (Godunov or EFM)
depends on simulation parameters, its runtime behaviors
and the cache performance of the execution environment,
and is not known a priori. In this scenario we use informa-
tion about cache misses forGodunovFlux obtained using
TAU/PCL/PAPI, to trigger self-optimization, so that when
cache misses increase above a certain threshold, the cor-
responding instance ofGodunovFlux is replaced with an
instance ofEFMFlux .

To enable the component replacement, one component
manager is connected toGodunovFlux through theRule-
Port to collect performance data, evaluate rules, and per-
form runtime replacement. The component manager (1) lo-
cates and instantiatesEFMFlux from the component repos-
itory, (2) detects all the provides and uses ports ofGo-
dunovFlux, as well as all the components connected to it,
(3) disconnectsGodunovFlux and delete all the rules re-
lated toGodunovFlux, (4) connectsEFMFlux to related
components and load in new rules, and finally (5) destroys
GodunovFlux. The replacement is performed at aquiet in-
terval. From the next calculation step,EFMFlux is used
instead ofGodunovFlux. However, other components in
the application do not have to be aware of the replacement,
since the abstract interfaces (ports) remain the same. After
replacement, the cache behavior improves as seen in Fig-
ure 6.

0

0.5

1

1.5

2

0


2
0

0
0



4
0

0
0



6
0

0
0



8
0

0
0



1
0

0
0

0


1
2

0
0

0


1
4

0
0

0


1
6

0
0

0


Array size

C
a

c
h

e
 m

is
s



with

without

replacement

replacement

EFMGodunov

Figure 6. Replacement of GodunovFlux with
EFMFlux to decrease cache misses.

4.1.2 Scenario 2: Self-optimization via component
adaptation

The AMRMesh component supports structured adaptive
mesh-refinement and provides two communication mech-
anisms. The first exchanges messages on a patch by patch
basis and results in a large number of relatively small mes-
sages. The second packs messages from multiple patches
to the same processor and sends them as a single message,
resulting in a small number of much larger messages. De-
pending on the current latency and available bandwidth, the
component can be dynamically adapted to switch the com-
munication mechanism used.

In this scenario, we use the current system communica-
tion performance to adapt the communication mechanism
used. As PAPI [2], PCL [3], and TAU [4] do not directly
measure network latency and bandwidth, this is indirectly
computed using communication times and message sizes.
AMRMesh exposes communication time and message size
as sensors, which are used by the component manager to get
the current bandwidth as follows:

bandwidth =
commTime1 − commTime2

msgSize1 −msgSize2
(1)

Here, ‘commTime1’ and ‘commTime2’ represent the
communication times for messages with sizes ‘msgSize1’
and ‘msgSize2’ respectively. When the bandwidth falls be-
low a threshold, the communication mechanism switches to
patch by patch messaging (i.e., algorithm 1). This is illus-
trated in Figure 7. The algorithm switching happens at iter-
ation 9 when channel congestion is detected, and results in
comparatively smaller communication times in the follow-
ing iterations.

4.1.3 Scenario 3: Self-healing via component replace-
ment

While Godunov methods withRK2 tend to be more accu-
rate, they become unstable for stronger shocks and larger
density ratios. One solution is to replaceGodunovFlux in
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these cases withEFMFlux . The appropriate choice of algo-
rithm (Godunov or EFMFlux) depends on the Mach number
and the density ratio, and is once again not known a priori.
In the best of cases, an algorithm will operate for some time
before failing to converge and indicating an error; at other
times, it will work “reliably” and produce wrong (even qual-
itatively wrong) results. In the case where an error can be
identified, we have the option of dynamically replacing one
algorithm by another by simply replacing the component
implementing the algorithm. Of course, the same change
has to be performed on all the processors. While dynam-
ically changing components does raise some fundamental
issues (e.g. in this case, the simulation is neither purely
EFM-based nor Godunov-based, and is not mathematically
consistent either), it is expected that the results will be at
least qualitatively correct. Since such simulations often re-
quire substantial computational resources, obtaining quali-
tative answers may be preferable to simply exiting with an
error.

In this scenario we investigate the dynamic replacement
of GodunovFlux with EFMFlux so that it continues to pro-
vide qualitatively correct results. The adaptation is trig-
gered whenGodunovFlux fails to converge, i.e., its iter-
ation count increases above a certain threshold, and causes
the instance of componentGodunovFlux to be replaced by
an instance of componentEFMFlux . The replacement pro-
cess is the same as that described in scenario 1 above.

4.2 A Self-ManagingCH4 Ignition Simulation

This section focuses on the overall performance im-
provement of theCH4 ignition simulation. The ignition
process is represented by a set of chemical reactions, which
appear and disappear when the fuel and oxidizer react and
give rise to the various intermediate chemical species. In the
simulation application, the chemical reactions are modelled
as repeatedly solving the ChemicalRates equation (G) [1]
with different initial conditions and parameters using one
of a set of algorithms (called backward difference formula

or BDF). The algorithms are numbered from 1 to 5, indi-
cating the order of accuracy of the algorithm.BDF5 is the
highest order method, and is most accurate and robust. It
may, however, not always be the quickest. As a result, the
algorithm used for solving the equationG has to be selected
based on current condition and parameters. In this applica-
tion, the bulk of the time is spent in evaluating the equation
G. Therefore, reducing the number ofG evaluation is a
sufficient indication of speed independent of experimental
environments.

As shown in Figure 8, the rule-based execution decreases
the number of invocation to equationG, and the percentage
decrease is annotated for each temperature value. It results
in an average11.33% computational saving. As the prob-
lem becomes more complex (the computational cost of G
increase), the computational saving will be more significant.
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Figure 8. Comparison of rule based and non
rule based execution of CH4 ignition.

4.3 Experimental Evaluation
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Figure 9. Overhead due to execution of com-
position rules.

An experimental evaluation of the overheads of the pro-
gramming system is presented in this section. The first ex-
periment evaluates the average execution time of a compo-
sition rule. The overhead of replacingGodunovFlux with
EFMFlux is presented in Figure 9. The figure shows that,
as the number of processors increases, the average execu-
tion time does increase but only slightly. This slight in-
crease is primarily due to the time for reconciliation among
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composition manager instances, which depends on the num-
ber of nodes involved. Once reconciliation is completed,
component manager instances perform the replacement in
parallel.
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Figure 10. Overhead due to execution of com-
ponent rules.

The second experiment evaluates the average execution
of a component rule. The overhead of dynamically switch-
ing algorithms within the componentAMRMesh is plotted
in Figure 10. As seen from Figures 9 and 10, the average
execution time of a composition rule is much larger than
that of a component rule. This is because, in order to re-
place a component, the manager has to instantiate a new
component, connect it to other components, and load new
rules. However, the execution of component rules only in-
volves invoking the component’s actuators.

Note that while the framework does introduce overheads,
the benefits of self-management would outweigh these over-
heads. Further, the overheads are not significant when com-
pared to the typical execution time of scientific applications,
which can be in hours, days, and even weeks.

5 Related Work

Related research efforts investigating systems for sup-
porting dynamically adaptive applications can be classified
based on the nature of the adaptations supported. In systems
supportingstatically-defined adaptations, adaptations must
be defined at compile time and coded into the applications.
These include systems that enable adaptations (1) by ex-
tending existing programming languages through providing
templates (e.g., for adaptive scheduling as in [8]) or adapta-
tion classes (e.g., to enable adaptive components as in [9]),
or (2) by defining new adaptation languages (e.g., [11]).
Systems in this category require that all possible adaptations
must be known a priori. If new adaptations are required or
application requirements change, the application code has
to be modified and the application probably re-compiled.

In systems supportingdynamically-defined adaptation,
adaptations (in the form of code, scripts or rules) can be
added, removed and modified at runtime. The framework
presented in this paper and system presented in [23, 28]
fall into this category. These systems separate adaptation

as an aspect and express it in terms of rules (conditions
and actions) that can be dynamically managed. In [28],
adaptations can only be performed at pre-defined method
invocations, similar to ‘injectors’ and ‘filters’ [6]. Adapta-
tion across multiple invocations are not supported. In the
framework presented in this paper, rules are systematically
composed of pre-defined sensors and actuators to provide
more comprehensive adaptation behaviors. In this frame-
work adaptations can occur at any quiet state rather than
at pre-defined method invocations. Further, the framework
differs from systems such as [23] in that it not only sup-
ports monitoring and steering within components but also
enables management across components, e.g., by dynami-
cally switching components.

ALua [27] is probably most closely related to the system
presented in this paper. Both these systems separate con-
figuration from computation and perform interaction, co-
ordination and adaptation in an interpretive manner. Fur-
ther, they both support the execution of dynamically de-
fined adaptation behaviors (in the form of code, scripts or
rules) to adapt application behaviors. However, the frame-
work presented here uses components as the unit of adap-
tation, which allows more control of application consis-
tency through encapsulation. The adaptation of individual
components, such as setting the value of a variable or se-
lecting an algorithm, are encapsulated within these com-
ponents and access to them is controlled by constraints
defined on the sensors and actuators. Similarly, the ad-
dition/deletion/replacement of components is restricted by
their functional signatures and system requirements.

The performance-based self-management presented in
this paper is also addressed in [10]. Adaptive behaviors
such as algorithm selection and parameter adjustment pre-
sented in [10] are also supported in the framework presented
here, both at the composition and the component levels.
However, this framework differs from [10] in that adapta-
tion behaviors are specified as rules that can be dynamically
defined, rather that using hard-coded algorithms within the
server.

6 Conclusion

This paper presented a programming system that enables
self-managing component-based scientific applications ca-
pable of detecting and dynamically responding to changing
requirements, state and execution context. The program-
ming system extends the common component architecture
(CCA) and the Ccaffeine framework. It enables the behav-
iors and interaction of components and applications to be
defined using high level rules and provides a runtime frame-
work for the correct and efficient execution of these rules.
Mechanisms for detecting and resolving rule conflicts are
provided. The operation of the programming system was il-
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lustrated using a self-managing hydrodynamics shock sim-
ulation and a self-managingCH4 ignition simulation. A
performance evaluation was presented.

Current efforts include the investigation of additional
scientific/engineering applications and additional adapta-
tion behaviors, as well as deploying and evaluating the sys-
tem on large HPC platforms such as DataStar, SDSC’s IBM
terascale machine.
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[10] C. Ţǎpuş and et al. Active harmony: Towards automated
performance tuning. Inthe IEEE/ACM SC2002 Conference,
pages 44–54, Baltimore, Maryland, 2002.

[11] G. Duzan and et al. Building adaptive distributed appli-
cations with middleware and aspects. Inthe 3rd Interna-
tional Conference on Aspect-Oriented Software Develop-
ment, pages 66–73, Lancaster, UK, 2004. ACM.

[12] G. A. Geist and et al. Cumulvs: Providing fault-tolerance,
visualization and steering of parallel applications. InEnvi-
ronment and Tools for Parallel Scientific Computing Work-
shop, Lyon, France, 1996.

[13] J. P. Kenny and et al. Component-Based Integration of
Chemistry and Optimization Software.J. Comput Chem,
25:1717–1725, 2004.

[14] S. Lefantzi and et al. Using the common component ar-
chitecture to design high performance scientific simulation
codes. Inthe International Parallel and Distributed Pro-
cessing Symposium, Nice, France, 2003.

[15] S. Lefantzi and et al. A component-based toolkit for reacting
flows with high order spatial discretizations on structured
adaptively refined meshes.Progress in Computational Fluid
Dynamics, 2004. In press.

[16] H. Liu. A component-based programming framework for
autonomic grid applications. Ph.D. proposal, 2004.

[17] H. Liu and et al. A component based programming frame-
work for autonomic applications. Inthe 1st IEEE Inter-
national Conference on Autonomic Computing (ICAC-04),
NYC, NY, USA, 2004.

[18] H. Liu and M. Parashar. A framework for rule-based auto-
nomic management of parallel scientific applications. Inthe
2nd IEEE International Conference on Autonomic Comput-
ing (ICAC-05), Seattle, Washington, 2005.

[19] D. I. Pullin. Direct Simulation Methods for Compressible
Ideal Gas Flow.J. Comp. Phys., 34:231–244, 1980.

[20] J. Ray and et al. Shock Interactions with Heavy Gaseous
Elliptic Cylinders : Two Leeward-Side Shock Competition
Models and a Heuristic Model for Interfacial Circulation
Deposition at Early Times.Phys. Fluids, 12(3):707–716,
2000.

[21] J. Ray and et al. Performance Measurement and Modeling of
Component Applications in a High Performance Computing
Environment : A Case Study. Inthe 18th International Par-
allel and Distributed Processing Symposium (IPDPS’04),
Santa Fe, NM, USA, 2004.

[22] L. Renambot and et al. Cavestudy: an infrastructure for
computational steering in virtual reality environments. Inthe
9th IEEE International Symposium on High Performance
Distributed Computing, pages 57–61, Pittsburgh, PA, 2000.

[23] R. Ribler and et al. Autopilot: adaptive control of distributed
applications. Inthe High Performance Distributed Compur-
ing Conference, pages 172–179, 1998.

[24] R. Samtaney and et al. Baroclinic Circulation Generation on
Shock Accelerated Slow/Fast Gas Interfaces.Phys. Fluids,
10(5):1217–1230, 1998.

[25] R. Samtaney and N. Zabusky. Circulation Deposition on
Shock-Accelerated Planar and Curved Density Stratified In-
terfaces : Models and Scaling laws.J. Fluid Mech., 269:45–
85, 1994.

[26] N. Trebon and et al. An approximate method for optimiz-
ing hpc component applications in the presence of multi-
ple component implementations. Suffix SAND2003-8760C,
Sandia National Laboratories, 2003.

[27] C. Ururahy and et al. ALua: Flexibility for parallel program-
ming. Computer Languages, 28(2):155–180, 2002.

[28] Z. Yang and et al. An aspect oriented approach to dynamic
adaptation. Inthe 1st Workshop on Self-healing Systems,
pages 85–92, Charleston, South Carolina, 2002. ACM.

10


