
Multi-Language Struct Support in Babel

Dietmar Ebner

October 2009

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

UCRL “XXXXXXXXXXXXX”

Dietmar Ebner (LLNL) Babel Structs



About Me

Introduction

Dietmar Ebner

Recent post-doc at LLNL (August 2009)

Academic credentials from the Vienna University of
Technology (Austria)
Background

Compilers / Code Generators
Embedded Systems
Combinatorial Optimization

Dietmar Ebner (LLNL) Babel Structs



Struct Support in Babel

Goal:

Provide access to native structured data types for
Babel-generated interfaces.

Motivation:

Performance (eliminating Babel calls for getters/setters)

Reduced development effort

Completeness (“natural” way of grouping semantically
related data)

Compatibility with existing interfaces

Compatiblity with related systems (CORBA, WSDL)

Dietmar Ebner (LLNL) Babel Structs



Example

SIDL Class

class Date {
int getMonth();
void setMonth(in int month);
int getDay();
void setDay(in int day);
int getYear();
void setYear(in int year);

}

SIDL Struct

struct date_t {
int month;
int day;
int year;

}

Dietmar Ebner (LLNL) Babel Structs



Cornerstones

SIDL structs can contain any data type, including raw
arrays and structs

There is no support for arrays of structs

Structs are not reference counted by Babel

Babel automatically generates code for (de)serialization

No copies when passing between C, C++, and Fortran
2003

Dietmar Ebner (LLNL) Babel Structs



Example: SIDL Struct Declaration

enum Color { red, blue, green }

struct MyOtherStruct {
...

}

struct MyStruct {
int d_int;
dcomplex d_dcomplex;
Color d_enum;
sidl.BaseClass d_object;
MyOtherStruct d_struct;
array<string> d_string_array;
rarray<double,1> d_rarrayRaw(d_int);
rarray<double,1> d_rarrayFix(3);

}

Dietmar Ebner (LLNL) Babel Structs



C Bindings

struct pkg_MyStruct__data {
int32_t d_int;
struct sidl_dcomplex d_dcomplex;
int64_t d_enum;
struct sidl_BaseClass__object* d_object;
struct pkg_MyOtherStruct__data d_struct;
struct sidl_string__array* d_string_array;
double* d_rarrayRaw;
double d_rarrayFix[3];

};

pkg_MyStruct__init(...);
pkg_MyStruct__copy(...);
pkg_MyStruct__serialize(...);
...

Dietmar Ebner (LLNL) Babel Structs



C++ Bindings

struct MyStruct : pkg_MyStruct_data {
MyStruct();
MyStruct(const ::pkg::MyStruct &src);

void serialize(::sidl::io::Serializer &pipe,
const ::std::string &name,
const bool copyArg);

...

::sidl::BaseClass get_d_object() const;
void set_d_object(const ::sidl::BaseClass &val);
...

};

Dietmar Ebner (LLNL) Babel Structs



Python Bindings

å Implemented as a Python C extension type

Allows to directly access the underlying IOR representation

Appears like a regular Python object with correctly named
attributes

Also correctly converts Python objects to Babel’s IOR

Dietmar Ebner (LLNL) Babel Structs



Fortran 90

å Implemented as a derived data type

type :: pkg_MyStruct_t
integer (kind=sidl_int) :: d_int
complex (kind=sidl_dcomplex) :: d_dcomplex
integer (kind=sidl_enum) :: d_enum
type(sidl_BaseClass_t) :: d_object
type(sidl_string_1d) :: d_string_array
type(pkg_MyOtherStruct_t) :: d_struct

//TODO: (fixed size) rarrays not yet supported

end type pkg_MyStruct_t

Dietmar Ebner (LLNL) Babel Structs



Java Bindings NEW!

package pkg;
public class MyStruct {
public int d_int;
public sidl.DoubleComplex d_dcomplex;
public long d_enum;
public sidl.BaseClass d_object;
public MyOtherStruct d_struct;
public sidl.String.Array1 d_string_array;
public sidl.Double.Array1 d_rarrayRaw;
public sidl.Double.Array1 d_rarrayFix;

public MyStruct() { ... }
public void serialize(sidl.io.Serializer pipe,

final String name,
... boolean copyArg) { ... }

}

Dietmar Ebner (LLNL) Babel Structs



Peculiarities of the Java Bindings

Babel automatically generates a public inner class named
Holder that has to be used for out/inout Arguments

MyStruct.Holder h = new MyStruct.Holder(myStruct);
foo.passInOutStruct(h)
MyStruct retVal = h.get();

Most data is copied when converting from IOR structs to
the Java representation

Arrays and Objects are wrapped in the usual way
Simple data types and raw arrays are duplicated
No distinction between raw arrays and standard arrays from
Java point of view

, No JNI penalty for reads/writes
/ Relatively large call overhead

Dietmar Ebner (LLNL) Babel Structs



Structs and Babel RMI

Babel automatically generates code for (de)serialization

User-defined classes implementing the sidl.io.Serializable
interface can use these methods to pack/unpack struct data
members

Regression test suite is currently extended to test RMI
automatically

Dietmar Ebner (LLNL) Babel Structs



Current State (as of Oct. 2009)

C C++ Python Java F77 F90 F03
simple types , , , , - - ,
objects / ifcs , , , , - - ,
raw arrays , , / , - - ,
RMI , , ? - / / ?

Dietmar Ebner (LLNL) Babel Structs



Thank You!

Questions?

Dietmar Ebner (LLNL) Babel Structs


