
1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Common Component Architecture
Concepts

CCA
Common Component Architecture

2

The Lifecycle of a Component

• User instructs framework to load and
instantiate components

• User instructs framework to connect uses
ports to provides ports

• Code in components uses functions provided
by another component

• Ports may be disconnected
• Component may be destroyed Look at actual

code in next
tutorial module

2

CCA
Common Component Architecture

3

Loading and Instantiating Components

create Driver Driver
create LinearFunction LinearFunction
create MonteCarloIntegrator MonteCarloIntegrator

• Details are framework-specific!

• Ccaffeine currently provides both
command line and GUI approaches

• Components are code (usu.
library or shared object) +
metadata

• Using metadata, a Palette of
available components is
constructed

• Components are instantiated
by user action (i.e. by
dragging from Palette into
Arena)

• Framework calls component’s
constructor, then setServices

CCA
Common Component Architecture

4

Component’s View of Instantiation
• Framework calls component’s

constructor
• Component initializes internal

data, etc.
– Knows nothing outside itself

• Framework calls component’s
setServices
– Passes setServices an object

representing everything “outside”
– setServices declares ports

component uses and provides
• Component still knows nothing

outside itself
– But Services object provides the

means of communication w/
framework

• Framework now knows how to
“decorate” component and how it
might connect with others

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

MonteCarloIntegrator

Integrator code

Framework interaction code
constructor setServices destructor

CCA.Services
provides IntegratorPort

uses FunctionPort,
RandomGeneratorPort

3

CCA
Common Component Architecture

5

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

User Connects Ports
• Can only connect user &

provider
– Not uses/uses or

provides/provides
• Ports connected by type, not

name
– Port names must be unique

within component
– Types must match across

components
• Framework puts info about

provider into user
component’s Services object

CCA
Common Component Architecture

6

Component’s View
of Connection

• Framework puts info
about provider into user
component’s Services
object
– MonteCarloIntegrator’s

Services object is aware
of connection

– NonlinearFunction is
not!

• MCI’s integrator code
cannot yet call functions
on FunctionPort

NonlinearFunction

Function code

CCA.Services
provides FunctionPort

Framework interaction code
MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

4

CCA
Common Component Architecture

7

Component’s View of Using a Port

MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

• User calls getPort to obtain
(handle for) port from Services
– Finally user code can “see”

provider
• Cast port to expected type

– OO programming concept
– Insures type safety
– Helps enforce declared

interface
• Call methods on port

– e.g.
sum = sum + function->evaluate(x)

• Release port

CCA
Common Component Architecture

8

Importance of Provides/Uses Pattern for
Ports

• Fences between components
– Components must declare both

what they provide and what
they use

– Components cannot interact
until ports are connected

– No mechanism to call anything
not part of a port

• Ports preserve high
performance direct connection
semantics…

• …While also allowing distributed
computing

Component 1 Component 2
Provides/Uses

Port

Direct Connection

Component 1

Component 2
Uses
Port

Provides
Port

Network
Connection

5

CCA
Common Component Architecture

9

CCA Concepts: Direct Connection

• Components loaded into separate namespaces in the
same address space (process) from shared libraries

• getPort call returns a pointer to the port’s function table

• Calls between components equivalent to a C++ virtual
function call: lookup function location, invoke

• Cost equivalent of ~2.8 F77 or C function calls

• All this happens “automatically” – user just sees high
performance

• Description reflects Ccaffeine implementation, but similar
or identical mechanisms in other direct connect fwks

CCA
Common Component Architecture

10

Concept Review
• Ports

– Interfaces between components
– Uses/provides model

• Framework
– Allows assembly of components into applications

• Direct Connection
– Maintain performance of local inter-component calls

• Parallelism
– Framework stays out of the way of parallel components

• MxN Parallel Data Redistribution
– Model coupling, visualization, etc.

• Language Interoperability
– Babel, Scientific Interface Definition Language (SIDL)

6

CCA
Common Component Architecture

11

Next: A Simple CCA Example

