
1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

An Overview of Components
and the Common Component

Architecture

CCA
Common Component Architecture

2

Outline
• Why do we need components?
• What are components?
• What are CCA components?

2

CCA
Common Component Architecture

3

Why Components

• In “Components, The Movie”
– Interoperability across multiple languages
– Interoperability across multiple platforms
– Incremental evolution of large legacy systems

(esp. w/ multiple 3rd party software)
• Complexity

CCA
Common Component Architecture

4

Why Components

The task of the software development team is to engineer the
illusion of simplicity [Booch].

3

CCA
Common Component Architecture

5

Software Complexity
• Software crisis

– “Our failure to master the complexity of software results in
projects that are late, over budget, and deficient in their stated
requirements” [Booch]

• Can’t escape it
– “The complexity of software is an essential property, not an

accidental one” [Brooks]
• Help is on the way…

– “A complex system that works is invariably found to have evolved
from a simple system that worked… A complex system designed
from scratch never works and cannot be patched up to make it
work.” [Gall]

– “Intracomponent linkages are generally stronger than
intercomponent linkages” [Simon]

– “Frequently, complexity takes the form of a hierarchy” [Courtois]

CCA
Common Component Architecture

6

The Good the Bad and the Ugly

• An example of what can lead to a crisis in software:
• At least 41 different Fast Fourier Transform (FFT)

libraries:
– see, http://www.fftw.org/benchfft/doc/ffts.html

• Many (if not all) have different interfaces
– different procedure names and different input and output

parameters
• SUBROUTINE FOUR1(DATA, NN, ISIGN)

– Replaces DATA by its discrete Fourier transform (if ISIGN is input
as 1) or replaces DATA by NN times its inverse discrete Fourier
transform (if ISIGN is input as -1). DATA is a complex array of
length NN or, equivalently, a real array of length 2*NN. NN
MUST be an integer power of 2 (this is not checked for!).

4

CCA
Common Component Architecture

7

Components Promote Reuse

• Components promote software reuse
– “The best software is code you don’t have to write”

[Steve Jobs]
• Reuse, through cost amortization increases

software quality
– thoroughly tested code
– highly optimized code
– improved support for multiple platforms
– developer team specialization

Hero programmer producing single-purpose,
monolithic, tightly-coupled parallel codes

Rob

X

CCA
Common Component Architecture

8

What Are Components

• Why do we need components?
• What are components?
• What are CCA components?

5

CCA
Common Component Architecture

9

What Are Components [Szyperski]

• A component is a binary unit of independent deployment
– well separated from other components

• fences make good neighbors
– can be deployed independently

• A component is a unit of third-party composition
– is composable (even by physicists)

– comes with clear specifications of what it requires and provides
– interacts with its environment through well-defined interfaces

• A component has no persistent state
– temporary state set only through well-defined interfaces
– throw away that dependence on global data (common blocks)

• Similar to Java packages and Fortran 90 modules (with a
little help)

CCA
Common Component Architecture

10

What Does This Mean

• Once again
– A component is a binary unit of independent

deployment
– A component is a unit of third-party composition
– A component has no persistent state

• So what does this mean
– Components are “plug and play”
– Components are reusable
– Component applications are evolvable

6

CCA
Common Component Architecture

11

What Are Components II

• Components live in an environment and interact with
the environment through a framework and
connections with other components.

• Components can discover information about their
environment from the framework.

• Components must explicitly publish what capabilities
they provide.

• Components must explicitly publish what connections
they require.

• Components are a runtime entity.

CCA
Common Component Architecture

12

Components Are Different From
Objects

• Think of a component stereo system:
– You buy a new, super-cool CD player, bring it home, wire it

up, turn on the power, and it works!
• A software component system:

– You buy (or download) a new, super-fast FFT component,
wire the connections, click on the go button, and it works!

– (remember, a software component is a binary unit)
• A software class library:

– You buy it, install it, do a little programming (or a lot),
compile it, link it, and then run it, and hopefully it works.

7

CCA
Common Component Architecture

13

Components, Different From Objects II

• You can build components out of object
classes.

• But a component is more than just an object.

CCA
Common Component Architecture

14

How Do We Make Components

• Why do we need components?
• What are components?
• What are CCA components?

8

CCA
Common Component Architecture

15

Features of the Common Component
Architecture

• A component model specifically designed for high-
performance computing
– Support HPC languages (Babel)
– Support parallel as well as distributed execution models
– Minimize performance overhead

• Minimalist approach makes it easier to componentize
existing software

• Component interactions are not merely dataflow
• Components are peers

– No particular component assumes it is “in charge” of the
others.

– Allows the application developer to decide what is important.

CCA
Common Component Architecture

16

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports
– In OO languages, a port is a class or interface
– In Fortran, a port is a bunch of subroutines or a module

• Components may provide ports – implement the
class or subroutines of the port

• Components may use ports – call methods or
subroutines in the port

• Links denote a caller/callee relationship, not
dataflow!
– e.g., FunctionPort could contain: evaluate(in Arg, out Result)

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

9

CCA
Common Component Architecture

17

Components and Ports
in the Integrator Example

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

18

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Example Components

10

CCA
Common Component Architecture

19

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

20

Application 3…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

11

CCA
Common Component Architecture

21

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA
Common Component Architecture

22

Ports, Interoperability, and Reuse

• Ports (interfaces) define how components interact
• Generality, quality, robustness of ports is up to

designer/architect
– “Any old” interface is easy to create, but…
– Developing a robust domain “standard” interface requires

thought, effort, and cooperation
• General “plug-and-play” interoperability of

components requires multiple implementations
conforming to the same interface

• Designing for interoperability and reuse requires
“standard” interfaces
– Typically domain-specific
– “Standard” need not imply a formal process, may mean

“widely used”

12

CCA
Common Component Architecture

23

Components vs Libraries

• Component environments
rigorously enforce interfaces

• Can have several versions of
a component loaded into a
single application

• Component needs add’l
code to interact w/
framework
– Constructor and destructor

methods
– Tell framework what ports it

uses and provides
• Invoking methods on other

components requires slight
modification to “library” code

MonteCarloIntegrator

Integrator library code
(slightly modified)

Framework interaction
code (new)

CCA
Common Component Architecture

24

CCA Concepts: Frameworks
• The framework provides the means to “hold”

components and compose them into applications
– The framework is often application’s “main” or “program”

• Frameworks allow exchange of ports among
components without exposing implementation details

• Frameworks provide a small set of standard services
to components
– BuilderServices allow programs to compose CCA apps

• Frameworks may make themselves appear as
components in order to connect to components in
other frameworks

• Currently: specific frameworks support specific
computing models (parallel, distributed, etc.).
Future: full flexibility through integration or
interoperation

13

CCA
Common Component Architecture

25

Importance of Provides/Uses Pattern for
Ports

• Fences between components
– Components must declare both

what they provide and what
they use

– Components cannot interact
until ports are connected

– No mechanism to call anything
not part of a port

• Ports preserve high
performance direct connection
semantics…

• …While also allowing distributed
computing

Component 1 Component 2
Provides/Uses

Port

Direct Connection

Component 1

Component 2
Uses
Port

Provides
Port

Network
Connection

CCA
Common Component Architecture

26

CCA Concepts:
Parallel Components

• Single component multiple
data (SCMD) model is
component analog of widely
used SPMD model

• Each process loaded with the
same set of components
wired the same way

• Different components in same
process “talk to each” other
via ports and the framework

• Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Also supports MPMD/MCMD

P0 P1 P2 P3

Components: Red, Green, Blue

Framework: Gray

Framework stays “out of the way”
of component parallelism

14

CCA
Common Component Architecture

27

CCA Concepts:
MxN Parallel Data Redistribution

• Share Data Among Coupled Parallel Models
– Disparate Parallel Topologies (M processes vs. N)
– e.g. Ocean & Atmosphere, Solver & Optimizer…
– e.g. Visualization (Mx1, increasingly, MxN)

Research area -- tools under development

CCA
Common Component Architecture

28

CCA Concepts: Language
Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java
Babel tutorial
coming up!

15

CCA
Common Component Architecture

29

Concept Review
• Ports

– Interfaces between components
– Uses/provides model

• Framework
– Allows assembly of components into applications

• Direct Connection
– Maintain performance of local inter-component calls

• Parallelism
– Framework stays out of the way of parallel components

• MxN Parallel Data Redistribution
– Model coupling, visualization, etc.

• Language Interoperability
– Babel, Scientific Interface Definition Language (SIDL)

