CCA

Common Component Architecture

An Overview of Components
and the Common Component
Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/
tutorial-wg@cca-forum.org

Common Component Architecture

Outline

* Why do we need components?
* What are components?
* What are CCA components?




‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Why Components

* In “Components, The Movie”
— Interoperability across multiple languages
— Interoperability across multiple platforms

— Incremental evolution of large legacy systems
(esp. w/ multiple 3rd party software)

« Complexity

The task of the software development team is to engineer the
illusion of simplicity /Booch].




‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Software Complexity

» Software crisis

— “Our failure to master the complexity of software results in
projects that are late, over budget, and deficient in their stated
requirements” [Booch]

« Can'’t escape it

— “The complexity of software is an essential property, not an
accidental one” [Brooks]

* Help is on the way...

— “A complex system that works is invariably found to have evolved
from a simple system that worked... A complex system designed
from scratch never works and cannot be patched up to make it
work.” [Gall]

— “Intracomponent linkages are generally stronger than
intercomponent linkages” [Simon]

— “Frequently, complexity takes the form of a hierarchy” [Courtois]

Common Component Architecture

The Good the Bad and the Ugly

* An example of what can lead to a crisis in software:
» At least 41 different Fast Fourier Transform (FFT)
libraries:
— see, http://www.fftw.org/benchfft/doc/ffts.html

« Many (if not all) have different interfaces

— different procedure names and different input and output
parameters

+ SUBROUTINE FOUR1(DATA, NN, ISIGN)

— Replaces DATA by its discrete Fourier transform (if ISIGN is input
as 1) or replaces DATA by NN times its inverse discrete Fourier
transform (if ISIGN is input as -1). DATA is a complex array of
length NN or, equivalently, a real array of length 2*NN. NN
MUST be an integer power of 2 (this is not checked forl).




‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Hero programmer producing single-purpose,
monolithic, tightly-coupled parallel codes

» Components promote software reuse
— “The best software is code you don’t have to write”
[Steve Jobs]
* Reuse, through cost amortization increases
software quality
— thoroughly tested code
— highly optimized code
— improved support for multiple platforms
— developer team specialization

Common Component Architecture

What Are Components

* Why do we need components?
* What are components?
* What are CCA components?




‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

What Are Components [Szyperski]

* A component is a binary unit of independent deployment

— well separated from other components
» fences make good neighbors
— can be deployed independently
* A component is a unit of third-party composition
— is composable (even by physicists)
— comes with clear specifications of what it requires and provides
— interacts with its environment through well-defined interfaces
« A component has no persistent state
— temporary state set only through well-defined interfaces
— throw away that dependence on global data (common blocks)
Similar to Java packages and Fortran 90 modules (with a
little help)

Common Component Architecture

What Does This Mean

« Once again

— A component is a binary unit of independent
deployment

— A component is a unit of third-party composition
— A component has no persistent state
« So what does this mean
— Components are “plug and play”
— Components are reusable
— Component applications are evolvable




What Are Components Il

« Components live in an environment and interact with
the environment through a framework and
connections with other components.

» Components can discover information about their
environment from the framework.

« Components must explicitly publish what capabilities
they provide.

» Components must explicitly publish what connections
they require.

+ Components are a runtime entity.

Components Are Different From
Objects

» Think of a component stereo system:
— You buy a new, super-cool CD player, bring it home, wire it
up, turn on the power, and it works!
* A software component system:

— You buy (or download) a new, super-fast FFT component,
wire the connections, click on the go button, and it works!

— (remember, a software component is a binary unit)
» A software class library:

— You buy it, install it, do a little programming (or a lot),
compile it, link it, and then run it, and hopefully it works.




Components, Different From Objects Il

* You can build components out of object
classes.

« But a component is more than just an object.

Common Component Architecture

How Do We Make Components

* Why do we need components?
* What are components?
* What are CCA_components?




Features of the Common Component
Architecture

» A component model specifically designed for high-
performance computing
— Support HPC languages (Babel)
— Support parallel as well as distributed execution models
— Minimize performance overhead

Minimalist approach makes it easier to componentize
existing software

Component interactions are not merely dataflow

Components are peers

— No particular component assumes it is “in charge” of the
others.

— Allows the application developer to decide what is important.

CCA Concepts: Ports

IntegratorPort FunctionPort FunctionPort

Midpointintegrator NonlinearFunction

« Components interact through well-defined interfaces,
or ports
— In OO languages, a port is a class or interface
— In Fortran, a port is a bunch of subroutines or a module

« Components may provide ports — implement the
class or subroutines of the port

« Components may use ports — call methods or
subroutines in the port

» Links denote a caller/callee relationship, not
dataflow!

— e.g., FunctionPort could contain: evaluate(in Arg, out Result)




nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Components and Ports
in the Integrator Example

NonlinearFunction

Midpointintegrator W

IntegratorPort FunctionPort

IntegratorPort | LinearFunction

Driver

| FuncionPort I

IntegratorPort FunctionPort . .
J PiFunction

RandomGeneratorPort

RandomGeneratorPort
MonteCarlolntegrator ‘

RandomGenerator

An Application

Built from the Example Components

NonlinearFunction

Midpointintegrator W

IntegratorPort FunctionPort

|

IntegratorPort

Driver

LinearFunction

FunctionPort

IntegratorPort FunctionPort . .
J PiFunction
I RandomGeneratorPort )—l
RandomGeneratorPort
MonteCarlolntegrator ‘

RandomGenerator




CCA,. e
Another Application...
FunctionPort
IntegratorPort FunctionPort NonlinearFunction
Midpointintegrator W
IntegratorPort LinearFunction
Driver W
IntegratorPort FunctionPort X ,
2 PiFunction
RandomGeneratorPort
RandomGeneratorPort
MonteCarlolntegrator ‘
RandomGenerator
19
CCA, .

Application 3...

IntegratorPort FunctionPort

Midpointintegrator

IntegratorPort

Driver

IntegratorPort FunctionPort

I RandomGeneratorPort ‘

MonteCarlolntegrator ‘

| FuncionPort I

NonlinearFunction

FunctionPort

LinearFunction

PiFunction

RandomGeneratorPort

RandomGenerator

20




‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

And Many More...

Dashed lines
indicate alternate :
connections

. IntegratorPort

Midpointintegrator

FunctionPort :

.‘W
O
.
.

NonlinearFunction

13
O
.
of
.
D

LinearFunction

5
s
;
~. :
.. : "'
IntegratorPort h O
. D : s
i
R FuncionPort [
) ‘.$
.
R
- R
FunctionPort #*

RandomGeneratorPort

Driver

k IntegratorPort

PiFunction

RandomGeneratorPort
MonteCarlolntegrator ‘

Create different applications
in "plug-and-play" fashion

RandomGenerator

21

Ports, Interoperability, and Reuse

» Ports (interfaces) define how components interact

* Generality, quality, robustness of ports is up to
designer/architect
— “Any old” interface is easy to create, but...
— Developing a robust domain “standard” interface requires

thought, effort, and cooperation

» General “plug-and-play” interoperability of
components requires multiple implementations
conforming to the same interface

» Designing for interoperability and reuse requires
“standard” interfaces
— Typically domain-specific
— “Standard” need not imply a formal process, may mean
“widely used”

22




Components vs Libraries

+ Component environments
rigorously enforce interfaces Framework interaction

+ Can have several versions of code (new)
a component loaded into a
single application

+ Component needs add’l
code to interact w/

framework Integrator library code
— Constructor and destructor (slightly modiﬁed)
methods

— Tell framework what ports it
uses and provides
» Invoking methods on other
components requires slight MonteCarlolntegrator

modification to “library” code

23

CCA Concepts: Frameworks

* The framework provides the means to “hold”
components and compose them into applications

— The framework is often application’s “main” or “program”

* Frameworks allow exchange of ports among
components without exposing implementation details

» Frameworks provide a small set of standard services
to components
— BuilderServices allow programs to compose CCA apps

* Frameworks may make themselves appear as
components in order to connect to components in
other frameworks

» Currently: specific frameworks support specific
computing models (parallel, distributed, etc.).
Future: full flexibility through integration or
interoperation

24




mmmmm

Importance of Provides/Uses Pattern for

nnnnnnnnnnnnnnnnnnnnn

Ports

Fences between components
— Components must declare both
what they provide and what
they use
— Components cannot interact
until ports are connected
— No mechanism to call anything
not part of a port
Ports preserve high
performance direct connection
semantics...

Component 1 Component 2

Provides/Uses
Port

Direct Connection

Component 1

Provides
Port

Network
Connection

* ...While also allowing distributed

computin
puting Component 2

25

CCA Concepts:
Parallel Components

Single component multiple
data (SCMD) model is
component analog of widely
used SPMD model

» Each process loaded with the
same set of components
wired the same way

PI P2 P3
aal B B

PO

Different components in same
process “talk to each” other
via ports and the framework

al Bl B

Components: Red, Green, Blue

Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

* Also supports MPMD/MCMD

Framework: Gray

Framework stays “out of the way”
of component parallelism

26




nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

CCA Concepts:
MxN Parallel Data Redistribution
» Share Data Among Coupled Parallel Models
— Disparate Parallel Topologies (M processes vs. N)
— e.g. Ocean & Atmosphere, Solver & Optimizer...
— e.g. Visualization (Mx1, increasingly, MxN)

N
Research area -- tools under development

27

CCA
CCA Concepts: Language
Interoperability
« Existing language * Babel provides a unified
interoperability approach in which all
approaches are “point- languages are
to-point” solutions considered peers
» Babel used primarily at
interfaces

/yf77\ f77

Cc f90 C 90
Python

C++ Python CH+

Babel tutorial
Java coming up! Java %




Concept Review
* Ports

— Interfaces between components
— Uses/provides model

* Framework
— Allows assembly of components into applications

» Direct Connection
— Maintain performance of local inter-component calls

» Parallelism
— Framework stays out of the way of parallel components

* MxN Parallel Data Redistribution
— Model coupling, visualization, etc.

+ Language Interoperability
— Babel, Scientific Interface Definition Language (SIDL)

29




