CCA

Common Component Architecture

A Look at More Complex
Component-Based Applications

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/
tutorial-wg@cca-forum.org

@ Pl

@CC A Compaq
Common Component Architecture

Component model for high
performance computing

« Components
— C++ objects with a functionality
— Ports : Provides and uses
— Compiled into shared libraries

* Framework
— Loads and instantiates components
— Connects uses and provides ports
— Driven by a script or GUI

Page 1

@C C A Compaq
Common Component Architecture

A CCA code

=~ Common Component Architecture

[FlCommon Camponent Architecture: Untitled_0.bld (changed) i i nais i v o s s T

[Run |[Remave | Remove Al || open.. | save | save As..

CCA Compaq

Common Component Architecture

CCA model for high performance
computing

* Requirements
— High single cpu performance
— Need parallelism, NOT distributed computing
— SPMD quite sufficient, RMI not needed.
— No parallel computing prescription/model
* No one-size-fits-all
« Translates to :
— Light-weight framework
— Onus on the component writer.

Page 2

@C C A Compaq
Common Component Architecture

Component model for high
performance computing

» Solution :

— Identical frameworks with identical components and connection
on P processors.

— Comp. A on proc Q can call methods on Comp. B also on proc
Q.

— Comp. A s of all P procs communicate via MPI.

— No RMI — Comp. A on proc Q DOES NOT interact with Comp. B
on proc N.

— No parallel comp. Model — the component does what'’s right.
— 2 such frameworks — Sandia, Utah.

@CC A Compaq
Common Component Architecture

Pictorial example

Proc 1 Proc 2
- - - .
™ -1 ™~]
- S L~ S
™~ -1 ™~ -1

Page 3

@C C A Compaq
Common Component Architecture

Summary

A lightweight component model for high
performance computing.

A restriction on parallel communication
— Comm. Only between a cohort of components.

* No RMI — no dist. computing.

« Components with a physics / chemistry /
numerical algo functionalities.

» Standardized interfaces — Ports.
« That's the theory — does it work ?

@CC A Compaq
Common Component Architecture

Problem categories

« Decomposition of simulation codes
— How ? Along physics ? Numerics ?
— Math model provides a hint ?
— What granularity ?
— Interfaces
» Libraries
— Interfaces
» Nested containers
— l.e. framework enhancements ?

Page 4

@C C A Compaq
Common Component Architecture

Decomposition of simulation codes

+ 2 different physics simulations
» Component reuse
» Parallel, scalable, good single CPU performance

» A formalism for decomposing a big code into
— Subsystem
— Components.

— Common underlying mathematical structure

» Dirty secrets / restrictions / flexibility.

@CC A Compaq
Common Component Architecture

Guidelines regarding apps

Hydrodynamics
P.D.E

O, = F(®,VO,V’D,...)+ G(D)

Spatial derivatives
— Finite differences, finite volumes

Timescales
Length scales

Page 5

@C C A Compaq
Common Component Architecture

Solution strategy

« Timescales
— Explicit integration of slow ones
— Implicit integration of fast ones

 Strang-splitting
O, =F(®,VO,VD..) +G(D)
1. ®,=G(D), t">t"+At/2 {O" d}

2. @, =F(O,VD,V2D..), "> t"+At, {B,b)
3. @, =G(D), t"+At/2>1t"+At, {Dd, 0"}

@CC A Compaq
Common Component Architecture

Solution strategy (cont’d)

» Wide spectrum of length scales
— Adaptive mesh refinement
— Structured axis-aligned patches
— GrACE.

« Start with a uniform coarse mesh

— Identify regions needing refinement, collate into
rectangular patches

— Impose finer mesh in patches
— Recurse; mesh hierarchy.

Page 6

C C A Compaq

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

09|

08|

07 F

06k

04

03[
0.2

01 F

L L L L 1 L L L
00 05 1

X
Level O in purple, Level 1 in red and Level 2 in blue

CCA Compaq

App 1. A reaction-diffusion system.

» A coarse approx. to a flame. Temperature (K)

* H,-Air mixture; ignition via 3 hot-spots

» 9-species, 19 reactions, stiff chemistry
o,

LoVaVY 4
ot

* 1cm X 1cm domain, 100x100 coarse
mesh, finest mesh = 12.5 micron.

+ Timescales : O(10ns) to O(10
microseconds)

Page 7

@C C A Compaq
Common Component Architecture

App. 1 -the code

) o

CCA Compaq

Common Component Architecture

So, how much is new code ?

 The mesh — GrACE
« Stiff-integrator — CVODE, LLNL
 ChemicalRates — old Sandia F77 subroutines

» Diff. Coeffs — based on DRFM — old Sandia
F77 library

* The rest
— We coded — me and the gang.

Page 8

cCCAm nnnnnnnnnnnnnnnnn Compaq
Evolution
Temperature (K)
vnH
17
chmCé nnnnnnnnnnnnnnnnn Compaq
4 i
‘.r r
,,ul-ll
F
|
09
08
07
06
=05
04
03 = 5
b |_| —=ne
Sy — 5 D)
o2F == E'D + H,O, mass fraction
01k =i L_IL ;
ok — |, — profiles.
0 0.5 7

Page 9

C C A Compaq

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

App. 2 shock-hydrodynamics
« Shock hydrodynamics

U =FU)+G,U) U={p,pu,pv,pE, pC}

 Finite volume method (Godunov)

CCA Compaq

Common Component Architecture

Interesting features

» Shock & interface are sharp discontinuities
* Need refinement

» Shock deposits vorticity — a governing
quantity for turbulence, mixing, ...

* Insufficient refinement — under predict
vorticity, slower mixing/turbulence.

20

Page 10

Compaq
App 2. The code
y
AT
e [ez | e | [e |
StatsPort [cowc | mymen |— T cows |
T ShocdCPore | Propron |—| Casfropariesfor
Frare] ConicallnterfacelC raper
InitCond crrops | T | ——
Ragriser oNFic | interpalions || EELES
e | I rrolongresic |8
ProlongRestrict
| chems | e
[cowrc | ruxerep | T
- sgrmrar | o Fuxes | Fluscompurarort
T Fuxpron | PeopPort
Tytezh StatesPropPort cProps \| pmppm
Craraceron FuxrropPart Starestrop
CharacPon statescamputerort StatesCompute
InviscidFlux |
w‘ — M
[eroms | propren |
RS PS“‘ eProps M\/Masn
Sta«sPurt M Mesh FluxPropPart
V CharacFort MyProp \
— | Fuxcompuicrar |
araciropior GodunovFlux
CharacQuants
chropt [e |
‘ CONFIG | MyMesh
Error_Estmation_and_Reorld
ErrarEstimator
21
CCA Compag
Cammen Component Architecture
E I t.
11F
1 =
L
22

Page 11

@C C A Compaq
Common Component Architecture

Convergence

3 levels
2 levels
1 level

01

,O 2 ;
Lroal
04

05

ol L 1

23

CCA Compaq

Common Component Architecture

Are components slow ?

» C++ compilers << Fortran compilers

 Virtual pointer lookup overhead when accessing a
derived class via a pointer to base class

* Y'=F; [I-AV2J]AY =H(Y")+ G(Y,,); used Cvode
to solve this system

* J & G evaluation requires a call to a component
(Chemistry mockup)

* At changed to make convergence harder — more J & G
evaluation

* Results compared to plain C and cvode library

24

Page 12

Compaq

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Components versus library

Component Library
At G evaluations time time
(sec) (sec)
0.1 66 1.18 1.23
1.0 150 2.34 2.38
100 405 6.27 6.14
1000 501 7.66 7.67
CCCép«AM| Compaq
Really so ?
+ Difference in calling Function arg
overhead type frr Component
* Test:
— F77 versus Array 80ns |224ns
componens
* 500 MHz Pentium llI
e Linux 2.4.18
+ Gcc 2.95.4-15 Complex 75ns 209ns
Double
complex 86ns 241ns

26

Page 13

@C C A Compaq
Common Component Architecture

Scalability

» Shock-hydro code
* No refinement 500
* 200 x 200 & 350 X 350 ol

meshes wkb | O a0 a0
+ Cplant cluster S B

— 400 MHz EV5

Alphas

— 1 Gb/s Myrinet

» Worst perf: 73 %
scaling eff. For
200x200 on 48 procs

CCA Compaq

Common Component Architecture

Summary

+ Components, code

» Very different physics/numerics by replacing physics
components

» Single cpu performance not harmed by
componentization

+ Scalability — no effect
* Flexible, parallel, etc. etc. ...
» Success story ...?

— Not sofast ...

28

Page 14

C C A Compaq
Common Component Architecture

Pros and cons

« Cons:

— A set of components solve a PDE subject to a particular numerical
scheme

— Numerics decides the main subsystems of the component assembly
+ Variation on the main theme is easy

» Too large a change and you have to recreate a big percentage of
components

* Pros:
— Physics components appear at the bottom of the hierarchy
— Changing physics models is easy.
— Note : Adding new physics, if requiring a brand-new numerical
algorithm is NOT ftrivial.
+ So what's a better design to accommodate this ?

29

cCCCA Compaq

What else is up ?

» “libraries” !
— But as components, standard interfaces

* “Linear solver component” (interface!)
— PetSc, Trilinos etc, etc

* Meshes:

— Standard interfaces for discretizing domains
(unstructured meshes)

— Math operators on such meshes
— Data objects to hold fields on such meshes

« Strange things ...
— Data de- and re-composition, visualization ...

30

Page 15

C C A Compaq

mmon Component Architecture

Libraries

* Linear algebra
— PETSc, Trilinos, etc 2 components

» Optimization
- TAO

« ODE & DAE Integrators
— LSODE, Cvode

* Profiling & optimization (cache artists ?!?)
- TAU

« Data redist + Viz
— CUMULVS, using AVS, no less !

CCA Compaq

Common Component Architecture

Time-Dependent PDE on an Unstructured Mesh

TSTT unstructured mesh prototype components with finite
element discretizations.

« Black boxes: components
* Blue boxes: provides ports
* Gold boxes: uses ports

IntegratorLSODE provides a second-order implicit time integrator, and FEMDiscretization provides a
discretization.

This application uses the DADFactory component to describe the parallel data layout so that the
CumulsMxN data redistribution component can then collate the data from a multi-processor run to a

single processor for runtime visualization. a2

Page 16

C C A Compaq

Common Component Architecture

Heat Equation on an Adaptive Structured Mesh

Solution of a two-dimensional heat equation on a square
domain using a structured method.

IntegratorLSODE provides a second-order implicit time integrator, and
Model provides a discretization. The remaining components are
essentially utilities that construct the global ODE system or adaptors that

convert the patch-based data structures of the mesh to the globally

distributed array structure used for runtime visualization. 33

CCA Compaq

Common Component Architecture

Unconstrained Minimization Using a Structured Mesh

Determine minimal surface area given boundary conditions using the TAOSolver
optimization component. l.e., solve min f(x), where f: R" - R.

_ MPIBarT o Patsc

out

TAOSolver uses linear solver components that incorporate
abstract interfaces under development by the DOE-wide
Equation Solver Interface (ESI) working group. Underlying
implementations are provided via the new ESI interfaces to
e parallel linear solvers within the PETSc (ANL) and Trilinos
ey T (SNL) libraries.

34

Page 17

@C C A Compaq
Common Component Architecture

Conclusions

* Progress ..
— Libraries <-> components : well ahead
— Decomposing applications
* Slower, but harder job
— Language interoperability
* Framework done
» Adoption by people on
* Knotty points

— Interfaces and scientists ...

35

Page 18

