
1

A Pictorial Introduction
to Components

in Scientific Computing

This is a quick and easy introduction (and justification) to components in the
domain of scientific computing.

Listed are the current team members to the components effort here at
CASC in Lawrence Livermore National Lab.

My team members call this “The Sausage Grinder Talk”

Once upon a time...

Input

Output

Program

Once upon a time, computing was simple

There was a program and you put stuff into it and you get stuff out.

As Scientific Computing grew...

But as scientific computing grew, the data required out of the computations
grew.

So then the input grew in turn and the program became the bottle neck.

Tried to ease the bottle neck

There were several attempts to ease the congestion.

First was to spend money on custom processors that made the program run
really fast. (supercomputers)

Then they started adding more expensive hardware so that one program
could do the same thing several times in lock-step (vector supercomputers)

SPMD was born.

21

3 4

21

3 4

2

1

3

4

Finally, someone realized how cheap off-the-shelf processors were, and just
bought a lot of cheap processors instead of one expensive one.

This meant that the program could run in multiple places at the same time.

This also meant that the inputs needed to be cut up and distributed among
the different processors and the output had to be reconstructed from the
resulting fragments.

Thus, SPMD was born, Single Program Multiple Data.

SPMD worked.

21

3 4

21

3 4

2

1

3

4

But it
isn’t

easy!!!

But it
isn’t

easy!!!

But...

As everyone knows there are very few problems like SETI@home where
each part can be computed independently.

For our problems of interest, the data for a single output piece (number 2)
has dependencies interwoven throughout the data.

So we set up message passing, which basically means that each instance of
the program finds data that it needs and data that it knows to transmit and
they call each other and exchange information.

This is “state of art” today in Scientific Computing. SPMD on Distributed
Memory, message passing systems.

Meanwhile, corporate computing
was growing in a different way

Input

Output

Program

browser

spreadsheet

editor

graphics

databasemultimedia

email client

Unicode

Input

Now, separately from Scientific Computing, Business computing really took
off in the last couple decades.

However, it grew in an orthogonal direction.

The input and outputs for programs (say a word processor) didn’t grow by a
dozen orders of magnitude, but the application used to construct these
documents did!

This created a whole new set of
problems complexity

browser

spreadsheet

editor

graphics

databasemultimedia

email client

Unicode

� Interoperability
across multiple
languages

� Interoperability
across multiple
platforms

� Incremental
evolution of large
legacy systems
(esp. w/ multiple
3rd party software)

This created a whole new set of problems.

These are the three that I want to concentrate on today. You will see them
again in this talk.

They are

Component Technology
addresses these problems

So this is how I draw component software.

The key word to remember about components:

Loose coupling

Let me explain what this drawing means

So what’s a component ???
Implementation :
No Direct Access

Interface Access :
Generated by Tools

Matching Connector :
Assigned by Framework
Hidden from User

The box is the developer’s software. It remains (essentially) unchanged.

This socket that is attached to it is an interrface. It is usually generated by
some tools.

The connector on the right is assigned to the component by the framework,
possibly at runtime.

1. Interoperability across
multiple languages

C

C++ F77 Java

Python

Language &
Platform

independent
interfaces

Automatically
generated

bindings to
working code

I told you that we’d discuss three problems in detail. Here’s the first.

So let me add the languages

And that’s it. There’s no problem. Each box may be another
language, but that’s an internal detail of the component.

The “wires” are language and platform independent, and the generated
interfaces to the actual code do all the translation between the wires and the
particular implementation language.

2. Interoperability Across Multiple
Platforms Imagine a company

migrates to a new
system, OS, etc.

What if the
source to

this one part
is lost???

Now a slightly harder problem.

Imagine....

What if...

(I’ve seen this happen to companies)

Transparent Distributed
Computing

internetinternet

These wires
are very,

very smart!

In components, the yellow block would still have to run on the old platform,
but the others can move over and communicate over the internet.

More importantly, this can occur without any changes inside any of the
boxes, a.k.a the implementation.

Just as the interfaces hide the implementation language from the wires...
they can hide the type of wires from implementation.

These wires can be complicated things and not just simple communication
paths.

3. Incremental Evolution With
Multiple 3rd party software

v 1.0

v 2.0 v 3.0

Okay, one last problem with incremental evolution and how industry
components handles this.

Let’s start by putting some version numbers on these components

Now suppose you find this bug...

v 1.0

v 2.0 v 3.0

Now imagine you find a bug on the orange component right there in the
middle.

Now your whole system is broken, because you need this fixed.

Good news: an upgrade available

v 1.0

v 2.0 v 3.0

Bad news: there’s a dependency

2.1

2.0

The good news is that there is an upgrade available

The bad news is that it depends on a new (and incompatible) version of the
teal component at the top.

Now you also have the red component which hasn’t yet upgraded to teal 2.0.

How many have run into these kinds of situations?

What can you do?

v 3.02.1

2.0

Great News:
Solvable with Components

With components, this will still work.

v 1.0

Great News:
Solvable with Components

2.1 v 3.0

2.0

The trick is (at least with COM) that new interfaces still hold references to the
older interfaces under the hood.

The component framework can detect the version mismatch and have the
component drill down to its older interface underneath.

Why Components for Scientific
Computing Complexity

� Interoperability
across multiple
languages

� Interoperability
across multiple
platforms

� Incremental
evolution of large
legacy systems
(esp. w/ multiple
3rd party software)

Sapphire

SAMRAI

Ardra
Scientific Viz

DataFoundry

Overture

linear solvers hypre
nonlinear solvers

ALPS

JEEP

So now let’s take a step back and ask...

Components seems effective in industry, but what has that to do with
scientific computing?

Well, if you look the way we’ve been adding more physics, more fidelity, and
more features into our codes lately, you’d see
1. its beginning to look like this
2. We’re suffering from the same problems.

The Model for Scientific
Component Programming

Science

Industry

?CCA

So here’s where are research begins.

We know how computing started

We know how science went to SPMD programming

And we know how industry went to component programming.

What happens when you merge the two???

The End
Next: Intro to Components

