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Outline

• What is a CCA Framework and what is 
Ccaffeine?

• How can I slip my own component into 
Ccaffeine?

• How do I run Ccaffeine?
• Live Demo – does it work?
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CCA What CCA compliant framework 
is expected to do …

• Exchange interfaces among components without one 
component needing to know more about the other 
than the interface itself.

Component 1 Component 2

CCAServices
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CCAServices
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registerUsesPort("A")1
addProvidesPort(         ,"A")

= getPort("A")
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Interactive Parallel Components: 
what Ccaffeine does

• Executable ccafe-client:
– PVM, MPI, or whatever is used for 

communication between clients.
– Muxer enforces “single process 

image” of SPMD parallel computing.

• HOWTO: 
http://www.cca-forum.org/ccafe/
– Build Ccaffeine
– Run Ccaffeine

http://www.cca-forum.org/ccafe/
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Ccaffeine comes in two other flavors*

and a GUI.

• Single process executable: 
ccafe-single
– really useful for debugging

• Batch executable: ccafe-batch
– when all you want to do is run it.

*flavor: same executable, different name and behavior.
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How to build Ccaffeine

• Have a look at 
http://www.cca-forum.org/ccafe
– Obtain the required packages

• Ccaffeine tar ball download
• gcc (2.95.3, 2.96, not 3.x)
• Java (>jdk1.2)
• BLAS, LAPACK (any recent)
• BOOST headers
• Babel (0.7.0 only)
• Ruby (any recent, if you have Linux, probably there now)
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How to build Ccaffeine (cont’d)

• Untar Ccaffeine-xxx.tgz in build dir
– 3 directories appear cca-spec-babel (the spec),

cca-spec-classic (old C++ spec), dccafe
• Run configure

– If confused type “configure –help”

(cd ./cca-spec-babel; configure --with-babel=/usr/local/babel \
--with-jdk12=/usr/local/java;make)

(cd ./cca-spec-classic;configure;make)

(cd ./dccafe; ./configure  --with-cca-babel=`pwd`/../cca-spec-babel \
--with-cca-classic=`pwd`/../cca-spec-classic \
--with-mpi=/usr/local/mpich --with-jdk12=/usr/local/java \
--with-lapack=/home/rob/cca/dccafe/../LAPACK/liblapack.a \
--with-blas=/home/rob/cca/dccafe/../LAPACK/libblas.a; make)
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Ccaffeine build (cont’d)

• The Ccaffeine make will take ~5-10 min.
• Look in:

http://www.cca-forum.org/ccafe/build-log.html
for a complete listing from Rob’s laptop.

If successful you should get:
=====================================================================

Testing the Ccaffeine build ...

didn't crash or hang up early ...  looks like it is working.

done with Ccaffeine tests.
=====================================================================
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How to run Ccaffeine:

• Ccaffeine interactive language: “benSpeak”
– used to configure batch and interactive sessions.
– Allows useful “defaults.”
– Allows the GUI to talk over a socket.
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Ccaffeine scripting language is for 
those who have grown tired of the GUI

• look in:
http://www.cca-forum.org/ccafe/ccafe-
man/Ccafe_Manual.html
for all the commands.

• The GUI is just a pretty front end that speaks this 
scripting language to the backend.

You can talk directly to Ccaffeine by typing:
prompt> ccafe-single
MPI_Init called in CmdLineClientMain.cxx
my rank: 0, my pid: 25989
... (output cruft deleted)
cca>help
(complete listing of commands and what they do)
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Quick run-through of the Ccaffeine 
scripting language

• scripting language does everything that the 
GUI does.

• Warning: there are two of files that Ccaffeine 
uses:
– “rc” and script files for building and running apps
– GUI “.bld” files that are state saved by the 

Ccaffiene GUI.

These are not the same and will give, sometimes 
spectacular, undefined behavior.
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Magic number and repository function: 
the top of the script

• Must tell the framework where the components are (“path”) 
and which ones you want loaded into the “pallet”.  

#!ccaffeine bootstrap file. 
# ------- don't change anything ABOVE this line.-------------
# where to find components:
path set /home/rob/cca/component
# load components into the “pallet”
repository get functions.PiFunction
repository get integrators.MonteCarloIntegrator
repository get integrators.MidPointIntegrator
repository get integrators.ParallelIntegrator
repository get randomgen.RandRandomGenerator
repository get tutorial.driver

• At this point no components are instantiated, but are simply 
known to the system.
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Now start instantiating the components 
that will form your application

• Use the “create” function to make an instance of a 
component and name it.
– first arg is the class name of the component and the second 

is the instance name you want it to have:

# Instantiate and name components that have been made 
# known to the framework

create randomgen.RandRandomGenerator rand 

# f(x) = 4.0/(1 + x^2)

create functions.PiFunction function
create tutorial.Driver driver
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Connect the components to form a 
complete application

• Connect takes 4 arguments, all of them are instance 
names of components or ports. In order they are:

1. Using component instance name (named in “create”).
2. Uses port instance name (name given to it by the component)
3. Providing component instance name.
4. Provides port instance name.

• Script from our example code:
# Connect uses and provides ports
connect integrator FunctionPort function FunctionPort
connect integrator RandomGeneratorPort rand RandomGeneratorPort
connect driver IntegratorPort integrator IntegratorPort
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Time to see if it works: the “go” 
command

• The “go” command takes a component 
instance and a port instance name as an 
argument
– only the named port on the named component 

are go()’ed:

# Good to go()
go driver GoPort

• At this point Ccaffeine gets completely out of 
the way.  
– So much so that it will not respond until (or 

if) your application returns from the 
invocation of the “go()” method.

– There is only one thread of control.
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CCA is working on a component 
delivery specification, until then 

Ccaffeine has some specific req’ts
• “.cca” file describes what the format of the 

component is: “Babel”, or old-style “Classic.”
• Component wrapper class 

– introduces to the framework one or more 
components 

– contained in the “.so” file with the component(s).
– will go away for Babel components. 
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Example “.cca” file: 
MonteCarloIntegrator in integrators.cca

• Ccaffeine-specific file specifying the name of 
the dynamic library and creation method for 
each component 

!date=Thu Aug 15 14:53:23 CDT 2002
!location=
!componentType=babel
libIntegrator-component-c++.so
create_MonteCarloIntegrator integrators.MonteCarloIntegrator

C wrapper function name Component name

Component type: “babel” or “classic” (C++)

File: integrator-component-c++/integrators.cca

“.so” Library
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Wrapper C functions

• auto-gen the wrapper C code file: 
– “genDL” scripts provided by Ccaffeine.
– genDLWrapperStrict to generate the “.cca” file.
– usage: genDLWrapper <component class name> 

• creates the appropriate symbols to be 
included in the “.so” file so that Ccaffeine can 
find and instantiate the component.

• In the case of Babel components this step is 
unnecessary and is soon to be removed.
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What you are able to do now that you 
couldn’t before …

• Run on parallel cluster or proprietary machine 
with CCA components that you didn’t write.
– Steve Jobs: “the best software is software I didn’t 

have to write” –not that he actually ever did.
• Develop incrementally & interactively in serial 

and parallel.
– Detach, go have lunch and reattach.


