
1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

Introduction to the Ccaffeine
Framework

2

CCA
Common Component Architecture

Outline

• What is a CCA Framework and what is
Ccaffeine?

• How can I slip my own component into
Ccaffeine?

• How do I run Ccaffeine?
• Live Demo – does it work?

2

3

CCA
Common Component Architecture

CCA What CCA compliant framework
is expected to do …

• Exchange interfaces among components without one
component needing to know more about the other
than the interface itself.

Component 1 Component 2

CCAServices
2

CCAServices

4

registerUsesPort("A")1
addProvidesPort(,"A")

= getPort("A")

3

Port

Port

Port

Port

4

CCA
Common Component Architecture

Interactive Parallel Components:
what Ccaffeine does

• Executable ccafe-client:
– PVM, MPI, or whatever is used for

communication between clients.
– Muxer enforces “single process

image” of SPMD parallel computing.

• HOWTO:
http://www.cca-forum.org/ccafe/
– Build Ccaffeine
– Run Ccaffeine

http://www.cca-forum.org/ccafe/

3

5

CCA
Common Component Architecture

Ccaffeine comes in two other flavors*

and a GUI.

• Single process executable:
ccafe-single
– really useful for debugging

• Batch executable: ccafe-batch
– when all you want to do is run it.

*flavor: same executable, different name and behavior.

6

CCA
Common Component Architecture

How to build Ccaffeine

• Have a look at
http://www.cca-forum.org/ccafe
– Obtain the required packages

• Ccaffeine tar ball download
• gcc (2.95.3, 2.96, not 3.x)
• Java (>jdk1.2)
• BLAS, LAPACK (any recent)
• BOOST headers
• Babel (0.7.0 only)
• Ruby (any recent, if you have Linux, probably there now)

4

7

CCA
Common Component Architecture

How to build Ccaffeine (cont’d)

• Untar Ccaffeine-xxx.tgz in build dir
– 3 directories appear cca-spec-babel (the spec),

cca-spec-classic (old C++ spec), dccafe
• Run configure

– If confused type “configure –help”

(cd ./cca-spec-babel; configure --with-babel=/usr/local/babel \
--with-jdk12=/usr/local/java;make)

(cd ./cca-spec-classic;configure;make)

(cd ./dccafe; ./configure --with-cca-babel=`pwd`/../cca-spec-babel \
--with-cca-classic=`pwd`/../cca-spec-classic \
--with-mpi=/usr/local/mpich --with-jdk12=/usr/local/java \
--with-lapack=/home/rob/cca/dccafe/../LAPACK/liblapack.a \
--with-blas=/home/rob/cca/dccafe/../LAPACK/libblas.a; make)

8

CCA
Common Component Architecture

Ccaffeine build (cont’d)

• The Ccaffeine make will take ~5-10 min.
• Look in:

http://www.cca-forum.org/ccafe/build-log.html
for a complete listing from Rob’s laptop.

If successful you should get:
===

Testing the Ccaffeine build ...

didn't crash or hang up early ... looks like it is working.

done with Ccaffeine tests.
===

5

9

CCA
Common Component Architecture

How to run Ccaffeine:

• Ccaffeine interactive language: “benSpeak”
– used to configure batch and interactive sessions.
– Allows useful “defaults.”
– Allows the GUI to talk over a socket.

10

CCA
Common Component Architecture

Ccaffeine scripting language is for
those who have grown tired of the GUI

• look in:
http://www.cca-forum.org/ccafe/ccafe-
man/Ccafe_Manual.html
for all the commands.

• The GUI is just a pretty front end that speaks this
scripting language to the backend.

You can talk directly to Ccaffeine by typing:
prompt> ccafe-single
MPI_Init called in CmdLineClientMain.cxx
my rank: 0, my pid: 25989
... (output cruft deleted)
cca>help
(complete listing of commands and what they do)

6

11

CCA
Common Component Architecture

Quick run-through of the Ccaffeine
scripting language

• scripting language does everything that the
GUI does.

• Warning: there are two of files that Ccaffeine
uses:
– “rc” and script files for building and running apps
– GUI “.bld” files that are state saved by the

Ccaffiene GUI.

These are not the same and will give, sometimes
spectacular, undefined behavior.

12

CCA
Common Component Architecture

Magic number and repository function:
the top of the script

• Must tell the framework where the components are (“path”)
and which ones you want loaded into the “pallet”.

#!ccaffeine bootstrap file.
------- don't change anything ABOVE this line.-------------
where to find components:
path set /home/rob/cca/component
load components into the “pallet”
repository get functions.PiFunction
repository get integrators.MonteCarloIntegrator
repository get integrators.MidPointIntegrator
repository get integrators.ParallelIntegrator
repository get randomgen.RandRandomGenerator
repository get tutorial.driver

• At this point no components are instantiated, but are simply
known to the system.

7

13

CCA
Common Component Architecture

Now start instantiating the components
that will form your application

• Use the “create” function to make an instance of a
component and name it.
– first arg is the class name of the component and the second

is the instance name you want it to have:

Instantiate and name components that have been made
known to the framework

create randomgen.RandRandomGenerator rand

f(x) = 4.0/(1 + x^2)

create functions.PiFunction function
create tutorial.Driver driver

14

CCA
Common Component Architecture

Connect the components to form a
complete application

• Connect takes 4 arguments, all of them are instance
names of components or ports. In order they are:

1. Using component instance name (named in “create”).
2. Uses port instance name (name given to it by the component)
3. Providing component instance name.
4. Provides port instance name.

• Script from our example code:
Connect uses and provides ports
connect integrator FunctionPort function FunctionPort
connect integrator RandomGeneratorPort rand RandomGeneratorPort
connect driver IntegratorPort integrator IntegratorPort

8

15

CCA
Common Component Architecture

Time to see if it works: the “go”
command

• The “go” command takes a component
instance and a port instance name as an
argument
– only the named port on the named component

are go()’ed:

Good to go()
go driver GoPort

• At this point Ccaffeine gets completely out of
the way.
– So much so that it will not respond until (or

if) your application returns from the
invocation of the “go()” method.

– There is only one thread of control.

16

CCA
Common Component Architecture

CCA is working on a component
delivery specification, until then

Ccaffeine has some specific req’ts
• “.cca” file describes what the format of the

component is: “Babel”, or old-style “Classic.”
• Component wrapper class

– introduces to the framework one or more
components

– contained in the “.so” file with the component(s).
– will go away for Babel components.

9

17

CCA
Common Component Architecture

Example “.cca” file:
MonteCarloIntegrator in integrators.cca

• Ccaffeine-specific file specifying the name of
the dynamic library and creation method for
each component

!date=Thu Aug 15 14:53:23 CDT 2002
!location=
!componentType=babel
libIntegrator-component-c++.so
create_MonteCarloIntegrator integrators.MonteCarloIntegrator

C wrapper function name Component name

Component type: “babel” or “classic” (C++)

File: integrator-component-c++/integrators.cca

“.so” Library

18

CCA
Common Component Architecture

Wrapper C functions

• auto-gen the wrapper C code file:
– “genDL” scripts provided by Ccaffeine.
– genDLWrapperStrict to generate the “.cca” file.
– usage: genDLWrapper <component class name>

• creates the appropriate symbols to be
included in the “.so” file so that Ccaffeine can
find and instantiate the component.

• In the case of Babel components this step is
unnecessary and is soon to be removed.

10

19

CCA
Common Component Architecture

What you are able to do now that you
couldn’t before …

• Run on parallel cluster or proprietary machine
with CCA components that you didn’t write.
– Steve Jobs: “the best software is software I didn’t

have to write” –not that he actually ever did.
• Develop incrementally & interactively in serial

and parallel.
– Detach, go have lunch and reattach.

