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History of Babel & CCA

XCAT (Indiana)
SciRUN (Utah)
CCAFFEINE (SNL)

Babel (LLNL)
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What I mean by 
“Language Interoperability”

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(f77)

Scripting Driver
(Python)

Visualization System
(Java)

Callback Handlers
(Python)

Callback Handlers
(Python)
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One reason why mixing
languages is hard Native

cfortran.h

SWIG

JNI

Siloon

Chasm

Platform 
Dependent

C

C++

f77

f90

Python

Java
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Babel makes all supported 
languages peers

C

C++

f77

f90

Python

Java
Once a library has been 
“Babelized” it is equally

accessable from all 
supported languages

This is not
an LCD

Solution!
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Babel Module’s Outline

• Introduction
• Babel Basics

– What Babel does and how
– How to use Babel
– Concepts needed for future modules

• Babel & CCA
– Decaf Framework
– Building language independent CCA components
– Demo
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Babel’s Mechanism for Mixing 
Languages

• Code Generator • Runtime Library

SIDL 
interface

description

Babel
Compiler

C++

F77

F90

Python

C

XML

Matlab?

Java

Babel
Runtime

Application
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greetings.sidl: A Sample SIDL File

version greetings 1.0; 
package greetings { 

interface Hello { 
void setName( in string name );
string sayIt ( );

}
class English implements-all Hello {  }

}

version greetings 1.0; 
package greetings { 

interface Hello { 
void setName( in string name );
string sayIt ( );

}
class English implements-all Hello {  }

}
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Library Developer Does This...

• `babel --server=C++ greetings.sidl`
• Add implementation details
• Compile & Link into Library/DLL

SIDL 
interface

description

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so
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Adding the Implementation

string

greetings::English_impl::sayIt() 

throw () 

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

string

greetings::English_impl::sayIt() 

throw () 

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

namespace greetings { 
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

namespace greetings { 
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)
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Library User Does This...

• `babel --client=F77 greetings.sidl`
• Compile & Link generated Code & Runtime
• Place DLL in suitable location

SIDL 
interface

description

Babel
Compiler IOR 

Headers

F77 Stubs

libgreetings.so

Babel
Runtime

Application
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SIDL 101: Classes & Interfaces

• SIDL has 3 user-defined objects
– Interfaces – APIs only, No Implementation
– Abstract Classes – 1+ methods unimplemented
– Concrete Classes – All methods are implemented

• Inheritance (like Java/Objective C)
– Interfaces may extend Interfaces
– Classes extend no more than one Class
– Classes can implement multiple Interfaces

• Only Concrete Classes can be Instantiated
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SIDL 101:  Methods and Arguments

• Methods are public virtual by default
– static methods are not associated with an object 

instance
– final methods can not be overridden

• Arguments have 3 parts
– Mode: can be in, out, or inout (like CORBA)
– Type: one of (bool, char, int, long, float, double,

fcomplex, dcomplex, array<Type,Dimension>, enum, 
interface, class )

– Name:
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Babel Module’s Outline

• Introduction
• Babel Basics

– What Babel does and how
– How to use Babel
– Concepts needed for future modules

• Babel & CCA
– History & Current directions
– Decaf Framework
– Building language independent CCA components
– Demo
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Decaf Details & Disclaimers

• Babel is a hardened tool
• Decaf is an example, not a product

– Demonstrate Babel’s readiness for “real” 
CCA frameworks

– Maintained as a stopgap 
– Distributed in “examples” subdirectory of 

Babel
• Decaf has no GUI
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The CCA Spec is a SIDL File

version gov.cca 0.6; 
package gov { 
package cca { 

interface Port { }
interface Component { 

void setServices( in Services svcs );
}
interface Services { 

Port getPort( in string portName );
registerUsesPort( /*etc*/ );
addProvidesPort( /*etc*/ );

/*etc*/

version gov.cca 0.6; 
package gov { 
package cca { 

interface Port { }
interface Component { 

void setServices( in Services svcs );
}
interface Services { 

Port getPort( in string portName );
registerUsesPort( /*etc*/ );
addProvidesPort( /*etc*/ );

/*etc*/
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The CCA from Babel’s POV
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How I Implemented Decaf

• wrote decaf.sidl file
• `babel --server=C++ cca.sidl decaf.sidl`
• Add implementation details
• Compile & Link into Library/DLL

cca.sidl
&

decaf.sidl

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libdecaf.so
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An Extra Babel Tip

• “precompile” SIDL into XML
• store XML in a directory
• Use Babel’s –R option to 

specify search directories 

cca.sidl Babel
Compiler XML

Type
Repository

decaf.sidl Babel
Compiler Skels

Impls

IORs

Stubs
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How to Use CCA Components and 
Decaf

• Decaf doesn’t provide a GUI
• Simply program by explicitly 

– creating components
– connecting ports
– envoking the “goPort”

• Use Babel as needed to generate bindings in 
your language of choice

• Make sure Babel Runtime can locate DLLs 
for Decaf and any CCA components.



11

BabelCCA
Common Component Architecture

21

To Use the Decaf Framework

• `babel --client=Java –Rrepo function.sidl`
• Compile & Link generated Code & Runtime
• Place DLLs in suitable location

SIDL files Babel
Compiler IOR 

Headers

Java Stubs

Babel
Runtime

Application

Repo
(XML)

component1.so

libdecaf.so
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Example: A Driver in Python

import decaf.Framework
import gov.cca.ports.GoPort
if __name__ == ’__main__’:
fwk = decaf.Framework.Framework()
server = fwk.createInstance( ”ServerName”,  

”HelloServer.Component”, 0 )
client = fwk.createInstance( ”ClientName”, 

”HelloClient.Component”, 0 )
fwk.connect(server,”HelloPort”, 

client,”HelloPort” )
port = fwk.lookupPort(client,”GoPort”)
go = gov.cca.ports.GoPort.GoPort( port )
go.go()

import decaf.Framework
import gov.cca.ports.GoPort
if __name__ == ’__main__’:
fwk = decaf.Framework.Framework()
server = fwk.createInstance( ”ServerName”,  

”HelloServer.Component”, 0 )
client = fwk.createInstance( ”ClientName”, 

”HelloClient.Component”, 0 )
fwk.connect(server,”HelloPort”, 

client,”HelloPort” )
port = fwk.lookupPort(client,”GoPort”)
go = gov.cca.ports.GoPort.GoPort( port )
go.go()
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How to Write and Use
Babelized CCA Components

• Define “Ports”  in SIDL
• Define “Components” that implement those 

Ports, again in SIDL
• Use Babel to generate the glue-code
• Write the guts of your component(s)
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How to Write A
Babelized CCA Component (1/3)

• Define “Ports” in SIDL
– CCA Port = 

• a SIDL Interface
• extends gov.cca.Port

version functions 1.0;
package functions {

interface Function extends gov.cca.Port { 
double evaluate( in double x );

}
}

version functions 1.0;
package functions {

interface Function extends gov.cca.Port { 
double evaluate( in double x );

}
}
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How to Write A
Babelized CCA Component (2/3)

• Define “Components” that implement those Ports
– CCA Component = 

• SIDL Class
• implements gov.cca.Component (& any provided ports)

class LinearFunction implements functions.Function,
gov.cca.Component { 

double evaluate( in double x );
void setServices( in cca.Services svcs );

}

class LinearFunction implements functions.Function,
gov.cca.Component { 

double evaluate( in double x );
void setServices( in cca.Services svcs );

}

class LinearFunction implements-all 
functions.Function, gov.cca.Component { } 

class LinearFunction implements-all 
functions.Function, gov.cca.Component { } 
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How to Write A
Babelized CCA Component (3/3)

• Use Babel to generate the glue code
– `babel --server=C –Rrepo function.sidl`

• Add implementation Details

SIDL 
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so
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What’s the Hardest Part 
of this Process?

• Properly building dynamically loadable .so 
files.

SIDL 
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so
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Review of “Linkage”

• Static Linked Libraries  (*.a)
– Symbols are hardcoded
– Resolved at link-time of application

• Shared Object Libraries (*.so)
– Symbols are hardcoded
– Symbols resolved at load time ( before main() )

• Dynamically Loaded Libraries (*.so) (*.dll in Win32)
– Symbols are determined at run time (by app code)
– Symbols resolved at run time ( void* dlopen( char* ) )
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What goes into a DLL?

libfoo.so
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What goes into a DLL?

1. The Type’s Impl
• Where all the guts of 

the component lives. Impl

libfoo.so
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What goes into a DLL?

2. The Type’s IOR
• IORs (Intermediate 

Object Representation)
• Always implemented in 

ANSI C
• Babel Object Model is 

implemented in IOR
• Dynamic Loading is 

based on symbols in 
IOR

Impl

IOR

libfoo.so
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What goes into a DLL?

3. The Type’s Skel 
• IORs depend on the

Skels
• Skels translate from 

ANSI C to Impl
language

• Skels call Impls

Impl

SkelIOR

libfoo.so
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What goes into a DLL?

4. The Type’s Stub
• Impl depends on Stubs

– class needs to call 
methods on itself

– Like “this” pointer in C++
– self in Python

• Stubs translate from 
application Language to 
ANSI C

Impl

Skel

Stub

IOR

libfoo.so

BabelCCA
Common Component Architecture

34

What goes into a DLL?

5. Stubs for all the other 
types that are 

• passed as arguments, 
• return values, or 
• manipulated internally 

in the Type’s Impl

Impl

Skel

Stub

IOR

StubStubStub

libfoo.so
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Q:  Why not keep each Stub 
exclusively with its own Impl?

Impl

Skel

Stub

IOR

libfoo.so

Impl

Skel

Stub

IOR

libbar.so

A:  Works only if bar_Impl and foo_Impl are implemented in the same 
language
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IORs provide a language-independent 
binary interface

Impl

Skel

Stub

IOR

StubStubStub

libfoo.so

Impl

Skel

Stub

IOR

StubStubStub

libbar.so
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What you’ll see with the upcoming 
“Hello World” demo

Impl

Skel

Stub

IOR

StubStubCCA
Stubs

libdecaf.so

Impl

Skel

Stub

IOR

libserver.so

Port
Stubs

StubStubCCA
Stubs

Impl

Skel

Stub

IOR

libclient.so

Port
Stubs

StubStubCCA
Stubs

C++ F77 C

And a “main” in any of
pyth

on
F77 Ja

va
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Contact Info
• Project:            http://www.llnl.gov/CASC/components

– Babel: language interoperability tool
– Alexandria: component repository
– Quorum: web-based parliamentary system
– Gauntlet (coming soon): testing framework

• Bug Tracking: http://www-casc.llnl.gov/bugs
• Project Team Email: components@llnl.gov
• Mailing Lists: majordomo@lists.llnl.gov

subscribe babel-users [email address]
subscribe babel-announce [email address]


