
1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Language Interoperable
CCA Components via

BabelCCA
Common Component Architecture

2

History of Babel & CCA

XCAT (Indiana)
SciRUN (Utah)
CCAFFEINE (SNL)

Babel (LLNL)

Tutorial

Fr
am

ew
or
ks

Language

Interoperability

Applications
Data

MxN

Decaf

Babelized
Frameworks

CCAFFEINE

t

2

BabelCCA
Common Component Architecture

3

What I mean by
“Language Interoperability”

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(f77)

Scripting Driver
(Python)

Visualization System
(Java)

Callback Handlers
(Python)

Callback Handlers
(Python)

BabelCCA
Common Component Architecture

4

One reason why mixing
languages is hard Native

cfortran.h

SWIG

JNI

Siloon

Chasm

Platform
Dependent

C

C++

f77

f90

Python

Java

3

BabelCCA
Common Component Architecture

5

Babel makes all supported
languages peers

C

C++

f77

f90

Python

Java
Once a library has been
“Babelized” it is equally

accessable from all
supported languages

This is not
an LCD

Solution!

BabelCCA
Common Component Architecture

6

Babel Module’s Outline

• Introduction
• Babel Basics

– What Babel does and how
– How to use Babel
– Concepts needed for future modules

• Babel & CCA
– Decaf Framework
– Building language independent CCA components
– Demo

4

BabelCCA
Common Component Architecture

7

Babel’s Mechanism for Mixing
Languages

• Code Generator • Runtime Library

SIDL
interface

description

Babel
Compiler

C++

F77

F90

Python

C

XML

Matlab?

Java

Babel
Runtime

Application

BabelCCA
Common Component Architecture

8

greetings.sidl: A Sample SIDL File

version greetings 1.0;
package greetings {

interface Hello {
void setName(in string name);
string sayIt ();

}
class English implements-all Hello { }

}

version greetings 1.0;
package greetings {

interface Hello {
void setName(in string name);
string sayIt ();

}
class English implements-all Hello { }

}

5

BabelCCA
Common Component Architecture

9

Library Developer Does This...

• `babel --server=C++ greetings.sidl`
• Add implementation details
• Compile & Link into Library/DLL

SIDL
interface

description

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so

BabelCCA
Common Component Architecture

10

Adding the Implementation

string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

6

BabelCCA
Common Component Architecture

11

Library User Does This...

• `babel --client=F77 greetings.sidl`
• Compile & Link generated Code & Runtime
• Place DLL in suitable location

SIDL
interface

description

Babel
Compiler IOR

Headers

F77 Stubs

libgreetings.so

Babel
Runtime

Application

BabelCCA
Common Component Architecture

12

SIDL 101: Classes & Interfaces

• SIDL has 3 user-defined objects
– Interfaces – APIs only, No Implementation
– Abstract Classes – 1+ methods unimplemented
– Concrete Classes – All methods are implemented

• Inheritance (like Java/Objective C)
– Interfaces may extend Interfaces
– Classes extend no more than one Class
– Classes can implement multiple Interfaces

• Only Concrete Classes can be Instantiated

7

BabelCCA
Common Component Architecture

13

SIDL 101: Methods and Arguments

• Methods are public virtual by default
– static methods are not associated with an object

instance
– final methods can not be overridden

• Arguments have 3 parts
– Mode: can be in, out, or inout (like CORBA)
– Type: one of (bool, char, int, long, float, double,

fcomplex, dcomplex, array<Type,Dimension>, enum,
interface, class)

– Name:

BabelCCA
Common Component Architecture

14

Babel Module’s Outline

• Introduction
• Babel Basics

– What Babel does and how
– How to use Babel
– Concepts needed for future modules

• Babel & CCA
– History & Current directions
– Decaf Framework
– Building language independent CCA components
– Demo

8

BabelCCA
Common Component Architecture

15

Decaf Details & Disclaimers

• Babel is a hardened tool
• Decaf is an example, not a product

– Demonstrate Babel’s readiness for “real”
CCA frameworks

– Maintained as a stopgap
– Distributed in “examples” subdirectory of

Babel
• Decaf has no GUI

BabelCCA
Common Component Architecture

16

The CCA Spec is a SIDL File

version gov.cca 0.6;
package gov {
package cca {

interface Port { }
interface Component {

void setServices(in Services svcs);
}
interface Services {

Port getPort(in string portName);
registerUsesPort(/*etc*/);
addProvidesPort(/*etc*/);

/*etc*/

version gov.cca 0.6;
package gov {
package cca {

interface Port { }
interface Component {

void setServices(in Services svcs);
}
interface Services {

Port getPort(in string portName);
registerUsesPort(/*etc*/);
addProvidesPort(/*etc*/);

/*etc*/

9

BabelCCA
Common Component Architecture

17

The CCA from Babel’s POV

BabelCCA
Common Component Architecture

18

How I Implemented Decaf

• wrote decaf.sidl file
• `babel --server=C++ cca.sidl decaf.sidl`
• Add implementation details
• Compile & Link into Library/DLL

cca.sidl
&

decaf.sidl

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libdecaf.so

10

BabelCCA
Common Component Architecture

19

An Extra Babel Tip

• “precompile” SIDL into XML
• store XML in a directory
• Use Babel’s –R option to

specify search directories

cca.sidl Babel
Compiler XML

Type
Repository

decaf.sidl Babel
Compiler Skels

Impls

IORs

Stubs

BabelCCA
Common Component Architecture

20

How to Use CCA Components and
Decaf

• Decaf doesn’t provide a GUI
• Simply program by explicitly

– creating components
– connecting ports
– envoking the “goPort”

• Use Babel as needed to generate bindings in
your language of choice

• Make sure Babel Runtime can locate DLLs
for Decaf and any CCA components.

11

BabelCCA
Common Component Architecture

21

To Use the Decaf Framework

• `babel --client=Java –Rrepo function.sidl`
• Compile & Link generated Code & Runtime
• Place DLLs in suitable location

SIDL files Babel
Compiler IOR

Headers

Java Stubs

Babel
Runtime

Application

Repo
(XML)

component1.so

libdecaf.so

BabelCCA
Common Component Architecture

22

Example: A Driver in Python

import decaf.Framework
import gov.cca.ports.GoPort
if __name__ == ’__main__’:
fwk = decaf.Framework.Framework()
server = fwk.createInstance(”ServerName”,

”HelloServer.Component”, 0)
client = fwk.createInstance(”ClientName”,

”HelloClient.Component”, 0)
fwk.connect(server,”HelloPort”,

client,”HelloPort”)
port = fwk.lookupPort(client,”GoPort”)
go = gov.cca.ports.GoPort.GoPort(port)
go.go()

import decaf.Framework
import gov.cca.ports.GoPort
if __name__ == ’__main__’:
fwk = decaf.Framework.Framework()
server = fwk.createInstance(”ServerName”,

”HelloServer.Component”, 0)
client = fwk.createInstance(”ClientName”,

”HelloClient.Component”, 0)
fwk.connect(server,”HelloPort”,

client,”HelloPort”)
port = fwk.lookupPort(client,”GoPort”)
go = gov.cca.ports.GoPort.GoPort(port)
go.go()

12

BabelCCA
Common Component Architecture

23

How to Write and Use
Babelized CCA Components

• Define “Ports” in SIDL
• Define “Components” that implement those

Ports, again in SIDL
• Use Babel to generate the glue-code
• Write the guts of your component(s)

BabelCCA
Common Component Architecture

24

How to Write A
Babelized CCA Component (1/3)

• Define “Ports” in SIDL
– CCA Port =

• a SIDL Interface
• extends gov.cca.Port

version functions 1.0;
package functions {

interface Function extends gov.cca.Port {
double evaluate(in double x);

}
}

version functions 1.0;
package functions {

interface Function extends gov.cca.Port {
double evaluate(in double x);

}
}

13

BabelCCA
Common Component Architecture

25

How to Write A
Babelized CCA Component (2/3)

• Define “Components” that implement those Ports
– CCA Component =

• SIDL Class
• implements gov.cca.Component (& any provided ports)

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

BabelCCA
Common Component Architecture

26

How to Write A
Babelized CCA Component (3/3)

• Use Babel to generate the glue code
– `babel --server=C –Rrepo function.sidl`

• Add implementation Details

SIDL
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

14

BabelCCA
Common Component Architecture

27

What’s the Hardest Part
of this Process?

• Properly building dynamically loadable .so
files.

SIDL
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

BabelCCA
Common Component Architecture

28

Review of “Linkage”

• Static Linked Libraries (*.a)
– Symbols are hardcoded
– Resolved at link-time of application

• Shared Object Libraries (*.so)
– Symbols are hardcoded
– Symbols resolved at load time (before main())

• Dynamically Loaded Libraries (*.so) (*.dll in Win32)
– Symbols are determined at run time (by app code)
– Symbols resolved at run time (void* dlopen(char*))

15

BabelCCA
Common Component Architecture

29

What goes into a DLL?

libfoo.so

BabelCCA
Common Component Architecture

30

What goes into a DLL?

1. The Type’s Impl
• Where all the guts of

the component lives. Impl

libfoo.so

16

BabelCCA
Common Component Architecture

31

What goes into a DLL?

2. The Type’s IOR
• IORs (Intermediate

Object Representation)
• Always implemented in

ANSI C
• Babel Object Model is

implemented in IOR
• Dynamic Loading is

based on symbols in
IOR

Impl

IOR

libfoo.so

BabelCCA
Common Component Architecture

32

What goes into a DLL?

3. The Type’s Skel
• IORs depend on the

Skels
• Skels translate from

ANSI C to Impl
language

• Skels call Impls

Impl

SkelIOR

libfoo.so

17

BabelCCA
Common Component Architecture

33

What goes into a DLL?

4. The Type’s Stub
• Impl depends on Stubs

– class needs to call
methods on itself

– Like “this” pointer in C++
– self in Python

• Stubs translate from
application Language to
ANSI C

Impl

Skel

Stub

IOR

libfoo.so

BabelCCA
Common Component Architecture

34

What goes into a DLL?

5. Stubs for all the other
types that are

• passed as arguments,
• return values, or
• manipulated internally

in the Type’s Impl

Impl

Skel

Stub

IOR

StubStubStub

libfoo.so

18

BabelCCA
Common Component Architecture

35

Q: Why not keep each Stub
exclusively with its own Impl?

Impl

Skel

Stub

IOR

libfoo.so

Impl

Skel

Stub

IOR

libbar.so

A: Works only if bar_Impl and foo_Impl are implemented in the same
language

BabelCCA
Common Component Architecture

36

IORs provide a language-independent
binary interface

Impl

Skel

Stub

IOR

StubStubStub

libfoo.so

Impl

Skel

Stub

IOR

StubStubStub

libbar.so

19

BabelCCA
Common Component Architecture

37

What you’ll see with the upcoming
“Hello World” demo

Impl

Skel

Stub

IOR

StubStubCCA
Stubs

libdecaf.so

Impl

Skel

Stub

IOR

libserver.so

Port
Stubs

StubStubCCA
Stubs

Impl

Skel

Stub

IOR

libclient.so

Port
Stubs

StubStubCCA
Stubs

C++ F77 C

And a “main” in any of
pyth

on
F77 Ja

va

BabelCCA
Common Component Architecture

38

Contact Info
• Project: http://www.llnl.gov/CASC/components

– Babel: language interoperability tool
– Alexandria: component repository
– Quorum: web-based parliamentary system
– Gauntlet (coming soon): testing framework

• Bug Tracking: http://www-casc.llnl.gov/bugs
• Project Team Email: components@llnl.gov
• Mailing Lists: majordomo@lists.llnl.gov

subscribe babel-users [email address]
subscribe babel-announce [email address]

