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Modern Scientific Software Development
• Terascale computing will enable high-fidelity calculations based on 

multiple coupled physical processes and multiple physical scales
– Adaptive algorithms and high order discretization strategies
– Composite or hybrid solution strategies
– Sophisticated numerical tools

Discretization

Algebraic Solvers

Data Redistribution

Mesh

Data Reduction

Physics Modules

Optimization

Derivative Computation

Collaboration

Diagnostics

Steering

Visualization

Adaptive Solution

Time Evolution
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Overview

• Using components in high performance simulation 
codes
– Examples of increasing complexity
– Performance

• Single processor
• Scalability

• Developing components for high performance 
simulation codes
– Strategies for thinking about your own application
– Developing interoperable and interchangeable components
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Our Starting Point

∇2ϕ (x,y) = 0 ∈ [0,1] x [0,1]
ϕ(0,y)=0     ϕ(1,y)=sin (2πy)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization
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Numerical Solution of Example 1

• Physics:  Poisson’s equation
• Grid:  Unstructured triangular mesh 
• Discretization:  Finite element method
• Algebraic Solvers: PETSc (Portable 

Extensible Toolkit for Scientific Computation)
• Visualization:  VTK tool
• Original Language: C
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Creating Components:  Step 1
• Separate the application code into well-defined 

pieces that encapsulate functionalities
– Decouple code along numerical functionality

• Mesh, Discretization, Solver, Visualization
• Physics is kept separate

– Determine what questions each component can ask of and 
answer for other components (this determines the ports)

• Mesh provides geometry and topology (needed by 
discretization and visualization)

• Mesh allows user defined data to be attached to its entities 
(needed by physics and discretization)

• Mesh does not provide access to its data structures
– If this is not part of the original code design, this is by far the 

hardest, most time consuming aspect of componentization
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Creating the Components:  Step 2
• Writing C++ Components

– Create an abstract base class for each port
– Create C++ objects that inherit from the abstract base port 

class and the CCA component class
– Wrap the existing code as a C++ object
– Implement the setServices method

• This process was significantly less time consuming 
(with an expert present) than the decoupling process
– Lessons learned

• Definitely look at an existing, working example for the targeted
framework

• Experts are very handy people to have around ;-)
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The Componentized Example

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information
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The Componentized Example

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Mesh Component
– Provides geometry, topology, and 

boundary  information
– Provides the ability to attach user 

defined data as tags to mesh 
entities

– Is used by the driver, 
discretization and visualization 
components

• The Mesh Component
– Provides geometry, topology, and 

boundary  information
– Provides the ability to attach user 

defined data as tags to mesh 
entities

– Is used by the driver, 
discretization and visualization 
components
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The Componentized Example

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, laplacian, scalar terms)

– Driver determines which terms are 
included and their coefficients

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition matrix manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, laplacian, scalar terms)

– Driver determines which terms are 
included and their coefficients

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition matrix manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)
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The Componentized Example

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, laplacian, scalar terms)

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, laplacian, scalar terms)

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

• The Solver Component
– Provides access to vector and 

matrix operations (e.g., create, 
destroy, get, set)

– Provides a “solve” functionality for 
a linear operator

• The Solver Component
– Provides access to vector and 

matrix operations (e.g., create, 
destroy, get, set)

– Provides a “solve” functionality for 
a linear operator
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The Componentized Example

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, laplacian, scalar terms)

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, laplacian, scalar terms)

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

• The Solver Component
– Provides access to vector and 

matrix operations (e.g., create, 
destroy, get, set)

– Provides a “solve” functionality for 
a linear operator

• The Solver Component
– Provides access to vector and 

matrix operations (e.g., create, 
destroy, get, set)

– Provides a “solve” functionality for 
a linear operator

• The Visualization Component
– Uses the mesh component to print 

a vtk file of ϕ on the unstructured 
triangular mesh

– Assumes user data is attached to 
mesh vertex entities

• The Visualization Component
– Uses the mesh component to print 

a vtk file of ϕ on the unstructured 
triangular mesh

– Assumes user data is attached to 
mesh vertex entities
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The next step… time dependence
δϕ/δt = ∇2ϕ (x,y,t) ∈ [0,1] x [0,1]

ϕ(0,y,t)=0     ϕ(1,y,t)=.5sin(2πy)cos(t/2)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0
ϕ(x,y,0)=sin(.5πx) sin (2πy)

Time Evolution

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Data RedistributionDistributed Arrays
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Some things change…
• Requires a time integration component

– Based on the LSODE library (LLNL)
– Component implementation developed by Ben Allan (SNL)

• Uses a new visualization component
– Based on AVS
– Requires an MxN data redistribution component
– Developed by Jim Kohl (ORNL)

• The MxN redistribution component requires a Distributed Array 
component
– Similar to HPF arrays
– Developed by David Bernholdt (ORNL)

• The driver component changes to accommodate the new 
physics
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… and some things stay the same

• The mesh component doesn’t change
• The discretization component doesn’t change
• The solver component doesn’t change

– What we use from the solver component changes
– Only vectors are needed
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The CCA wiring diagram

Reused
Integration
Visualization
Driver/Physics
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What did this exercise teach us?

• It was easy to incorporate the functionalities of 
components developed at other labs and institutions 
given a well-defined interface and header file.
– In fact, some components (one uses and one provides) were 

developed simultaneously across the country from each 
other after the definition of a header file.

– Amazingly enough, they usually “just worked” when linked 
together (and debugged individually).

• In this case, the complexity of the component-based 
approach was higher than the original code 
complexity.
– Partially due to the simplicity of this example
– Partially due to the limitations of the some of the current 

implementations of components
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One more layer of complexity… AMR

The same physics but use a block structured 
adaptive mesh

Time Evolution

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Data RedistributionDistributed Arrays

Adaptive Solution

Discretization
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Adaptive Mesh Refinement

• Used to accurately capture a wide spectrum of 
length scales

• Many different techniques
– We use structured axis-aligned patches
– Provided by the GrACE library

• Start with a uniform coarse mesh
– Identify regions needing refinement
– Collate into rectangular patches
– Impose finer mesh in patches
– Recurse and obtain a mesh hierarchy.
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Some things change…

• The mesh component changes
– Block structured AMR based on GRACE

• The discretization component changes
– Finite difference on patches
– BC handled differently

• The driver component changes
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… and some things stay the same

• The integration component stays the same
• The solver component stays the same
• The data redistribution component stays the 

same
• The distributed array component stays the 

same
• The visualization component stays the same
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The component implementation

Reused
Physics
AMR Mesh
Driver
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Beyond the heat equation…

• Flame Approximation
– H2-Air mixture; ignition via 3 hot-spots
– 9-species, 19 reactions, stiff chemistry

• Governing equation

• Domain
– 1cm X 1cm domain
– 100x100 coarse mesh
– finest mesh = 12.5 micron.

• Timescales 
– O(10ns) to O(10 microseconds)

ii
i wY
t
Y
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∂
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Numerical Solution

• Adaptive Mesh Refinement: GrACE
• Stiff integrator: CVODE (LLNL)
• Diffusive integrator: 2nd Order Runge Kutta
• Chemical Rates: legacy f77 code (SNL)
• Diffusion Coefficients: legacy f77 code (SNL) 
• New code less than 10%
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The CCA Wiring Diagram

Reused
Slow Time Scale Integration
Fast Time Scale Integration
Driver/Physics
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Evolution of the Solution

Temperature

OH Profile
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The need for AMR

• H2O2 chemical subspecies profile
– Only 100 microns thick (about 10 fine level cells)
– Not resolvable on coarsest mesh
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Shock-Hydrodynamics

• Governing equation

• Domain
– Square cross section shock-tube

• Experiment
– Two gases are separated by a clean interface
– Shock moves from left to right and interacts with the 

interface
• Deposits vorticity
• Reflects
• Refracts

},,,,{)()( ρζρρρρ EvuUUGUFU yxt =+=
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Interesting features

• Shock & interface are sharp 
discontinuities which need 
refinement

• Shock deposits vorticity – a 
governing quantity for turbulence, 
mixing, …

• If there is insufficient refinement
– under predict vorticity
– slower mixing/turbulence.
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The CCA Wiring Diagram

Reused
Solver
Driver/Physics
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• Given a rectangular 2-dimensional domain 
and boundary values along the edges of the 
domain

• Find the surface with minimal area that 
satisfies the boundary conditions, i.e., 
compute

min f(x), where f: R  → R
• Solve using optimization                            

components based on                                            
TAO (ANL)

Unconstrained Minimization Problem

n
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Unconstrained Minimization Using a Structured Mesh

Reused
TAO Solver
Driver/Physics
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Molecular Geometry Optimization

• Electronic structure components based on 
NWChem (PNNL) and MPQC (SNL)

• Optimization components based on TAO (ANL)
• Linear algebra components based on Global 

Arrays (PNNL) and PETSc (ANL)

Relativistic quantum 
chemistry calculation of 
(UO  )   (CO  )   using 
NWChem.  Image 
courtesy of Wibe 
deJong, PNNL.

2   3        3 6

Wiring diagram using Ccaffeine framework and:
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Component Overhead
• Negligible overhead for 

component implementation 
and abstract interfaces when 
using appropriate levels of 
abstraction

• Linear solver component 
currently supports any 
methods available via the 
ESI interfaces to PETSc and 
Trilinos; plan to support 
additional interfaces the 
future, e.g., those under 
development within the 
TOPS center

• Here: Use the conjugate 
gradient method with no-fill 
incomplete factorization 
preconditioning

Aggregate time for linear solver component in 
unconstrained minimization problem.
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Overhead from Component Invocation

• Invoke a component with 
different arguments

• Array
• Complex
• Double Complex

• Compare with f77 method 
invocation

• Environment
– 500 MHz Pentium III
– Linux 2.4.18
– GCC 2.95.4-15

• Components took 3X longer
• Ensure granularity is 

appropriate!
• Paper by Bernholdt, Elwasif, 

Kohl and Epperly

241ns86nsDouble 
complex

209ns75nsComplex

224ns80 nsArray

Componentf77Function arg 
type
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Scalability on a Linux Cluster

• Newton method with 
line search

• Solve linear systems 
with the conjugate 
gradient method and 
block Jacobi 
preconditioning (with 
no-fill incomplete 
factorization as each 
block’s solver, and 1 
block per process)

• Negligible component 
overhead; good 
scalabilityTotal execution time for the minimum surface minimization 

problem using a fixed-sized 250x250 mesh.
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List of Component Re-Use

• Various services in CCAFFEINE
• Integrator

– IntegratorLSODE (2)
– RK2 (2)

• Linear solvers
– LinearSolver_Petra (4)
– LinearSolver_PETSc (4)

• AMR
– AMRmesh (3)

• Data description
– DADFactory (3)

• Data redistribution
– CumulvsMxN (3)

• Visualization
– CumulvsVizProxy (3)

Component interfaces 
to parallel data 
management and 
visualization tools

Component interfaces 
to numerical libraries
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The Next Level
• Common Interface Specification

– Provides plug-and-play interchangeability
– Requires domain specific experts
– Typically a difficult, time-consuming task
– A success story: MPI

• A case study…  the TSTT/CCA mesh interface
– TSTT = Terascale Simulation Tools and 

Technologies (www.tstt-scidac.org)
– A DOE SciDAC ISIC focusing on meshes

and discretization
– Goal is to enable 

• hybrid solution strategies
• high order discretization
• Adaptive techniques

Geometry
Information
(Level A)

Full 
Geometry
Meshes
(Level B)

Mesh
Compone
nts
(Level C)
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Current Situation 
Current Situation
• Public interfaces for numerical libraries are unique
• Many-to-Many couplings require Many2 interfaces

• Often a heroic effort to understand the inner workings of both 
codes

• Not a scalable solution

Dist. Array

Overture

PAOMD

SUMAA3d

PETSc

ISIS++

Trilinos
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Common Interface Specification
Reduces the Many-to-Many problem to a Many-to-One problem

– Allows interchangeability and experimentation
– Challenges

• Interface agreement
• Functionality limitations
• Maintaining performance

Dist. Array

Overture

PAOMD

SUMAA3d

ISIS++

PETSc

Trilinos

T
S
T
T

E
S
I
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TSTT Philosophy

• Create a small set of interfaces that existing 
packages can support
– AOMD, CUBIT, Overture, GrACE, …
– Enable both interchangeability and interoperability

• Balance performance and flexibility
• Work with a large tool provider and application 

community to ensure applicability
– Tool providers: TSTT and CCA SciDAC centers
– Application community: SciDAC and other DOE 

applications
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Basic Interface
• Enumerated types

– Entity Type: VERTEX, EDGE, FACE, REGION
– Entity Topology: POINT, LINE, POLYGON, TRIANGLE, 

QUADRILATERAL, POLYHEDRON, TETRAHEDRON, 
HEXAHEDRON, PRISM, PYRAMID, SEPTAHEDRON

• Opaque Types
– Mesh, Entity, Workset, Tag

• Required interfaces
– Entity queries (geometry, adjacencies), Entity iterators, 

Array-based query, Workset iterators, Mesh/Entity Tags, 
Mesh Services
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Issues that have arisen
• Nomenclature is harder than we first thought
• Cannot achieve the 100 percent solution, so...

– What level of functionality should be supported?
• Minimal interfaces only?
• Interfaces for convenience and performance?

– What about support of existing packages? 
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be

required?
– What about additional functionalities such as locking?

• Language interoperability is a problem
– Most TSTT tools are in C++, most target applications are in 

Fortran
– How can we avoid the “least common denominator” solution?
– Exploring the SIDL/Babel language interoperability tool
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Summary
• Complex applications that use components are possible

– Shock hydrodynamics
– Chemistry applications
– Optimization problems

• Component reuse is significant
– Adaptive Meshes
– Linear Solvers (PETSc, Trilinos)
– Distributed Arrays and MxN Redistribution
– Time Integrators
– Visualization

• Examples shown here leverage and extend parallel software and 
interfaces developed at different institutions

– Including CUMULVS, ESI, GrACE, LSODE, MPICH, PAWS, PETSc, PVM, TAO, 
Trilinos, TSTT.

• Performance is not significantly affected by component use
• Definition of domain-specific common interfaces is key
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Componentizing your own application

• The key step:  think about the decomposition strategy
– By physics module?
– Along numerical solver functionality?
– Are there tools that already exist for certain pieces? (solvers,

integrators, meshes?)
– Are there common interfaces that already exist for certain 

pieces? 
– Be mindful of the level of granularity

• Decouple the application into pieces
– Can be a painful, time-consuming process

• Incorporate CCA-compliance
• Compose your new component application
• Enjoy!
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Next: Status and Plans


