
Page 1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

A Look at More Complex
Component-Based Applications

Complex Applications CCA
Common Component Architecture

2

Modern Scientific Software Development
• Terascale computing will enable high-fidelity calculations based on

multiple coupled physical processes and multiple physical scales
– Adaptive algorithms and high order discretization strategies
– Composite or hybrid solution strategies
– Sophisticated numerical tools

Discretization

Algebraic Solvers

Data Redistribution

Mesh

Data Reduction

Physics Modules

Optimization

Derivative Computation

Collaboration

Diagnostics

Steering

Visualization

Adaptive Solution

Time Evolution

Page 2

Complex Applications CCA
Common Component Architecture

3

Overview

• Using components in high performance simulation
codes
– Examples of increasing complexity
– Performance

• Single processor
• Scalability

• Developing components for high performance
simulation codes
– Strategies for thinking about your own application
– Developing interoperable and interchangeable components

Complex Applications CCA
Common Component Architecture

4

Our Starting Point

∇2ϕ (x,y) = 0 ∈ [0,1] x [0,1]
ϕ(0,y)=0 ϕ(1,y)=sin (2πy)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Page 3

Complex Applications CCA
Common Component Architecture

5

Numerical Solution of Example 1

• Physics: Poisson’s equation
• Grid: Unstructured triangular mesh
• Discretization: Finite element method
• Algebraic Solvers: PETSc (Portable

Extensible Toolkit for Scientific Computation)
• Visualization: VTK tool
• Original Language: C

Complex Applications CCA
Common Component Architecture

6

Creating Components: Step 1
• Separate the application code into well-defined

pieces that encapsulate functionalities
– Decouple code along numerical functionality

• Mesh, Discretization, Solver, Visualization
• Physics is kept separate

– Determine what questions each component can ask of and
answer for other components (this determines the ports)

• Mesh provides geometry and topology (needed by
discretization and visualization)

• Mesh allows user defined data to be attached to its entities
(needed by physics and discretization)

• Mesh does not provide access to its data structures
– If this is not part of the original code design, this is by far the

hardest, most time consuming aspect of componentization

Page 4

Complex Applications CCA
Common Component Architecture

7

Creating the Components: Step 2
• Writing C++ Components

– Create an abstract base class for each port
– Create C++ objects that inherit from the abstract base port

class and the CCA component class
– Wrap the existing code as a C++ object
– Implement the setServices method

• This process was significantly less time consuming
(with an expert present) than the decoupling process
– Lessons learned

• Definitely look at an existing, working example for the targeted
framework

• Experts are very handy people to have around ;-)

Complex Applications CCA
Common Component Architecture

8

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

Page 5

Complex Applications CCA
Common Component Architecture

9

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry, topology, and

boundary information
– Provides the ability to attach user

defined data as tags to mesh
entities

– Is used by the driver,
discretization and visualization
components

• The Mesh Component
– Provides geometry, topology, and

boundary information
– Provides the ability to attach user

defined data as tags to mesh
entities

– Is used by the driver,
discretization and visualization
components

Complex Applications CCA
Common Component Architecture

10

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Driver determines which terms are
included and their coefficients

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition matrix manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Driver determines which terms are
included and their coefficients

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition matrix manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

Page 6

Complex Applications CCA
Common Component Architecture

11

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Solver Component
– Provides access to vector and

matrix operations (e.g., create,
destroy, get, set)

– Provides a “solve” functionality for
a linear operator

• The Solver Component
– Provides access to vector and

matrix operations (e.g., create,
destroy, get, set)

– Provides a “solve” functionality for
a linear operator

Complex Applications CCA
Common Component Architecture

12

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Solver Component
– Provides access to vector and

matrix operations (e.g., create,
destroy, get, set)

– Provides a “solve” functionality for
a linear operator

• The Solver Component
– Provides access to vector and

matrix operations (e.g., create,
destroy, get, set)

– Provides a “solve” functionality for
a linear operator

• The Visualization Component
– Uses the mesh component to print

a vtk file of ϕ on the unstructured
triangular mesh

– Assumes user data is attached to
mesh vertex entities

• The Visualization Component
– Uses the mesh component to print

a vtk file of ϕ on the unstructured
triangular mesh

– Assumes user data is attached to
mesh vertex entities

Page 7

Complex Applications CCA
Common Component Architecture

13

The next step… time dependence
δϕ/δt = ∇2ϕ (x,y,t) ∈ [0,1] x [0,1]

ϕ(0,y,t)=0 ϕ(1,y,t)=.5sin(2πy)cos(t/2)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0
ϕ(x,y,0)=sin(.5πx) sin (2πy)

Time Evolution

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Data RedistributionDistributed Arrays

Complex Applications CCA
Common Component Architecture

14

Some things change…
• Requires a time integration component

– Based on the LSODE library (LLNL)
– Component implementation developed by Ben Allan (SNL)

• Uses a new visualization component
– Based on AVS
– Requires an MxN data redistribution component
– Developed by Jim Kohl (ORNL)

• The MxN redistribution component requires a Distributed Array
component
– Similar to HPF arrays
– Developed by David Bernholdt (ORNL)

• The driver component changes to accommodate the new
physics

Page 8

Complex Applications CCA
Common Component Architecture

15

… and some things stay the same

• The mesh component doesn’t change
• The discretization component doesn’t change
• The solver component doesn’t change

– What we use from the solver component changes
– Only vectors are needed

Complex Applications CCA
Common Component Architecture

16

The CCA wiring diagram

Reused
Integration
Visualization
Driver/Physics

Page 9

Complex Applications CCA
Common Component Architecture

17

What did this exercise teach us?

• It was easy to incorporate the functionalities of
components developed at other labs and institutions
given a well-defined interface and header file.
– In fact, some components (one uses and one provides) were

developed simultaneously across the country from each
other after the definition of a header file.

– Amazingly enough, they usually “just worked” when linked
together (and debugged individually).

• In this case, the complexity of the component-based
approach was higher than the original code
complexity.
– Partially due to the simplicity of this example
– Partially due to the limitations of the some of the current

implementations of components

Complex Applications CCA
Common Component Architecture

18

One more layer of complexity… AMR

The same physics but use a block structured
adaptive mesh

Time Evolution

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Data RedistributionDistributed Arrays

Adaptive Solution

Discretization

Page 10

Complex Applications CCA
Common Component Architecture

19

Adaptive Mesh Refinement

• Used to accurately capture a wide spectrum of
length scales

• Many different techniques
– We use structured axis-aligned patches
– Provided by the GrACE library

• Start with a uniform coarse mesh
– Identify regions needing refinement
– Collate into rectangular patches
– Impose finer mesh in patches
– Recurse and obtain a mesh hierarchy.

Complex Applications CCA
Common Component Architecture

20

Some things change…

• The mesh component changes
– Block structured AMR based on GRACE

• The discretization component changes
– Finite difference on patches
– BC handled differently

• The driver component changes

Page 11

Complex Applications CCA
Common Component Architecture

21

… and some things stay the same

• The integration component stays the same
• The solver component stays the same
• The data redistribution component stays the

same
• The distributed array component stays the

same
• The visualization component stays the same

Complex Applications CCA
Common Component Architecture

22

The component implementation

Reused
Physics
AMR Mesh
Driver

Page 12

Complex Applications CCA
Common Component Architecture

23

Beyond the heat equation…

• Flame Approximation
– H2-Air mixture; ignition via 3 hot-spots
– 9-species, 19 reactions, stiff chemistry

• Governing equation

• Domain
– 1cm X 1cm domain
– 100x100 coarse mesh
– finest mesh = 12.5 micron.

• Timescales
– O(10ns) to O(10 microseconds)

ii
i wY
t
Y

&+∇∇=
∂
∂ α.

Complex Applications CCA
Common Component Architecture

24

Numerical Solution

• Adaptive Mesh Refinement: GrACE
• Stiff integrator: CVODE (LLNL)
• Diffusive integrator: 2nd Order Runge Kutta
• Chemical Rates: legacy f77 code (SNL)
• Diffusion Coefficients: legacy f77 code (SNL)
• New code less than 10%

Page 13

Complex Applications CCA
Common Component Architecture

25

The CCA Wiring Diagram

Reused
Slow Time Scale Integration
Fast Time Scale Integration
Driver/Physics

Complex Applications CCA
Common Component Architecture

26

Evolution of the Solution

Temperature

OH Profile

Page 14

Complex Applications CCA
Common Component Architecture

27

The need for AMR

• H2O2 chemical subspecies profile
– Only 100 microns thick (about 10 fine level cells)
– Not resolvable on coarsest mesh

Complex Applications CCA
Common Component Architecture

28

Shock-Hydrodynamics

• Governing equation

• Domain
– Square cross section shock-tube

• Experiment
– Two gases are separated by a clean interface
– Shock moves from left to right and interacts with the

interface
• Deposits vorticity
• Reflects
• Refracts

},,,,{)()(ρζρρρρ EvuUUGUFU yxt =+=

Page 15

Complex Applications CCA
Common Component Architecture

29

Interesting features

• Shock & interface are sharp
discontinuities which need
refinement

• Shock deposits vorticity – a
governing quantity for turbulence,
mixing, …

• If there is insufficient refinement
– under predict vorticity
– slower mixing/turbulence.

Complex Applications CCA
Common Component Architecture

30

The CCA Wiring Diagram

Reused
Solver
Driver/Physics

Page 16

Complex Applications CCA
Common Component Architecture

31

• Given a rectangular 2-dimensional domain
and boundary values along the edges of the
domain

• Find the surface with minimal area that
satisfies the boundary conditions, i.e.,
compute

min f(x), where f: R → R
• Solve using optimization

components based on
TAO (ANL)

Unconstrained Minimization Problem

n

Complex Applications CCA
Common Component Architecture

32

Unconstrained Minimization Using a Structured Mesh

Reused
TAO Solver
Driver/Physics

Page 17

Complex Applications CCA
Common Component Architecture

33

Molecular Geometry Optimization

• Electronic structure components based on
NWChem (PNNL) and MPQC (SNL)

• Optimization components based on TAO (ANL)
• Linear algebra components based on Global

Arrays (PNNL) and PETSc (ANL)

Relativistic quantum
chemistry calculation of
(UO) (CO) using
NWChem. Image
courtesy of Wibe
deJong, PNNL.

2 3 3 6

Wiring diagram using Ccaffeine framework and:

Complex Applications CCA
Common Component Architecture

34

Component Overhead
• Negligible overhead for

component implementation
and abstract interfaces when
using appropriate levels of
abstraction

• Linear solver component
currently supports any
methods available via the
ESI interfaces to PETSc and
Trilinos; plan to support
additional interfaces the
future, e.g., those under
development within the
TOPS center

• Here: Use the conjugate
gradient method with no-fill
incomplete factorization
preconditioning

Aggregate time for linear solver component in
unconstrained minimization problem.

Page 18

Complex Applications CCA
Common Component Architecture

35

Overhead from Component Invocation

• Invoke a component with
different arguments

• Array
• Complex
• Double Complex

• Compare with f77 method
invocation

• Environment
– 500 MHz Pentium III
– Linux 2.4.18
– GCC 2.95.4-15

• Components took 3X longer
• Ensure granularity is

appropriate!
• Paper by Bernholdt, Elwasif,

Kohl and Epperly

241ns86nsDouble
complex

209ns75nsComplex

224ns80 nsArray

Componentf77Function arg
type

Complex Applications CCA
Common Component Architecture

36

Scalability on a Linux Cluster

• Newton method with
line search

• Solve linear systems
with the conjugate
gradient method and
block Jacobi
preconditioning (with
no-fill incomplete
factorization as each
block’s solver, and 1
block per process)

• Negligible component
overhead; good
scalabilityTotal execution time for the minimum surface minimization

problem using a fixed-sized 250x250 mesh.

Page 19

Complex Applications CCA
Common Component Architecture

37

List of Component Re-Use

• Various services in CCAFFEINE
• Integrator

– IntegratorLSODE (2)
– RK2 (2)

• Linear solvers
– LinearSolver_Petra (4)
– LinearSolver_PETSc (4)

• AMR
– AMRmesh (3)

• Data description
– DADFactory (3)

• Data redistribution
– CumulvsMxN (3)

• Visualization
– CumulvsVizProxy (3)

Component interfaces
to parallel data
management and
visualization tools

Component interfaces
to numerical libraries

Complex Applications CCA
Common Component Architecture

38

The Next Level
• Common Interface Specification

– Provides plug-and-play interchangeability
– Requires domain specific experts
– Typically a difficult, time-consuming task
– A success story: MPI

• A case study… the TSTT/CCA mesh interface
– TSTT = Terascale Simulation Tools and

Technologies (www.tstt-scidac.org)
– A DOE SciDAC ISIC focusing on meshes

and discretization
– Goal is to enable

• hybrid solution strategies
• high order discretization
• Adaptive techniques

Geometry
Information
(Level A)

Full
Geometry
Meshes
(Level B)

Mesh
Compone
nts
(Level C)

Page 20

Complex Applications CCA
Common Component Architecture

39

Current Situation
Current Situation
• Public interfaces for numerical libraries are unique
• Many-to-Many couplings require Many2 interfaces

• Often a heroic effort to understand the inner workings of both
codes

• Not a scalable solution

Dist. Array

Overture

PAOMD

SUMAA3d

PETSc

ISIS++

Trilinos

Complex Applications CCA
Common Component Architecture

40

Common Interface Specification
Reduces the Many-to-Many problem to a Many-to-One problem

– Allows interchangeability and experimentation
– Challenges

• Interface agreement
• Functionality limitations
• Maintaining performance

Dist. Array

Overture

PAOMD

SUMAA3d

ISIS++

PETSc

Trilinos

T
S
T
T

E
S
I

Page 21

Complex Applications CCA
Common Component Architecture

41

TSTT Philosophy

• Create a small set of interfaces that existing
packages can support
– AOMD, CUBIT, Overture, GrACE, …
– Enable both interchangeability and interoperability

• Balance performance and flexibility
• Work with a large tool provider and application

community to ensure applicability
– Tool providers: TSTT and CCA SciDAC centers
– Application community: SciDAC and other DOE

applications

Complex Applications CCA
Common Component Architecture

42

Basic Interface
• Enumerated types

– Entity Type: VERTEX, EDGE, FACE, REGION
– Entity Topology: POINT, LINE, POLYGON, TRIANGLE,

QUADRILATERAL, POLYHEDRON, TETRAHEDRON,
HEXAHEDRON, PRISM, PYRAMID, SEPTAHEDRON

• Opaque Types
– Mesh, Entity, Workset, Tag

• Required interfaces
– Entity queries (geometry, adjacencies), Entity iterators,

Array-based query, Workset iterators, Mesh/Entity Tags,
Mesh Services

Page 22

Complex Applications CCA
Common Component Architecture

43

Issues that have arisen
• Nomenclature is harder than we first thought
• Cannot achieve the 100 percent solution, so...

– What level of functionality should be supported?
• Minimal interfaces only?
• Interfaces for convenience and performance?

– What about support of existing packages?
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be

required?
– What about additional functionalities such as locking?

• Language interoperability is a problem
– Most TSTT tools are in C++, most target applications are in

Fortran
– How can we avoid the “least common denominator” solution?
– Exploring the SIDL/Babel language interoperability tool

Complex Applications CCA
Common Component Architecture

44

Summary
• Complex applications that use components are possible

– Shock hydrodynamics
– Chemistry applications
– Optimization problems

• Component reuse is significant
– Adaptive Meshes
– Linear Solvers (PETSc, Trilinos)
– Distributed Arrays and MxN Redistribution
– Time Integrators
– Visualization

• Examples shown here leverage and extend parallel software and
interfaces developed at different institutions

– Including CUMULVS, ESI, GrACE, LSODE, MPICH, PAWS, PETSc, PVM, TAO,
Trilinos, TSTT.

• Performance is not significantly affected by component use
• Definition of domain-specific common interfaces is key

Page 23

Complex Applications CCA
Common Component Architecture

45

Componentizing your own application

• The key step: think about the decomposition strategy
– By physics module?
– Along numerical solver functionality?
– Are there tools that already exist for certain pieces? (solvers,

integrators, meshes?)
– Are there common interfaces that already exist for certain

pieces?
– Be mindful of the level of granularity

• Decouple the application into pieces
– Can be a painful, time-consuming process

• Incorporate CCA-compliance
• Compose your new component application
• Enjoy!

Complex Applications CCA
Common Component Architecture

46

Next: Status and Plans

