
Page 1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Introduction to Components

Intro to ComponentsCCA
Common Component Architecture

2

Overview
• Why do we need components?
• What are components?
• How do we make components?

Page 2

Intro to ComponentsCCA
Common Component Architecture

3

Why Components

• In “Components, The Movie”
– Interoperability across multiple languages
– Interoperability across multiple platforms
– Incremental evolution of large legacy systems

(esp. w/ multiple 3rd party software)
• Complexity

Intro to ComponentsCCA
Common Component Architecture

4

Why Components

The task of the software development team is to engineer the
illusion of simplicity [Booch].

Page 3

Intro to ComponentsCCA
Common Component Architecture

5

Software Complexity
• Software crisis

– “Our failure to master the complexity of software results in
projects that are late, over budget, and deficient in their stated
requirements.” [Booch]

• Can’t escape it
– “The complexity of software is an essential property, not an

accidental one.” [Brooks]
• Help is on the way…

– “A complex system that works is invariably found to have evolved
from a simple system that worked… A complex system designed
from scratch never works and cannot be patched up to make it
work.” [Gall]

– “Intracomponent linkages are generally stronger than
intercomponent linkages.” [Simon]

– “Frequently, complexity takes the form of a hierarchy.” [Courtois]

Intro to ComponentsCCA
Common Component Architecture

6

The Good the Bad and the Ugly

• An example of what can lead to a crisis in software:
• At least 41 different Fast Fourier Transform (FFT)

libraries:
– see, http://www.fftw.org/benchfft/doc/ffts.html

• Many (if not all) have different interfaces
– different procedure names and different input and output

parameters
• SUBROUTINE FOUR1(DATA, NN, ISIGN)

– Replaces DATA by its discrete Fourier transform (if ISIGN is input
as 1) or replaces DATA by NN times its inverse discrete Fourier
transform (if ISIGN is input as -1). DATA is a complex array of
length NN or, equivalently, a real array of length 2*NN. NN
MUST be an integer power of 2 (this is not checked for!).

Page 4

Intro to ComponentsCCA
Common Component Architecture

7

Components Promote Reuse

• Components promote software reuse
– “The best software is code you don’t have to write”

[Steve Jobs]
• Reuse, through cost amortization increases

software quality
– thoroughly tested code
– highly optimized code
– improved support for multiple platforms
– developer team specialization

Hero programmer producing single-purpose,
monolithic, tightly-coupled parallel codesX

Intro to ComponentsCCA
Common Component Architecture

8

What Are Components

• Why do we need components?
• What are components?
• How do we make components?

Page 5

Intro to ComponentsCCA
Common Component Architecture

9

What Are Components [Szyperski]

• A component is a binary unit of independent deployment
– well separated from other components

• fences make good neighbors
– can be deployed independently

• A component is a unit of third-party composition
– is composable (even by physicists)

– comes with clear specifications of what it requires and provides
– interacts with its environment through well-defined interfaces

• A component has no persistent state
– temporary state set only through well-defined interfaces
– throw away that dependence on global data (common blocks)

• Similar to Java packages and Fortran 90 modules (with a
little help)

Intro to ComponentsCCA
Common Component Architecture

10

What Does This Mean

• So what does this mean
– Components are “plug and play”
– Components are reusable
– Component applications are evolvable

Page 6

Intro to ComponentsCCA
Common Component Architecture

11

Component Forms [Cheesman & Daniels]

• Component Standard
– must conform to some sort of environment standard (Framework)

• Component Specification
– specification of what a component does

• Component Interface
– specification of procedure names and procedure parameters

• Component Implementation
– written in a computer language (Fortran for example)

• Installed Component
– a shared object library (.so file)

• Component Object
– services and state joined together

Intro to ComponentsCCA
Common Component Architecture

12

What is a Component Architecture

• A set of standards that allows:
– Multiple groups to write units of software (components)
– The groups to be sure that their components will work with

other components written in the same architecture

• A framework that holds and runs the components
– And provides services to the components to allow them to

know about and interact with other components

Page 7

Intro to ComponentsCCA
Common Component Architecture

13

What Are Components II

• Components live in an environment and interact with
the environment through a framework and
connections with other components.

• Components can discover information about their
environment from the framework.

• Components must explicitly publish what capabilities
they provide.

• Components must explicitly publish what connections
they require.

• Components are a runtime entity.

Intro to ComponentsCCA
Common Component Architecture

14

Components Are Different From
Objects

• You can build components out of object classes.
– (or out of Fortran procedures)

• But a component is more that just an object.
• A component only exists in the context of a

Component Standard (Framework).

Page 8

Intro to ComponentsCCA
Common Component Architecture

15

Pictorial Example

Consumer

uses

Producer

provides

Intro to ComponentsCCA
Common Component Architecture

16

Three Components

Integrator

integrate()

RandomGenerator

getRandomValue()

Function

evaluate()

Page 9

Intro to ComponentsCCA
Common Component Architecture

17

How Do We Make Components

• Why do we need components?
• What are components?
• How do we make components?

Intro to ComponentsCCA
Common Component Architecture

18

Interface Declaration

class Integrator
{
virtual void
integrate(double lowBound,

double upBound,
int count) = 0;

};

Integrator.h

interface
function integrate(lowBound,

upBound,
count)

real(kind(1.0D0)) :: lowBound, upBound
integer :: count
end function

end interface

Integrator.f90

Integrator

integrate()

Page 10

Intro to ComponentsCCA
Common Component Architecture

19

Publish the Interface in SIDL

• Publish the interface
– interfaces are published in SIDL (Scientific Interface

Definition Language)
– can’t publish in native language because of language

interoperability requirement
• Integrator example:

interface Integrator extends cca.Port
{
double integrate(in double lowBound,

in double upBound,
in int count);

}

Intro to ComponentsCCA
Common Component Architecture

20

F90 Integrator Interface

MODULE Integrator

interface

!
! Returns the result of the integration from lowBound to upBound.
!
! lowBound - the beginning of the integration interval
! upBound - the end of the integration interval
! count - the number of integration points
!
function integrate(port, lowBound, upBound, count)
use CCA
type(CCAPort) :: port
real(kind(1.0D0)) :: integrate, lowBound, upBound
integer :: count

end function integrate

end interface

END MODULE Integrator

Page 11

Intro to ComponentsCCA
Common Component Architecture

21

F90 Program

program Driver
use CCA
use MonteCarloIntegrator
type (CCAPort) :: port

print *, "Integral = ", integrate(port, 0.0D0, 1.0D0, 1000)

end program

Intro to ComponentsCCA
Common Component Architecture

22

C++ Abstract Integrator Class

/**
* This abstract class declares the Integrator interface.
*/

class Integrator : public virtual gov::cca::port
{
public:
virtual ~Integrator() { }

/**
* Returns the result of the integration from lowBound to upBound.
*
* lowBound - the beginning of the integration interval
* upBound - the end of the integration interval
* count - the number of integration points
*/
virtual double integrate(double lowBound, double upBound, int count) = 0;

};

Page 12

Intro to ComponentsCCA
Common Component Architecture

23

C++ Object-Oriented Program

#include <iostream>
#include ”MonteCarloIntegrator.h"

int main(int argc, char* argv[])
{

MonteCarloIntegrator* integrator = new MonteCarloIntegrator();

cout << “Integral = “ << integrator->integrate(0.0, 1.0, 1000) << endl;

return 0;
}

Intro to ComponentsCCA
Common Component Architecture

24

Component Program

LinearFunction

evaluate()

UniformRandomGenerator

getRandomValue()

MonteCarloIntegrator

integrate()

TrapezoidalIntegrator

integrate()

ReallyWeirdFunction

evaluate()

GaussianQuadIntegrator

integrate()

LinearNRandomGenerator

getRandomValue()

Component LibraryProgram

Page 13

Intro to ComponentsCCA
Common Component Architecture

25

Questions and Answers

• Is CCA similar to CORBA or COM/DCOM?
– yes, but is a component architecture oriented towards

high-performance computing
• Is CCA for parallel or distributed computing?

– both, but currently only one or the other
• Can I use CCA today for scientific applications?

– yes, but it is a research project
• Where can I get more information?

– http://www.cca-forum.org/
– join the CCA Forum

Intro to ComponentsCCA
Common Component Architecture

26

Final Thought

• Components are reusable assets. Compared with
specific solutions to specific problems, components
need to be carefully generalized to enable reuse in a
variety of contexts. Solving a general problem rather
than a specific one takes more work. In addition,
because of the variety of deployment contexts, the
creation of proper documentation, test suites,
tutorials, online help texts, and so on is more
demanding for components than for a specialized
solution. [Szyperski, p. 14]

Page 14

Intro to ComponentsCCA
Common Component Architecture

27

Bibliography

Booch, G. 1994. Object-Oriented Analysis and Design with Applications. Second
Editions. Santa Clara, CA: The Benjamin/Cummings Publishing Company, p. 8.

Brooks, F. April 1987. No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer vol. 20(4), p. 12.

Cheesman, J. and J. Daniels. UML Components: A Simple Process for Specifying
Component-Based Software. New York, NY: Addison-Wesley

Courtois, P. June 1985. On Time and Space Decomposition of Complex Structures.
Communications of the ACM vol 28(6), p. 596.

Gall, J. 1986. Systemantics: How Systems Really Work and How They Fail. Second
Edition. Ann Arbor, MI: The General Systemantics Press, p. 65.

Simon, H. 1982. The Sciences of the Artificial. Cambridge, MA: The MIT Press, p.
217.

Szyperski, C. 1998. Component Software: Beyond Object-Oriented Programming.
New York, NY: Addison-Wesley, p. 30

Intro to ComponentsCCA
Common Component Architecture

28

Next: CCA Concepts

