
1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Common Component Architecture
Concepts

CCA ConceptsCCA
Common Component Architecture

2

Goals

• Introduce essential features of the Common
Component Architecture

• Provide common vocabulary for remainder of
tutorial

• What distinguishes CCA from other
component environments?

2

CCA ConceptsCCA
Common Component Architecture

3

Features of the Common Component
Architecture

• A component model specifically designed for high-
performance computing
– Support HPC languages (Babel)
– Support parallel as well as distributed execution models
– Minimize performance overhead

• Minimalist approach makes it easier to componentize
existing software

• Component interactions are not merely dataflow
• Components are peers

– No particular component assumes it is “in charge” of the
others.

– Allows the application developer to decide what is important.

CCA ConceptsCCA
Common Component Architecture

4

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports
– In OO languages, a port is a class or interface
– In Fortran, a port is a bunch of subroutines or a module

• Components may provide ports – implement the
class or subroutines of the port

• Components may use ports – call methods or
subroutines in the port

• Links denote a caller/callee relationship, not
dataflow!
– e.g., FunctionPort could contain: evaluate(in Arg, out Result)

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

3

CCA ConceptsCCA
Common Component Architecture

5

Components and Ports
in the Integrator Example

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA ConceptsCCA
Common Component Architecture

6

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Example Components

4

CCA ConceptsCCA
Common Component Architecture

7

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA ConceptsCCA
Common Component Architecture

8

Application 3…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

5

CCA ConceptsCCA
Common Component Architecture

9

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA ConceptsCCA
Common Component Architecture

10

Ports, Interoperability, and Reuse

• Ports (interfaces) define how components interact
• Generality, quality, robustness of ports is up to

designer/architect
– “Any old” interface is easy to create, but…
– Developing a robust domain “standard” interface requires

thought, effort, and cooperation
• General “plug-and-play” interoperability of

components requires multiple implementations
conforming to the same interface

• Designing for interoperability and reuse requires
“standard” interfaces
– Typically domain-specific
– “Standard” need not imply a formal process, may mean

“widely used”

6

CCA ConceptsCCA
Common Component Architecture

11

Components vs Libraries

• Component environments
rigorously enforce interfaces

• Can have several versions of
a component loaded into a
single application

• Component needs add’l
code to interact w/
framework
– Constructor and destructor

methods
– Tell framework what ports it

uses and provides
• Invoking methods on other

components requires slight
modification to “library” code

MonteCarloIntegrator

Integrator library code
(slightly modified)

Framework interaction
code (new)

CCA ConceptsCCA
Common Component Architecture

12

CCA Concepts: Frameworks
• The framework provides the means to “hold”

components and compose them into applications
– The framework is often application’s “main” or “program”

• Frameworks allow exchange of ports among
components without exposing implementation details

• Frameworks provide a small set of standard services
to components
– BuilderServices allow programs to compose CCA apps

• Frameworks may make themselves appear as
components in order to connect to components in
other frameworks

• Currently: specific frameworks support specific
computing models (parallel, distributed, etc.).
Future: full flexibility through integration or
interoperation

7

CCA ConceptsCCA
Common Component Architecture

13

The Lifecycle of a Component

• User instructs framework to load and
instantiate components

• User instructs framework to connect uses
ports to provides ports

• Code in components uses functions provided
by another component

• Ports may be disconnected
• Component may be destroyed Look at actual

code in next
tutorial module

CCA ConceptsCCA
Common Component Architecture

14

Loading and Instantiating Components

create Driver Driver
create LinearFunction LinearFunction
create MonteCarloIntegrator MonteCarloIntegrator

• Details are framework-specific!

• Ccaffeine currently provides both
command line and GUI approaches

• Components are code (usu.
library or shared object) +
metadata

• Using metadata, a Palette of
available components is
constructed

• Components are instantiated
by user action (i.e. by
dragging from Palette into
Arena)

• Framework calls component’s
constructor, then setServices

8

CCA ConceptsCCA
Common Component Architecture

15

Component’s View of Instantiation
• Framework calls component’s

constructor
• Component initializes internal

data, etc.
– Knows nothing outside itself

• Framework calls component’s
setServices
– Passes setServices an object

representing everything “outside”
– setServices declares ports

component uses and provides
• Component still knows nothing

outside itself
– But Services object provides the

means of communication w/
framework

• Framework now knows how to
“decorate” component and how it
might connect with others

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

MonteCarloIntegrator

Integrator code

Framework interaction code
constructor setServices destructor

CCA.Services
provides IntegratorPort

uses FunctionPort,
RandomGeneratorPort

CCA ConceptsCCA
Common Component Architecture

16

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

User Connects Ports
• Can only connect user &

provider
– Not uses/uses or

provides/provides
• Ports connected by type, not

name
– Port names must be unique

within component
– Types must match across

components
• Framework puts info about

provider into user
component’s Services object

9

CCA ConceptsCCA
Common Component Architecture

17

Component’s View
of Connection

• Framework puts info
about provider into user
component’s Services
object
– MonteCarloIntegrator’s

Services object is aware
of connection

– NonlinearFunction is
not!

• MCI’s integrator code
cannot yet call functions
on FunctionPort

NonlinearFunction

Function code

CCA.Services
provides FunctionPort

Framework interaction code
MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

CCA ConceptsCCA
Common Component Architecture

18

Component’s View of Using a Port

MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

• User calls getPort to obtain
(handle for) port from Services
– Finally user code can “see”

provider
• Cast port to expected type

– OO programming concept
– Insures type safety
– Helps enforce declared

interface
• Call methods on port

– e.g.
sum = sum + function->evaluate(x)

• Release port

10

CCA ConceptsCCA
Common Component Architecture

19

Importance of Provides/Uses Pattern for
Ports

• Fences between components
– Components must declare both

what they provide and what
they use

– Components cannot interact
until ports are connected

– No mechanism to call anything
not part of a port

• Ports preserve high
performance direct connection
semantics…

• …While also allowing distributed
computing

Component 1 Component 2
Provides/Uses

Port

Direct Connection

Component 1

Component 2
Uses
Port

Provides
Port

Network
Connection

CCA ConceptsCCA
Common Component Architecture

20

CCA Concepts: Direct Connection

• Components loaded into separate namespaces in the
same address space (process) from shared libraries

• getPort call returns a pointer to the port’s function table

• Calls between components equivalent to a C++ virtual
function call: lookup function location, invoke

• Cost equivalent of ~2.8 F77 or C function calls

• All this happens “automatically” – user just sees high
performance

• Description reflects Ccaffeine implementation, but similar
or identical mechanisms in other direct connect fwks

11

CCA ConceptsCCA
Common Component Architecture

21

CCA Concepts:
Parallel Components

• Single component multiple
data (SCMD) model is
component analog of widely
used SPMD model

• Each process loaded with the
same set of components
wired the same way

• Different components in same
process “talk to each” other
via ports and the framework

• Same component in different
processes talk to each other
through their favorite
communications layer (i.e.,
MPI, PVM, GA)

• Also supports MPMD/MCMD

P0 P1 P2 P3

Components: Red, Green, Blue

Framework: Gray

Framework stays “out of the way”
of component parallelism

CCA ConceptsCCA
Common Component Architecture

22

CCA Concepts:
MxN Parallel Data Redistribution

• Share Data Among Coupled Parallel Models
– Disparate Parallel Topologies (M processes vs. N)
– e.g. Ocean & Atmosphere, Solver & Optimizer…
– e.g. Visualization (Mx1, increasingly, MxN)

Research area -- tools under development

12

CCA ConceptsCCA
Common Component Architecture

23

CCA Concepts: Language
Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java
Babel tutorial
coming up!

CCA ConceptsCCA
Common Component Architecture

24

Concept Review
• Ports

– Interfaces between components
– Uses/provides model

• Framework
– Allows assembly of components into applications

• Direct Connection
– Maintain performance of local inter-component calls

• Parallelism
– Framework stays out of the way of parallel components

• MxN Parallel Data Redistribution
– Model coupling, visualization, etc.

• Language Interoperability
– Babel, Scientific Interface Definition Language (SIDL)

13

CCA ConceptsCCA
Common Component Architecture

25

Next: A Simple CCA Example

