CCA

Common Ci

A Look at More Complex
Component-Based Applications

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/
tutorial-wg@cca-forum.org

=

@C(*‘

Complex Applications

Modern Scientific Software Development

« Terascale computing will enable high-fidelity calculations based on
multiple coupled physical processes and multiple physical scales
— Adaptive algorithms and high-order discretization strategies
— Composite or hybrid solution strategies
— Sophisticated numerical tools

Physics Modules

Adaptive Solution

Visualization

Optimization

C Solvers l

Data Reduction

Complex Applications.

Overview

» Using components in high performance simulation
codes
— Examples of increasing complexity
— Performance
« Single processor
« Scalability
» Developing components for high performance
simulation codes
— Strategies for thinking about your own application
— Developing interoperable and interchangeable components

Complex Applications

Our Starting Point
V2 (x,y) = 0 e [0,1] x [0,1]

9(0,y)=0 ¢(1.y)=sin (2ny)
d3¢p/dy(x,0) = d¢p/dy(x,1) =0

I Physics Modules

Algebraic Solvers

Visualization

Page 1

Complex Applications.

Numerical Solution of Example 1

» Physics: Poisson’s equation
» Grid: Unstructured triangular mesh
» Discretization: Finite element method

« Algebraic Solvers: PETSc (Portable
Extensible Toolkit for Scientific Computation)

* Visualization: VTK tool
» Original Language: C

@C(*‘

« Separate the application code into well-defined
pieces that encapsulate functionalities

Complex Applications

Creating Components: Step 1

— Decouple code along numerical functionality
« Mesh, discretization, solver, visualization
« Physics is kept separate
— Determine what questions each component can ask of and
answer for other components (this determines the ports)

* Mesh provides geometry and topology (needed by
discretization and visualization)
« Mesh allows user defined data to be attached to its entities
(needed by physics and discretization)
« Mesh does not provide access to its data structures
— If this is not part of the original code design, this is by far the
hardest, most time-consuming aspect of componentization

y<C

Complex Applications.

Creating the Components: Step 2
* Writing C++ Components
— Create an abstract base class for each port

— Create C++ objects that inherit from the abstract base port
class and the CCA component class

— Wrap the existing code as a C++ object
— Implement the setServices method

» This process was significantly less time consuming
(with an expert present) than the decoupling process
— Lessons learned

« Definitely look at an existing, working example for the targeted
framework
« Experts are very handy people to have around ;-)

RE

Complex Applications

The Componentized Example

+ The Driver Component

Responsible for the overall
application flow

Initializes the mesh, discretization,
solver and visualization
components

Sets the physics parameters and
boundary condition information

Page 2

Complex Applications.

The Componentized Example

The Driver Component

o
‘ Fle A Info

[hun | femove | Remove Al || Gpen.. | Save | SaveAs. |

* The Mesh Component

Provides geometry, topology, and
boundary information

Provides the ability to attach user
defined data as tags to mesh
entities

Is used by the driver,
discretization and visualization
components

s |

Complex Applications

o

The Componentized Example

« The Driver Component

‘ Fle COA Info

[hun | hemove | Remove All || Open. | Save

The Mesh Component

* The Discretization Component

— Provides a finite element
discretization of basic operators
(gradient, Laplacian, scalar terms) g

— Driver determines which terms are §
included and their coefficients

— Provides mechanisms for general
Dirichlet and Neumann boundary
condition matrix manipulations

— Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

— Gathers and scatters vectors to
the mesh (in this case ¢)

Saven |

Complex Applications.

yeca

The Componentized Example

The Driver Component

v

| Ramove | Ramove All || Gpen.. Save s |

The Mesh Component ‘

.

The Discretization Component

X

i

The Solver Component
— Provides access to vector and
matrix operations (e.g., create,
destroy, get, set)
— Provides a “solve” functionality for m
a linear operator -

I

g

Complex Applications

.

The Driver Component ‘

v

The Mesh Component ‘

+ The Discretization Component

* The Solver Component

« The Visualization Component
— Uses the mesh component to print prm
a vtk file of ¢ on the unstructured
triangular mesh
— Assumes user data is attached to
mesh vertex entities

Saven |

soam

Page 3

Complex Applications.

The next step... time dependence
d¢/8t = V2¢ (x,y,t) € [0,1] x [0,1]
0(0,y,t)=0 o(1,y,t)=.5sin(2ny)cos(1/2)
3¢/3y(x,0) = 8¢p/dy(x,1) = 0
o(x,y,0)=sin(.57x) sin (2ry)

I Physics Modules

[

Algebraic Solvers

Visualization

Complex Applications

@C(‘.r\
Some things change...

» Requires a time integration component
— Based on the LSODE library (LLNL)
— Component implementation developed by Ben Allan (SNL)
» Uses a new visualization component
— Based on AVS
— Requires an MxN data redistribution component
— Developed by Jim Kohl (ORNL)
* The MxN redistribution component requires a Distributed Array
Descriptor component
— Similar to HPF arrays
— Developed by David Bernholdt (ORNL)
« The driver component changes to accommodate the new
physics

Complex Applications.

yeca

... and some things stay the same

» The mesh component doesn’t change
» The discretization component doesn’t change

» The solver component doesn’t change
— What we use from the solver component changes
— Only vectors are needed

Complex Applications

fo ooh

The CCA wiring diagram

Reused

Integration

Visualization
= Driver/Physics

Page 4

@Sl(} A

Complex Applications.

What did this exercise teach us?

* It was easy to incorporate the functionalities of
components developed at other labs and institutions
given a well-defined interface and header file.

— In fact, some components (one uses and one provides) were
developed simultaneously across the country from each
other after the definition of a header file.

— Amazingly enough, they usually “just worked” when linked
together (and debugged individually).

* In this case, the complexity of the component-based
approach was higher than the original code
complexity.

— Partially due to the simplicity of this example
— Partially due to the limitations of the some of the current
implementations of components

Complex Applications

@CS?\

Beyond the heat equation...

Temperature (K)

Flame Approximation
— Hy-Air mixture; ignition via 3 hot-spots
— 9-species, 19 reactions, stiff chemistry
Governing equation
o,
ot

Domain

=V.aVY, +,

— 1cm X 1cm domain

— 100x100 coarse mesh

— finest mesh = 12.5 micron.
Timescales

— O(10ns) to O(10 microseconds)

Complex Applications.

Numerical Solution

Adaptive Mesh Refinement: GrACE

« Stiff integrator: CVODE (LLNL)

« Diffusive integrator: 24 Order Runge Kutta

» Chemical Rates: legacy f77 code (SNL)

« Diffusion Coefficients: legacy f77 code (SNL)
* New code less than 10%

Complex Applications

The CCA Wiring Diagram

Reused
~— Slow Time Scale Integration

Fast Time Scale Integration
— - Driver/Physics

Page 5

Complex Applications.

Evolution of the Solution

Temperaturs (K)

Temperature

OH Profile

Complex Applications

@C CA

The need for AMR

H,0, chemical subspecies profile
— Only 100 microns thick (about 10 fine level cells)
— Not resolvable on coarsest mesh

Complex Applications.

@CCA
Computational Chemistry:
Molecular Optimization

« Investigators: Yuri Alexeev (PNNL), Steve Benson (ANL),
Curtis Janssen (SNL), Joe Kenny (SNL), Manoj Krishnan
(PNNL), Lois McInnes (ANL), Jarek Nieplocha (PNNL),
Jason Sarich (ANL), Theresa Windus (PNNL)

« Goals: Demonstrate interoperability among software
packages, develop experience with large existing code
bases, seed interest in chemistry domain

* Problem Domain: Optimization of .?-?
h.

molecular structures using quantum .%0 ;5;.

chemical methods %.
¢

23

Complex Applications

@(cx
Molecular Optimization Overview

» Decouple geometry optimization from electronic structure
« Demonstrate interoperability of electronic structure components

+ Build towards more challenging optimization problems, e.g.,
protein/ligand binding studies

river

i 1 1
el T—» Tao Solver o—> Global Arrays

Mode! Adapler

NWChem Nolecule
Factory
MPQC chhem .

Components in gray can be swapped in to create new applications with different capabilities.

Page 6

Complex Applications.

@(‘(‘ A

Wiring Diagram for Molecular Optimization

+ Electronic structures components: + Optimization components: TAO (ANL)
http://www.mcs.anl.gov/tao
MPQC (SNL) http://www.mcs.anl.gov/tao

http://aros.ca.sandia.qov/~clianss/mpgc °© Linear algebra components:

NWChem (PNNL) Global Arrays (PNNL)
http://www.emsl.pnl.gov:2080/docs/global/ga.html
http://www.emsl.pnl.gov/pub/docs/nwchem

PETSc (ANL)
http://www.mcs.anl.gov/petsc

Complex Applications

o

Molecular Optimization Summary

* CCA Impact

— Demonstrated unprecedented interoperability in a
domain not known for it

— Demonstrated value of collaboration through
components

— Gained experience with several very different
styles of “legacy” code

« Future Plans
— Extend to more complex optimization problems
— Extend to deeper levels of interoperability

Complex Applications.

Componentized Climate Simulations

* NASA’s ESMF project has a component-based design for Earth
system simulations

— ESMF components can be assembled and run in CCA compliant
frameworks such as Ccaffeine.

* Zhou et al (NASA Goddard) has integrated a simple coupled
Atmosphere-Ocean model into Ccaffeine and is working on the
Cane-Zebiak model, well-known for predicting E/ Nino events.

« Different PDEs for ocean and atmosphere, different grids and
time-stepped at different rates.

— Synchronization at ocean-atmosphere interface; essentially,
interpolations between meshes

— Ocean & atmosphere advanced in sequence

 Intuitively : Ocean, Atmosphere and 2 coupler components
— 2 couplers : atm-ocean coupler and ocean-atm coupler.
— Also a Driver / orchestrator component.

27

Complex Applications

O

Coupled Atmosphere-Ocean Model Assembly

5] Common Component Architecture: Untitled_0.01d (changed)
File CCA Info ESMF-CCA Frototype
Actions

« Climate Component :

. Schedule wun || nemove | nomove At || open.. | save [savens. |
component coupling

« Data flow is via pointer
NOT data copy.

« All components in
C++; run in
CCAFFEINE.

* Multiple ocean models
with the same interface

« Can be selected by
a user at runtime

= Portlink

= Dataflow

Page 7

Complex Applications.

Simulation Results

T

«..changes a field variable (e.g.,wind)
in the atmosphere !

s 62,0000, 20000 _seales 10000, £,09000 o5

A non-uniform ocean field variable wan
(e.g., current) i

v w &
2oy

o S P

Unconstrained Minimization Problem

» Given a rectangular 2-dimensional domain and
boundary values along the edges of the domain

+ Find the surface with minimal area that satisfies the
boundary conditions, i.e., compute

min f(x), where : R -> R

» Solve using optimization
components based on
TAO (ANL)

n

Complex Applications.

Unconstrained Minimization Using a Structured Mesh

Reused
TAO Solver
~— Driver/Physics

Complex Applications

Component Overhead

® Negligible overhead for
component implementation
™ and abstract interfaces when

[l Linear Solver Component A N
90| [PETSc SLES using appropriate levels of

0 abstraction

® Linear solver component
currently supports any

0 methods available via the

ESl interfaces to PETSc and

Trilinos; plan to support

additional interfaces the

30 future, e.g., those under

Time (sec)
o
3

20 development within the
o TOPS center
| W ® Here: Use the conjugate
° 100x100 150x150 200x200 250)(2507 gradlent method with no-fill

Problem Size incomplete factorization
preconditioning
Aggregate time for linear solver component in
unconstrained minimization problem.

Page 8

Complex Applications.

Overhead from Component Invocation

« Invoke a component with
different arguments
* Array
+ Complex
« Double Complex
« Compare with f77 method
invocation
« Environment
— 500 MHz Pentium llI
— Linux2.4.18
— GCC 2.95.4-15
« Components took 3X longer
« Ensure granularity is
appropriate!
« Paper by Bernholdt, Elwasif,
Kohl and Epperly

Function arg 77

type Component

Array 80 ns 224ns

75ns 209ns

Complex

Double
complex

86ns 241ns

Complex Applications

Scalability on a Linux Cluster

® Newton method with
line search

® Solve linear systems
with the conjugate
gradient method and
block Jacobi
preconditioning (with
no-fill incomplete

factorization as each
200] block’s solver, and 1
I‘ ‘ block per process)
0 | || N .
2 4 8 16

Negligible component
overhead; good
scalability

Il Components ‘
[TAO |

Time (sec)
3

Number of Processors

Total execution time for the minimum surface minimization
problem using a fixed-sized 250x250 mesh.

Complex Applications.

List of Component Re-Use

« Various services in Ccaffeine
+ Integrator
— IntegratorLSODE (2)
- RK2(2)
* Linear solvers
— LinearSolver_Petra (4)
— LinearSolver_PETSc (4)
« AMR
— AMRmesh (3)
« Data description

Component interfaces
to numerical libraries

Component interfaces

- DADFactory (3) to parallel data
« Data redistribution management and
— CumulvsMxN (3) . T .
o visualization tools
» Visualization
— CumulvsVizProxy (3)

TeT

The Next Level

« Common Interface Specification
— Provides plug-and-play interchangeability
— Requires domain specific experts
— Typically a difficult, time-consuming task
— A success story: MPI
» Acase study... the TSTT/CCA mesh interface
— TSTT = Terascale Simulation Tools and
Technologies (www.tstt-scidac.org) A
— A DOE SciDAC ISIC focusing on meshes ©
and discretization — i
— Goal is to enable

Geometry

(Level A)

Complex Applications

Information

* hybrid solution strategies (Level B)
+ high order discretization // \\ P
Compone

« Adaptive techniques nts
(Level C)

Page 9

Complex Applications.

Current Situation

Current Situation

* Public interfaces for numerical libraries are unique
* Many-to-Many couplings require Many? interfaces
« Often a heroic effort to understand the inner workings of both
codes

« Not a scalable solution

@(j S‘“ A X) Complex Applications
Common Interface Specification
Reduces the Many-to-Many problem to a Many-to-One problem
— Allows interchangeability and experimentation

— Challenges
« Interface agreement
« Functionality limitations
» Maintaining performance

Dist. Array |

SUMAA3d

ISIS++

/I HH®nA

@r(,:(‘ }WW Architecture Complex Applications
TSTT Philosophy

Create a small set of interfaces that existing packages can
support
AOMD, CUBIT, Overture, GrACE, ...
Enable both interchangeability and interoperability
Balance performance and flexibility
Work with a large tool provider and application community to
ensure applicability
Tool providers: TSTT and CCA SciDAC centers
Application community: SciDAC and other DOE
applications

Complex Applications

@(Q‘
Basic Interface

* Enumerated types
- Entity Type: VERTEX, EDGE, FACE, REGION
— Entity Topology: POINT, LINE, POLYGON, TRIANGLE,
QUADRILATERAL, POLYHEDRON, TETRAHEDRON,
HEXAHEDRON, PRISM, PYRAMID, SEPTAHEDRON
* Opaque Types
— Mesh, Entity, Workset, Tag
* Required interfaces

— Entity queries (geometry, adjacencies), Entity iterators,
Array-based query, Workset iterators, Mesh/Entity Tags,
Mesh Services

40

Page 10

o=

Complex Applications.

Issues that have arisen

* Nomenclature is harder than we first thought
» Cannot achieve the 100 percent solution, so...
— What level of functionality should be supported?
* Minimal interfaces only?
« Interfaces for convenience and performance?
— What about support of existing packages?
« Are there atomic operations that all support?
« What additional functionalities from existing packages should be
required?
— What about additional functionalities such as locking?
« Language interoperability is a problem
— Most TSTT tools are in C++, most target applications are in
Fortran
— How can we avoid the “least common denominator” solution?
— Exploring the SIDL/Babel language interoperability tool

a1

@C(S

Complex Applications

Summary

Complex applications that use components are possible
— Combustion
— Chemistry applications
— Optimization problems
— Climate simulations
Component reuse is significant
— Adaptive Meshes
— Linear Solvers (PETSc, Trilinos)
— Distributed Arrays and MxN Redistribution
— Time Integrators
— Visualization
Examples shown here leverage and extend parallel software and
interfaces developed at different institutions
— Including CUMULVS, ESI, GrACE, LSODE, MPICH, PAWS, PETSc, PVM, TAO,
Trilinos, TSTT.
Performance is not significantly affected by component use
Definition of domain-specific common interfaces is key

a2

oS

Complex Applications.

Componentizing your own application

* The key step: think about the decomposition strategy
— By physics module?
— Along numerical solver functionality?
— Are there tools that already exist for certain pieces? (solvers,
integrators, meshes?)
— Are there common interfaces that already exist for certain
pieces?
— Be mindful of the level of granularity
» Decouple the application into pieces
— Can be a painful, time-consuming process
* Incorporate CCA-compliance
» Compose your new component application

* Enjoy!

43

Page 11

