
Page 1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

A Look at More Complex 
Component-Based Applications

Complex Applications CCA
Common Component Architecture

2

Modern Scientific Software Development
• Terascale computing will enable high-fidelity calculations based on 

multiple coupled physical processes and multiple physical scales
– Adaptive algorithms and high-order discretization strategies
– Composite or hybrid solution strategies
– Sophisticated numerical tools

Discretization

Algebraic Solvers

Data Redistribution

Mesh

Data Reduction

Physics Modules

Optimization

Derivative Computation

Collaboration

Diagnostics

Steering

Visualization

Adaptive Solution

Time Evolution

Complex Applications CCA
Common Component Architecture

3

Overview

• Using components in high performance simulation 
codes
– Examples of increasing complexity
– Performance

• Single processor
• Scalability

• Developing components for high performance 
simulation codes
– Strategies for thinking about your own application
– Developing interoperable and interchangeable components

Complex Applications CCA
Common Component Architecture

4

Our Starting Point

∇2ϕ (x,y) = 0 ∈ [0,1] x [0,1]
ϕ(0,y)=0     ϕ(1,y)=sin (2πy)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization



Page 2

Complex Applications CCA
Common Component Architecture

5

Numerical Solution of Example 1

• Physics:  Poisson’s equation
• Grid:  Unstructured triangular mesh 
• Discretization:  Finite element method
• Algebraic Solvers: PETSc (Portable 

Extensible Toolkit for Scientific Computation)
• Visualization:  VTK tool
• Original Language: C

Complex Applications CCA
Common Component Architecture

6

Creating Components:  Step 1
• Separate the application code into well-defined 

pieces that encapsulate functionalities
– Decouple code along numerical functionality

• Mesh, discretization, solver, visualization
• Physics is kept separate

– Determine what questions each component can ask of and 
answer for other components (this determines the ports)

• Mesh provides geometry and topology (needed by 
discretization and visualization)

• Mesh allows user defined data to be attached to its entities 
(needed by physics and discretization)

• Mesh does not provide access to its data structures
– If this is not part of the original code design, this is by far the 

hardest, most time-consuming aspect of componentization

Complex Applications CCA
Common Component Architecture

7

Creating the Components:  Step 2
• Writing C++ Components

– Create an abstract base class for each port
– Create C++ objects that inherit from the abstract base port 

class and the CCA component class
– Wrap the existing code as a C++ object
– Implement the setServices method

• This process was significantly less time consuming 
(with an expert present) than the decoupling process
– Lessons learned

• Definitely look at an existing, working example for the targeted
framework

• Experts are very handy people to have around ;-)

Complex Applications CCA
Common Component Architecture

8

The Componentized Example

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information



Page 3

Complex Applications CCA
Common Component Architecture

9

The Componentized Example

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Mesh Component
– Provides geometry, topology, and 

boundary  information
– Provides the ability to attach user 

defined data as tags to mesh 
entities

– Is used by the driver, 
discretization and visualization 
components

• The Mesh Component
– Provides geometry, topology, and 

boundary  information
– Provides the ability to attach user 

defined data as tags to mesh 
entities

– Is used by the driver, 
discretization and visualization 
components

Complex Applications CCA
Common Component Architecture

10

The Componentized Example

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, Laplacian, scalar terms)

– Driver determines which terms are 
included and their coefficients

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition matrix manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, Laplacian, scalar terms)

– Driver determines which terms are 
included and their coefficients

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition matrix manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

Complex Applications CCA
Common Component Architecture

11

The Componentized Example

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, laplacian, scalar terms)

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, laplacian, scalar terms)

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

• The Solver Component
– Provides access to vector and 

matrix operations (e.g., create, 
destroy, get, set)

– Provides a “solve” functionality for 
a linear operator

• The Solver Component
– Provides access to vector and 

matrix operations (e.g., create, 
destroy, get, set)

– Provides a “solve” functionality for 
a linear operator

Complex Applications CCA
Common Component Architecture

12

The Componentized Example

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Driver Component 
– Responsible for the overall 

application flow
– Initializes the mesh, discretization, 

solver and visualization 
components

– Sets the physics parameters and 
boundary condition information

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Mesh Component
– Provides geometry and topology 

information
– Provides the ability to attach user 

defined data to mesh entities
– Is used by the driver, 

discretization and visualization 
components

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, laplacian, scalar terms)

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element 

discretization of basic operators 
(gradient, laplacian, scalar terms)

– Provides mechanisms for general 
Dirichlet and Neumann boundary 
condition manipulations

– Computes element matrices and 
assembles them into the global 
stiffness matrix via set methods 
on the solver

– Gathers and scatters vectors to 
the mesh (in this case ϕ)

• The Solver Component
– Provides access to vector and 

matrix operations (e.g., create, 
destroy, get, set)

– Provides a “solve” functionality for 
a linear operator

• The Solver Component
– Provides access to vector and 

matrix operations (e.g., create, 
destroy, get, set)

– Provides a “solve” functionality for 
a linear operator

• The Visualization Component
– Uses the mesh component to print 

a vtk file of ϕ on the unstructured 
triangular mesh

– Assumes user data is attached to 
mesh vertex entities

• The Visualization Component
– Uses the mesh component to print 

a vtk file of ϕ on the unstructured 
triangular mesh

– Assumes user data is attached to 
mesh vertex entities



Page 4

Complex Applications CCA
Common Component Architecture

13

The next step… time dependence
δϕ/δt = ∇2ϕ (x,y,t) ∈ [0,1] x [0,1]

ϕ(0,y,t)=0     ϕ(1,y,t)=.5sin(2πy)cos(t/2)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0
ϕ(x,y,0)=sin(.5πx) sin (2πy)

Time Evolution

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Data RedistributionDistributed Arrays

Complex Applications CCA
Common Component Architecture

14

Some things change…
• Requires a time integration component

– Based on the LSODE library (LLNL)
– Component implementation developed by Ben Allan (SNL)

• Uses a new visualization component
– Based on AVS
– Requires an MxN data redistribution component
– Developed by Jim Kohl (ORNL)

• The MxN redistribution component requires a Distributed Array 
Descriptor component
– Similar to HPF arrays
– Developed by David Bernholdt (ORNL)

• The driver component changes to accommodate the new 
physics

Complex Applications CCA
Common Component Architecture

15

… and some things stay the same

• The mesh component doesn’t change
• The discretization component doesn’t change
• The solver component doesn’t change

– What we use from the solver component changes
– Only vectors are needed

Complex Applications CCA
Common Component Architecture

16

The CCA wiring diagram

Reused
Integration
Visualization
Driver/Physics



Page 5

Complex Applications CCA
Common Component Architecture

17

What did this exercise teach us?

• It was easy to incorporate the functionalities of 
components developed at other labs and institutions 
given a well-defined interface and header file.
– In fact, some components (one uses and one provides) were 

developed simultaneously across the country from each 
other after the definition of a header file.

– Amazingly enough, they usually “just worked” when linked 
together (and debugged individually).

• In this case, the complexity of the component-based 
approach was higher than the original code 
complexity.
– Partially due to the simplicity of this example
– Partially due to the limitations of the some of the current 

implementations of components

Complex Applications CCA
Common Component Architecture

18

Beyond the heat equation…

• Flame Approximation
– H2-Air mixture; ignition via 3 hot-spots
– 9-species, 19 reactions, stiff chemistry

• Governing equation

• Domain
– 1cm X 1cm domain
– 100x100 coarse mesh
– finest mesh = 12.5 micron.

• Timescales 
– O(10ns) to O(10 microseconds)

ii
i wY
t
Y

&+∇∇=
∂
∂ α.

Complex Applications CCA
Common Component Architecture

19

Numerical Solution

• Adaptive Mesh Refinement: GrACE
• Stiff integrator: CVODE (LLNL)
• Diffusive integrator: 2nd Order Runge Kutta
• Chemical Rates: legacy f77 code (SNL)
• Diffusion Coefficients: legacy f77 code (SNL) 
• New code less than 10%

Complex Applications CCA
Common Component Architecture

20

The CCA Wiring Diagram

Reused
Slow Time Scale Integration
Fast Time Scale Integration
Driver/Physics



Page 6

Complex Applications CCA
Common Component Architecture

21

Evolution of the Solution

Temperature

OH Profile

Complex Applications CCA
Common Component Architecture

22

The need for AMR

• H2O2 chemical subspecies profile
– Only 100 microns thick (about 10 fine level cells)
– Not resolvable on coarsest mesh

Complex Applications CCA
Common Component Architecture

23

Computational Chemistry:  
Molecular Optimization

• Problem Domain: Optimization of 
molecular structures using quantum 
chemical methods

• Investigators: Yuri Alexeev (PNNL), Steve Benson (ANL), 
Curtis Janssen (SNL), Joe Kenny (SNL), Manoj Krishnan 
(PNNL), Lois McInnes (ANL), Jarek Nieplocha (PNNL), 
Jason Sarich (ANL), Theresa Windus (PNNL)

• Goals: Demonstrate interoperability among software 
packages, develop experience with large existing code 
bases, seed interest in chemistry domain

Complex Applications CCA
Common Component Architecture

24

Molecular Optimization Overview 
• Decouple geometry optimization from electronic structure
• Demonstrate interoperability of electronic structure components
• Build towards more challenging optimization problems, e.g., 

protein/ligand binding studies

Components in gray can be swapped in to create new applications with different capabilities.



Page 7

Complex Applications CCA
Common Component Architecture

25

Wiring Diagram for Molecular Optimization

• Electronic structures components: 
• MPQC (SNL)

http://aros.ca.sandia.gov/~cljanss/mpqc
• NWChem (PNNL)

http://www.emsl.pnl.gov/pub/docs/nwchem

• Optimization components: TAO (ANL) 
http://www.mcs.anl.gov/tao

• Linear algebra components: 
• Global Arrays (PNNL) 

http://www.emsl.pnl.gov:2080/docs/global/ga.html
• PETSc (ANL) 

http://www.mcs.anl.gov/petsc

Complex Applications CCA
Common Component Architecture

26

Molecular Optimization Summary

• CCA Impact
– Demonstrated unprecedented interoperability in a 

domain not known for it
– Demonstrated value of collaboration through 

components
– Gained experience with several very different 

styles of “legacy” code
• Future Plans

– Extend to more complex optimization problems
– Extend to deeper levels of interoperability

Complex Applications CCA
Common Component Architecture

27

Componentized Climate Simulations
• NASA’s ESMF project has a component-based design for Earth 

system simulations
– ESMF components can be assembled and run in CCA compliant 

frameworks such as Ccaffeine.
• Zhou et al (NASA Goddard) has integrated a simple coupled 

Atmosphere-Ocean model into Ccaffeine and is working on the 
Cane-Zebiak model, well-known for predicting El Nino events.

• Different PDEs for ocean and atmosphere, different grids and 
time-stepped at different rates.
– Synchronization at ocean-atmosphere interface; essentially, 

interpolations between meshes
– Ocean & atmosphere advanced in sequence

• Intuitively : Ocean, Atmosphere and 2 coupler components
– 2 couplers : atm-ocean coupler and ocean-atm coupler.
– Also a Driver / orchestrator component.

Complex Applications CCA
Common Component Architecture

28

Coupled Atmosphere-Ocean Model Assembly

Data flow

Port link

• Climate Component :

• Schedule 
component coupling

• Data flow is via pointer   
NOT data copy.

• All components in 
C++; run in 
CCAFFEINE.

• Multiple ocean models 
with the same interface

• Can be selected by 
a user at runtime



Page 8

Complex Applications CCA
Common Component Architecture

29

Simulation Results

A non-uniform ocean field variable 
(e.g., current)

…changes a field variable (e.g.,wind) 
in the atmosphere !

Complex Applications CCA
Common Component Architecture

30

• Given a rectangular 2-dimensional domain and 
boundary values along the edges of the domain

• Find the surface with minimal area that satisfies the 
boundary conditions, i.e., compute

min f(x), where f: R  → R
• Solve using optimization                            

components based on                                            
TAO (ANL)

Unconstrained Minimization Problem

n

Complex Applications CCA
Common Component Architecture

31

Unconstrained Minimization Using a Structured Mesh

Reused
TAO Solver
Driver/Physics

Complex Applications CCA
Common Component Architecture

32

Component Overhead
• Negligible overhead for 

component implementation 
and abstract interfaces when 
using appropriate levels of 
abstraction

• Linear solver component 
currently supports any 
methods available via the 
ESI interfaces to PETSc and 
Trilinos; plan to support 
additional interfaces the 
future, e.g., those under 
development within the 
TOPS center

• Here: Use the conjugate 
gradient method with no-fill 
incomplete factorization 
preconditioning

Aggregate time for linear solver component in 
unconstrained minimization problem.



Page 9

Complex Applications CCA
Common Component Architecture

33

Overhead from Component Invocation

• Invoke a component with 
different arguments

• Array
• Complex
• Double Complex

• Compare with f77 method 
invocation

• Environment
– 500 MHz Pentium III
– Linux 2.4.18
– GCC 2.95.4-15

• Components took 3X longer
• Ensure granularity is 

appropriate!
• Paper by Bernholdt, Elwasif, 

Kohl and Epperly

241ns86nsDouble 
complex

209ns75nsComplex

224ns80 nsArray

Componentf77Function arg 
type

Complex Applications CCA
Common Component Architecture

34

Scalability on a Linux Cluster

• Newton method with 
line search

• Solve linear systems 
with the conjugate 
gradient method and 
block Jacobi 
preconditioning (with 
no-fill incomplete 
factorization as each 
block’s solver, and 1 
block per process)

• Negligible component 
overhead; good 
scalabilityTotal execution time for the minimum surface minimization 

problem using a fixed-sized 250x250 mesh.

Complex Applications CCA
Common Component Architecture

35

List of Component Re-Use

• Various services in Ccaffeine
• Integrator

– IntegratorLSODE (2)
– RK2 (2)

• Linear solvers
– LinearSolver_Petra (4)
– LinearSolver_PETSc (4)

• AMR
– AMRmesh (3)

• Data description
– DADFactory (3)

• Data redistribution
– CumulvsMxN (3)

• Visualization
– CumulvsVizProxy (3)

Component interfaces 
to parallel data 
management and 
visualization tools

Component interfaces 
to numerical libraries

Complex Applications CCA
Common Component Architecture

36

The Next Level
• Common Interface Specification

– Provides plug-and-play interchangeability
– Requires domain specific experts
– Typically a difficult, time-consuming task
– A success story: MPI

• A case study…  the TSTT/CCA mesh interface
– TSTT = Terascale Simulation Tools and 

Technologies (www.tstt-scidac.org)
– A DOE SciDAC ISIC focusing on meshes

and discretization
– Goal is to enable 

• hybrid solution strategies
• high order discretization
• Adaptive techniques

Geometry
Information
(Level A)

Full 
Geometry
Meshes
(Level B)

Mesh
Compone
nts
(Level C)



Page 10

Complex Applications CCA
Common Component Architecture

37

Current Situation 
Current Situation
• Public interfaces for numerical libraries are unique
• Many-to-Many couplings require Many2 interfaces

• Often a heroic effort to understand the inner workings of both 
codes

• Not a scalable solution

Dist. Array

Overture

PAOMD

SUMAA3d

PETSc

ISIS++

Trilinos

Complex Applications CCA
Common Component Architecture

38

Common Interface Specification
Reduces the Many-to-Many problem to a Many-to-One problem

– Allows interchangeability and experimentation
– Challenges

• Interface agreement
• Functionality limitations
• Maintaining performance

Dist. Array

Overture

PAOMD

SUMAA3d

ISIS++

PETSc

Trilinos

T
S
T
T

E
S
I

Complex Applications CCA
Common Component Architecture

39

TSTT Philosophy

Create a small set of interfaces that existing packages can 
support

AOMD, CUBIT, Overture, GrACE, …
Enable both interchangeability and interoperability

Balance performance and flexibility
Work with a large tool provider and application community to 
ensure applicability

Tool providers: TSTT and CCA SciDAC centers
Application community: SciDAC and other DOE 
applications

Complex Applications CCA
Common Component Architecture

40

Basic Interface
• Enumerated types

– Entity Type: VERTEX, EDGE, FACE, REGION
– Entity Topology: POINT, LINE, POLYGON, TRIANGLE, 

QUADRILATERAL, POLYHEDRON, TETRAHEDRON, 
HEXAHEDRON, PRISM, PYRAMID, SEPTAHEDRON

• Opaque Types
– Mesh, Entity, Workset, Tag

• Required interfaces
– Entity queries (geometry, adjacencies), Entity iterators, 

Array-based query, Workset iterators, Mesh/Entity Tags, 
Mesh Services



Page 11

Complex Applications CCA
Common Component Architecture

41

Issues that have arisen
• Nomenclature is harder than we first thought
• Cannot achieve the 100 percent solution, so...

– What level of functionality should be supported?
• Minimal interfaces only?
• Interfaces for convenience and performance?

– What about support of existing packages? 
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be

required?
– What about additional functionalities such as locking?

• Language interoperability is a problem
– Most TSTT tools are in C++, most target applications are in 

Fortran
– How can we avoid the “least common denominator” solution?
– Exploring the SIDL/Babel language interoperability tool

Complex Applications CCA
Common Component Architecture

42

Summary
• Complex applications that use components are possible

– Combustion
– Chemistry applications
– Optimization problems
– Climate simulations

• Component reuse is significant
– Adaptive Meshes
– Linear Solvers (PETSc, Trilinos)
– Distributed Arrays and MxN Redistribution
– Time Integrators
– Visualization

• Examples shown here leverage and extend parallel software and 
interfaces developed at different institutions

– Including CUMULVS, ESI, GrACE, LSODE, MPICH, PAWS, PETSc, PVM, TAO, 
Trilinos, TSTT.

• Performance is not significantly affected by component use
• Definition of domain-specific common interfaces is key

Complex Applications CCA
Common Component Architecture

43

Componentizing your own application

• The key step:  think about the decomposition strategy
– By physics module?
– Along numerical solver functionality?
– Are there tools that already exist for certain pieces? (solvers,

integrators, meshes?)
– Are there common interfaces that already exist for certain 

pieces? 
– Be mindful of the level of granularity

• Decouple the application into pieces
– Can be a painful, time-consuming process

• Incorporate CCA-compliance
• Compose your new component application
• Enjoy!


