
Welcome

CCA Tutorial 1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

1

Welcome to the
Common Component Architecture

Tutorial
SC2003

17 November, 2003

CCA
Common Component Architecture

2

Agenda & Table of Contents

Lori Freitag Diachin, LLNL246CCA Status and Plans4:30-5:00pm

Lori Freitag Diachin, LLNL203A Look at More Complex CCA
Applications

3:30-4:30pm
Break3:00-3:30pm

Boyana Norris, ANL &
Rob Armstrong, SNL

178Using Ccaffeine2:15-3:00pm

Boyana Norris, ANL &
Rob Armstrong, SNL

140Writing CCA Components1:30-2:15pm
Lunch12:00-1:30pm

Boyana Norris, ANL &
Rob Armstrong, SNL

121A Simple CCA Example11:30am-12:00pm
Gary Kumfert, LLNL85Language Interoperability with Babel10:30-11:30am

Break10:00-10:30am
David Bernholdt, ORNL53CCA Concepts9:15-10:00am
David Bernholdt, ORNL8Introduction to Components8:35-9:15am
David Bernholdt, ORNL1Welcome8:30-8:35am
PresenterSlide No.TitleTime

Welcome

CCA Tutorial 2

CCA
Common Component Architecture

3

Who Are We?
(And Where Did We Come From?)

• ACTS Toolkit Interoperability Effort (Late 1990’s)
– Part of DOE 2000, Many Tool Integration Projects

• “One-to-One”, Leading to N2 Solutions…

• Common Component Architecture Forum (1998)
– Goal: To Develop a General Interoperability Solution
– Grass Roots Effort to Explore High-Performance

Components for Scientific Software
• SciDAC Center for Component Technology for

Terascale Simulation Software (CCTTSS, 2001)
– Part of New DOE Scientific Simulation Program
– Technology Development in Several Thrust Areas…

CCA
Common Component Architecture

4

The Common Component Architecture
(CCA) Forum

• Define Specifications for High-Performance Scientific
Components & Frameworks

• Promote and Facilitate Development of Domain-Specific
“Standard” Interfaces

• Goal: Interoperability between components developed
by different expert teams across different institutions

• Quarterly Meetings, Open membership…

http://www.cca-forum.org/
Mailing List: cca-forum@cca-forum.org

Welcome

CCA Tutorial 3

CCA
Common Component Architecture

5

Center for Component Technology for
Terascale Simulation Software (CCTTSS)

• DOE SciDAC ISIC ($16M over
5 years)
– SciDAC = Scientific Discovery

through Advanced Computing
– ISIC = Integrated Software

Infrastructure Center
– Funded by Office of

Mathematical, Information and
Computational Sciences
(MICS)

• Develop CCA technology from
current prototype stage to full
production environment

• Increase understanding of how
to use component architectures
effectively in HPC environments

• Subset of CCA Forum
• Participants: ANL, LLNL, LANL,

ORNL, PNNL, SNL, Indiana
University, University of Utah

• Lead PI: Rob Armstrong, SNL
rob@sandia.gov

• http://www.cca-forum.org/ccttss/

CCA
Common Component Architecture

6

CCTTSS Research Thrust Areas
and Main Working Groups

• Scientific Components
– Scientific Data Objects
Lois Curfman McInnes, ANL (curfman@mcs.anl.gov)

• “MxN” Parallel Data Redistribution
Jim Kohl, ORNL (kohlja@ornl.gov)

• Frameworks
– Language Interoperability / Babel / SIDL
– Component Deployment / Repository
Gary Kumfert, LLNL (kumfert@llnl.gov)

• User Outreach
David Bernholdt, ORNL (bernholdtde@ornl.gov)

Welcome

CCA Tutorial 4

CCA
Common Component Architecture

7

Acknowledgements
• CCA Forum Tutorial WG

– Rob Armstrong, David Bernholdt, Wael Elwasif, Lori Freitag, Dan Katz,
Jim Kohl, Gary Kumfert, Lois Curfman McInnes, Boyana Norris, Craig
Rasmussen, Jaideep Ray, Sameer Shende, Torsten Wilde, Shujia Zhou

– ANL, JPL, LANL, LLNL, NASA/Goddard, ORNL, SNL, U Oregon

• And many more contributing to CCA itself…
– ANL – Lori Freitag Diachin, Kate Keahey, Jay Larson, Ray Loy, Lois

Curfman McInnes, Boyana Norris, …
– Indiana University - Randall Bramley, Dennis Gannon, …
– JPL – Dan Katz, …
– LANL - Craig Rasmussen, Matt Sotille, …
– LLNL – Lori Freitag Diachin, Tom Epperly, Scott Kohn, Gary Kumfert, …
– NASA/Goddard – Shujia Zhou
– ORNL - David Bernholdt, Wael Elwasif, Jim Kohl, Torsten Wilde, …
– PNNL - Jarek Nieplocha, Theresa Windus, …
– SNL - Rob Armstrong, Ben Allan, Lori Freitag Diachin, Curt Janssen,

Jaideep Ray, …
– University of Oregon – Allen Malony, Sameer Shende, …
– University of Utah - Steve Parker, …
– And others as well …

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

8

A Pictorial Introduction
to Components

in Scientific Computing

Welcome

CCA Tutorial 5

CCA
Common Component Architecture

9

Once upon a time...

Input

Output

Program

CCA
Common Component Architecture

10

As Scientific Computing grew...

Welcome

CCA Tutorial 6

CCA
Common Component Architecture

11

Tried to ease the bottle neck

CCA
Common Component Architecture

12

SPMD was born.

21

3 4

21

3 4

2

1

3

4

Welcome

CCA Tutorial 7

CCA
Common Component Architecture

13

SPMD worked.

21

3 4

21

3 4

2

1

3

4

But it
isn’t

easy!!!

But it
isn’t

easy!!!

CCA
Common Component Architecture

14

Meanwhile, corporate computing was growing
in a different way

Input

Output

Program

browser

spreadsheet

editor

graphics

databasemultimedia

email client

Unicode

Input

Welcome

CCA Tutorial 8

CCA
Common Component Architecture

15

This created a whole new set of problems
complexity

browser

spreadsheet

editor

graphics

databasemultimedia

email client

Unicode

• Interoperability across
multiple languages

• Interoperability across
multiple platforms

• Incremental evolution of
large legacy systems
(esp. w/ multiple 3rd
party software)

CCA
Common Component Architecture

16

Component Technology
addresses these problems

Welcome

CCA Tutorial 9

CCA
Common Component Architecture

17

So what’s a component ???
Implementation :
No Direct Access

Interface Access :
Generated by Tools

Matching Connector :
Assigned by Framework
Hidden from User

CCA
Common Component Architecture

18

1. Interoperability across
multiple languages

C

C++ F77 Java

Python

Language &
Platform

independent
interfaces

Automatically
generated

bindings to
working code

Welcome

CCA Tutorial 10

CCA
Common Component Architecture

19

2. Interoperability Across Multiple
Platforms

Imagine a company
migrates to a new

system, OS, etc.

What if the
source to

this one part
is lost???

CCA
Common Component Architecture

20

Transparent Distributed Computing

internetinternet

These wires
are very,

very smart!

Welcome

CCA Tutorial 11

CCA
Common Component Architecture

21

3. Incremental Evolution With
Multiple 3rd party software

v 1.0

v 2.0 v 3.0

CCA
Common Component Architecture

22

Now suppose you find this bug...

v 1.0

v 2.0 v 3.0

Welcome

CCA Tutorial 12

CCA
Common Component Architecture

23

Good news: an upgrade available

v 1.0

v 2.0 v 3.0

Bad news: there’s a dependency

2.1

2.0

CCA
Common Component Architecture

24

v 3.02.1

2.0

Great News:
Solvable with Components

Welcome

CCA Tutorial 13

CCA
Common Component Architecture

25

v 1.0

Great News:
Solvable with Components

2.1 v 3.0

2.0

CCA
Common Component Architecture

26

Why Components for Scientific Computing
Complexity

• Interoperability across
multiple languages

• Interoperability across
multiple platforms

• Incremental evolution of
large legacy systems
(esp. w/ multiple 3rd
party software)

Sapphire

SAMRAI

Ardra
Scientific Viz

DataFoundry

Overture

linear solvers hypre
nonlinear solvers

ALPS

JEEP

Welcome

CCA Tutorial 14

CCA
Common Component Architecture

27

The Model for Scientific Component
Programming

Science

Industry

?CCA

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

28

Components for Scientific Computing:
An Introduction

Welcome

CCA Tutorial 15

CCA
Common Component Architecture

29

Goals of This Module

• Introduce basic concepts and vocabulary of
component-based software engineering

• Highlight the special demands of high-performance
scientific computing on component environments

• Provide a unifying context for the remaining talks
– And to consider what components might do for your

applications

CCA
Common Component Architecture

30

Motivation: Modern Scientific Software
Engineering Challenges

• Productivity
– Time to first solution (prototyping)
– Time to solution (“production”)
– Software infrastructure requirements (“other stuff needed”)

• Complexity
– Increasingly sophisticated models
– Model coupling – multi-scale, multi-physics, etc.
– “Interdisciplinarity”

• Performance
– Increasingly complex algorithms
– Increasingly complex computers
– Increasingly demanding applications

Welcome

CCA Tutorial 16

CCA
Common Component Architecture

31

Motivation: For Library Developers

• People want to use your software, but need wrappers
in languages you don’t support
– Many component models provide language interoperability

• Discussions about standardizing interfaces are often
sidetracked into implementation issues
– Components separate interfaces from implementation

• You want users to stick to your published interface
and prevent them from stumbling (prying) into the
implementation details
– Most component models actively enforce the separation

CCA
Common Component Architecture

32

Motivation: For Application Developers
and Users

• You have difficulty managing multiple third-party
libraries in your code

• You (want to) use more than two languages in your
application

• Your code is long-lived and different pieces evolve at
different rates

• You want to be able to swap competing
implementations of the same idea and test without
modifying any of your code

• You want to compose your application with some
other(s) that weren’t originally designed to be
combined

Welcome

CCA Tutorial 17

CCA
Common Component Architecture

33

Some Observations About Software…

• “The complexity of software is an essential
property, not an accidental one.” [Brooks]
– We can’t get rid of complexity

• “Our failure to master the complexity of
software results in projects that are late, over
budget, and deficient in their stated
requirements.” [Booch]
– We must find ways to manage it

CCA
Common Component Architecture

34

More Observations…

• “A complex system that works is invariably
found to have evolved from a simple system
that worked… A complex system designed
from scratch never works and cannot be
patched up to make it work.” [Gall]
– Build up from simpler pieces

• “The best software is code you don’t have to
write” [Jobs]
– Reuse code wherever possible

Welcome

CCA Tutorial 18

CCA
Common Component Architecture

35

Not All Complexity is “Essential”
• An example of how typical development practices can

exacerbate the complexity of software development…
• At least 41 different Fast Fourier Transform (FFT)

libraries:
– see, http://www.fftw.org/benchfft/doc/ffts.html

• Many (if not all) have different interfaces
– different procedure names and different input and output

parameters
• Example: SUBROUTINE FOUR1(DATA, NN, ISIGN)

– “Replaces DATA by its discrete Fourier transform (if ISIGN is
input as 1) or replaces DATA by NN times its inverse discrete
Fourier transform (if ISIGN is input as -1). DATA is a complex
array of length NN or, equivalently, a real array of length 2*NN.
NN MUST be an integer power of 2 (this is not checked for!).”

CCA
Common Component Architecture

36

Component-Based Software
Engineering

• CBSE methodology is emerging, especially from business
and internet areas

• Software productivity
– Provides a “plug and play” application development environment
– Many components available “off the shelf”
– Abstract interfaces facilitate reuse and interoperability of software

• Software complexity
– Components encapsulate much complexity into “black boxes”
– Plug and play approach simplifies applications
– Model coupling is natural in component-based approach

• Software performance (indirect)
– Plug and play approach and rich “off the shelf” component library

simplify changes to accommodate different platforms

Welcome

CCA Tutorial 19

CCA
Common Component Architecture

37

A Simple Example:
Numerical Integration Components

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Interoperable components
(provide same interfaces)

CCA
Common Component Architecture

38

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Provided Components

Hides compexity: Driver
doesn’t care that
MonteCarloIntegrator
needs a random
number generator

Welcome

CCA Tutorial 20

CCA
Common Component Architecture

39

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

40

Application 3…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Welcome

CCA Tutorial 21

CCA
Common Component Architecture

41

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA
Common Component Architecture

42

What are Components?
• No universally accepted definition…yet

• A unit of software development/deployment/reuse
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use
– Can be developed independently of other components

• Interacts with the outside world only through well-
defined interfaces
– Implementation is opaque to the outside world
– Components may maintain state information
– But external access to state info must be through an interface (not a

common block)
– File-based interactions can be recast using an “I/O component”

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces

Welcome

CCA Tutorial 22

CCA
Common Component Architecture

43

What is a Component Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which are composed to form an

application and executed (framework)
– The rights and responsibilities of the framework

CCA
Common Component Architecture

44

Interfaces, Interoperability, and Reuse

• Interfaces define how components interact…
• Therefore interfaces are key to interoperability and

reuse of components

• In many cases, “any old interface” will do, but…
• General plug and play interoperability requires

multiple implementations providing the same
interface

• Reuse of components occurs when they provide
interfaces (functionality) needed in multiple
applications

Welcome

CCA Tutorial 23

CCA
Common Component Architecture

45

Designing for Reuse, Implications

• Designing for interoperability and reuse requires
“standard” interfaces
– Typically domain-specific
– “Standard” need not imply a formal process, may mean

“widely used”

• Generally means collaborating with others

• Higher initial development cost (amortized over
multiple uses)

• Reuse implies longer-lived code
– thoroughly tested
– highly optimized
– improved support for multiple platforms

CCA
Common Component Architecture

46

Relationships:
Components, Objects, and Libraries

• Components are typically discussed as objects or
collections of objects
– Interfaces generally designed in OO terms, but…
– Component internals need not be OO
– OO languages are not required

• Component environments can enforce the use of
published interfaces (prevent access to internals)
– Libraries can not

• It is possible to load several instances (versions) of a
component in a single application
– Impossible with libraries

• Components must include some code to interface
with the framework/component environment
– Libraries and objects do not

Welcome

CCA Tutorial 24

CCA
Common Component Architecture

47

Domain-Specific Frameworks vs
Generic Component Architectures

Domain-Specific
• Often known as

“frameworks”
• Provide a significant

software infrastructure to
support applications in a
given domain
– Often attempts to generalize

an existing large application
• Often hard to adapt to use

outside the original domain
– Tend to assume a particular

structure/workflow for
application

• Relatively common

Generic
• Provide the infrastructure to

hook components together
– Domain-specific

infrastructure can be built as
components

• Usable in many domains
– Few assumptions about

application
– More opportunities for reuse

• Better supports model
coupling across traditional
domain boundaries

• Relatively rare at present
– Commodity component

models often not so useful
in HPC scientific context

CCA
Common Component Architecture

48

Special Needs of Scientific HPC

• Support for legacy software
– How much change required for component environment?

• Performance is important
– What overheads are imposed by the component

environment?
• Both parallel and distributed computing are important

– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

Welcome

CCA Tutorial 25

CCA
Common Component Architecture

49

Commodity Component Models

• CORBA, COM, Enterprise JavaBeans
– Arise from business/internet software world

• Componentization requirements can be high
• Can impose significant performance overheads
• No recognition of tightly-coupled parallelism
• May be platform specific
• May have language constraints
• May not support common scientific data types

CCA
Common Component Architecture

50

The “Sociology” of Components

• Components need to be shared to be truly useful
– Sharing can be at several levels

• Source, binaries, remote service
– Various models possible for intellectual property/licensing

• Components with different IP constraints can be mixed in a
single application

• Peer component models facilitate collaboration of
groups on software development
– Group decides overall architecture and interfaces
– Individuals/sub-groups create individual components

Welcome

CCA Tutorial 26

CCA
Common Component Architecture

51

Who Writes Components?

• “Everyone” involved in creating an application
can/should create components
– Domain scientists as well as computer scientists and applied

mathematicians
– Most will also use components written by other groups

• Allows developers to focus on their interest/specialty
– Get other capabilities via reuse of other’s components

• Sharing components within scientific domain allows
everyone to be more productive
– Reuse instead of reinvention

• As a unit of publication, a well-written and –tested
component is like a high-quality library
– Should receive same degree of recognition
– Often a more appropriate unit of publication/recognition than

an entire application code

CCA
Common Component Architecture

52

Summary

• Components are a software engineering tool to help
address software productivity and complexity

• Important concepts: components, interfaces,
frameworks, composability, reuse

• Scientific component environments come in “domain
specific” and “generic” flavors

• Scientific HPC imposes special demands on
component environments
– Which commodity tools may have trouble with

Welcome

CCA Tutorial 27

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

53

Common Component Architecture
Concepts

CCA
Common Component Architecture

54

Goals

• Introduce the motivation and essential
features of the Common Component
Architecture

• Provide common vocabulary for remainder of
tutorial

• What distinguishes CCA from other
component environments?

Welcome

CCA Tutorial 28

CCA
Common Component Architecture

55

What is the CCA? (User View)

• A component model specifically designed for high-
performance scientific computing

• Minimalist approach makes it easier to componentize
existing software

• A tool to enhance the productivity of scientific
programmers
– Make the hard things easier, make some intractable things

tractable
– Support & promote reuse & interoperability
– Not a magic bullet

CCA
Common Component Architecture

56

What is the CCA? (Technical View)

• CCA is a specification of a component environment
– A design pattern
– Defines rights and responsibilities of a CCA component
– Defines how CCA components express their interfaces
– Defines rights and responsibilities of a CCA framework

• “CCA compliant” means conforming to the
specification
– Doesn’t require using any of our code

• CCA specification is decided by the CCA Forum
– Membership in the CCA Forum is open to all

Welcome

CCA Tutorial 29

CCA
Common Component Architecture

57

CCA Concepts: Components

• Components provide/use one or more ports
– A component with no ports isn’t very interesting

• Components include some code which
interacts with a CCA framework

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

58

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports
– In OO languages, a port is a class or interface
– In Fortran, a port is a bunch of subroutines or a module

• Components may provide ports – implement the
class or subroutines of the port ()

• Components may use ports – call methods or
subroutines in the port ()

• Links between ports denote a procedural
(caller/callee) relationship, not dataflow!
– e.g., FunctionPort could contain: evaluate(in Arg, out Result)

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

“Provides” Port

“Uses” Port

Welcome

CCA Tutorial 30

CCA
Common Component Architecture

59

CCA Concepts: Frameworks

• The framework provides the means to “hold”
components and compose them into applications

• Frameworks allow connection of ports without
exposing component implementation details

• Frameworks provide a small set of standard services
to components

• Currently: specific frameworks support specific
computing models (parallel, distributed, etc.)

• Future: full flexibility through integration or
interoperation

CCA
Common Component Architecture

60

Components and Ports
in the Integrator Example

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

Welcome

CCA Tutorial 31

CCA
Common Component Architecture

61

Writing Components

• Components…
– Inherit from gov.cca.Component

• Implement setServices method to register ports this
component will provide and use

– Implement the ports they provide
– Use ports on other components

• getPort/releasePort from framework Services object

• Interfaces (ports) extend gov.cca.Port

Much more detail later in the tutorial!

CCA
Common Component Architecture

62

Adapting Existing Code into
Components

Suitably structured code (programs, libraries) should be
relatively easy to adapt to the CCA. Here’s how:

1. Decide level of componentization
– Can evolve with time (start with coarse components, later

refine into smaller ones)

2. Define interfaces and write wrappers between them
and existing code

3. Add framework interaction code for each component
– setServices

4. Modify component internals to use other
components as appropriate
– getPort, releasePort and method invocations

Welcome

CCA Tutorial 32

CCA
Common Component Architecture

63

Writing Frameworks
• There is no reason for most people to write

frameworks – just use the existing ones!
• Frameworks must provide certain ports…

– ConnectionEventService
• Informs the component of connections

– AbstractFramework
• Allows the component to behave as a framework

– BuilderService
• Instantiate components & connect ports

– ComponentRepository
• A default place where components are found

• Frameworks must be able to load components
– Typically shared object libraries, can be statically linked

• Frameworks must provide a way to compose
applications from components

CCA
Common Component Architecture

64

Component
Lifecycle

• Composition Phase (assembling application)
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase (running application)
– Code in components uses functions provided by another

component

• Decomposition Phase (termination of application)
– Connections between component interfaces may be broken
– Component may be destroyed

In an application, individual components may be in
different phases at different times

Steps may be under human or software control

We’ll look at actual
code in next

tutorial module

Welcome

CCA Tutorial 33

CCA
Common Component Architecture

65

User Viewpoint:
Loading and Instantiating Components

create Driver Driver
create LinearFunction LinearFunction
create MonteCarloIntegrator MonteCarloIntegrator

•Details are framework-specific!

•Ccaffeine currently provides both
command line and GUI approaches

• Components are code +
metadata

• Using metadata, a Palette
of available components is
constructed

• Components are
instantiated by user action
(i.e. by dragging from
Palette into Arena)

• Framework calls
component’s constructor,
then setServices

CCA
Common Component Architecture

66

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

User Connects Ports
• Can only connect uses &

provides
– Not uses/uses or

provides/provides
• Ports connected by type, not

name
– Port names must be unique

within component
– Types must match across

components
• Framework puts info about

provider of port into using
component’s Services object

Welcome

CCA Tutorial 34

CCA
Common Component Architecture

67

Composition PhaseComposition Phase

Framework Mediates Most
Component Interactions

Integrator

Integrator code
getPort(Fun)

y=Fun(x)
releasePort(Fun)

Framework interaction code
constructor setServices destructor

CCA.Services
provides Result

uses Fun

LinearFunction

Function code
Fun(x) = 3 * x + 17

CCA.Services
provides Fun

Framework interaction code
constructor setServices destructor

1

2

1’

2’3

5

46

Execution Phase
* Method invocation need not
be mediated by the framework!

*

CCA
Common Component Architecture

68

Component’s View of Instantiation
• Framework calls component’s

constructor
• Component initializes internal

data, etc.
– Knows nothing outside itself

• Framework calls component’s
setServices
– Passes setServices an object

representing everything “outside”
– setServices declares ports

component uses and provides
• Component still knows nothing

outside itself
– But Services object provides the

means of communication w/
framework

• Framework now knows how to
“decorate” component and how it
might connect with others

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

MonteCarloIntegrator

Integrator code

Framework interaction code
constructor setServices destructor

CCA.Services
provides IntegratorPort

uses FunctionPort,
RandomGeneratorPort

Welcome

CCA Tutorial 35

CCA
Common Component Architecture

69

Component’s View
of Connection

• Framework puts info
about provider into user
component’s Services
object
– MonteCarloIntegrator’s

Services object is aware
of connection

– NonlinearFunction is
not!

• MCI’s integrator code
cannot yet call functions
on FunctionPort

NonlinearFunction

Function code

CCA.Services
provides FunctionPort

Framework interaction code
MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

CCA
Common Component Architecture

70

Component’s View of Using a Port

MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

• User calls getPort to obtain
(handle for) port from Services
– Finally user code can “see”

provider
• Cast port to expected type

– OO programming concept
– Insures type safety
– Helps enforce declared

interface
• Call methods on port

– e.g.
sum = sum + function->evaluate(x)

• Release port

Welcome

CCA Tutorial 36

CCA
Common Component Architecture

71

CCA Supports Local, Parallel and
Distributed Computing

• “Direct connection” preserves high
performance of local (“in-process”)
components

• Framework makes connection
• But is not involved in invocation

• Distributed computing has same
uses/provides pattern, but
framework intervenes between user
and provider

• Framework provides a proxy
provides port local to the uses
port

• Framework conveys invocation
from proxy to actual provides port

Integrator Linear Fun
Provides/Uses

Port

Direct Connection

Integrator

Linear Fun

Provides
Port

Network
Connection

Proxy Provides/
UsesPort

CCA
Common Component Architecture

72

CCA Concepts: “Direct Connection”
Maintains Local Performance

• Calls between components equivalent to a C++
virtual function call: lookup function location, invoke it
– Cost equivalent of ~2.8 F77 or C function calls
– ~48 ns vs 17 ns on 500 MHz Pentium III Linux box

• Language interoperability can impose additional
overheads
– Some arguments require conversion
– Costs vary, but small for typical scientific computing needs

• Calls within components have no CCA-imposed
overhead

• Implications
– Be aware of costs
– Design so inter-component calls do enough work that

overhead is negligible

Welcome

CCA Tutorial 37

CCA
Common Component Architecture

73

How Does Direct Connection Work?

• Components loaded into separate namespaces in the
same address space (process) from shared libraries

• getPort call returns a pointer to the port’s function
table

• All this happens “automatically” – user just sees high
performance
– Description reflects Ccaffeine implementation, but similar or

identical mechanisms are in other direct connect fwks

• Many CORBA implementations offer a similar
approach to improve performance, but using it
violates the CORBA standards!

CCA
Common Component Architecture

74

CCA Concepts: Framework Stays “Out
of the Way” of Component Parallelism

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Each process loaded with the
same set of components wired
the same way

Other component models
ignore parallelism entirely

Welcome

CCA Tutorial 38

CCA
Common Component Architecture

75

Scalability of Scientific Data Components
in CFRFS Combustion Applications

• Investigators: S. Lefantzi, J. Ray,
and H. Najm (SNL)

• Uses GrACEComponent,
CvodesComponent, etc.

• Shock-hydro code with no
refinement

• 200 x 200 & 350 x 350 meshes
• Cplant cluster

– 400 MHz EV5 Alphas
– 1 Gb/s Myrinet

• Negligible component overhead
• Worst perf : 73% scaling efficiency

for 200x200 mesh on 48 procs

Reference: S. Lefantzi, J. Ray, and H. Najm, Using the Common Component Architecture to Design High Performance
Scientific Simulation Codes, Proc of Int. Parallel and Distributed Processing Symposium, Nice, France, 2003.

CCA
Common Component Architecture

76

• Simulation composed of multiple SCMD sub-tasks

• Usage Scenarios:
– Model coupling (e.g. Atmosphere/Ocean)
– General multi-physics applications
– Software licensing issues

• Approaches
– Run single parallel framework

• Driver component that partitions processes and builds rest of
application as appropriate (through BuilderService)

– Run multiple parallel frameworks
• Link through specialized communications components (e.g. MxN)
• Link as components (through AbstractFramework service; highly

experimental at present)

“Multiple-Component Multiple-Data”
Applications in CCA

OceanAtmosphere Land
Driver

Coupler (MxN)

Welcome

CCA Tutorial 39

CCA
Common Component Architecture

77

Components only on
process group B Group B

MCMD Within A Single Framework

Components on all
processes

Application driver & MCMD
support component

P0 P1 P2 P3

Framework

Components only on
process group A

Group A

Working examples available
using Ccaffeine framework,
with driver coded in Python

CCA
Common Component Architecture

78

CCA Concepts:
MxN Parallel Data Redistribution

• Share Data Among Coupled Parallel Models
– Disparate Parallel Topologies (M processes vs. N)
– e.g. Ocean & Atmosphere, Solver & Optimizer…
– e.g. Visualization (Mx1, increasingly, MxN)

Research area -- tools under development

Welcome

CCA Tutorial 40

CCA
Common Component Architecture

79

CCA Concepts:
Language Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java
Babel tutorial
coming up!

Few other component models support all languages
and data types important for scientific computing

CCA
Common Component Architecture

80

Performance Issues (Redux)

• No CCA overhead on calls within components

• CCA-related overheads on calls to other ports
– Invocation cost (small for direct connection)
– Language interoperability costs (“translate” some data types)
– Design application architecture to minimize overheads

• Methods in ports should do enough work to amortize overheads
• Language costs can be minimized for most scientific computing

• No CCA overhead on parallel interactions

• Costs for distributed computing depend on network
protocols, etc.

Welcome

CCA Tutorial 41

CCA
Common Component Architecture

81

Advanced CCA Concepts

• Components are peers
– Application architecture determines relationships, not CCA

specification

• Frameworks provide a BuilderService which allows
programmatic composition of components

• Frameworks may present themselves as components
to other frameworks

• A “traditional” application can treat a CCA framework
as a library

CCA
Common Component Architecture

82

What the CCA isn’t…
• CCA doesn’t specify who owns “main”

– CCA components are peers
– Up to application to define component relationships

• “Driver component” is a common design pattern

• CCA doesn’t specify a parallel programming environment
– Choose your favorite
– Mix multiple tools in a single application

• CCA doesn’t specify I/O
– But it gives you the infrastructure to create I/O components
– Use of stdio may be problematic in mixed language env.

• CCA doesn’t specify interfaces
– But it gives you the infrastructure to define and enforce them
– CCA Forum supports & promotes “standard” interface efforts

• CCA doesn’t require (but does support) separation of
algorithms/physics from data

Welcome

CCA Tutorial 42

CCA
Common Component Architecture

83

What the CCA is…

• CCA is a specification for a component environment
–Fundamentally, a design pattern
–Multiple “reference” implementations exist
–Being used by applications

• CCA increases productivity
–Supports and promotes software interopability and reuse
–Provides “plug-and-play” paradigm for scientific software

• CCA offers the flexibility to architect your application as
you think best

–Doesn’t dictate component relationships, programming models, etc.
–Minimal performance overhead
–Minimal cost for incorporation of existing software

• CCA provides an environment in which domain-specific
application frameworks can be built

–While retaining opportunities for software reuse at multiple levels

CCA
Common Component Architecture

84

Concept Review
• Ports

– Interfaces between components
– Uses/provides model

• Framework
– Allows assembly of components into applications

• Direct Connection
– Maintain performance of local inter-component calls

• Parallelism
– Framework stays out of the way of parallel components

• MxN Parallel Data Redistribution
– Model coupling, visualization, etc.

• Language Interoperability
– Babel, Scientific Interface Definition Language (SIDL)

Welcome

CCA Tutorial 43

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

85

Language Interoperable
CCA Components via

CCA
Common Component Architecture

86

Goal of This Module

Legacy codes Babelized CCA Components

• Introduction To:
– Babel
– SIDL

• See Babel in use
– “Hello World” example
– Legacy Code (Babel-wrapped MPI)
– CCA Tutorial Example (Numerical Integration)

• Relationship between Babel & CCA

Welcome

CCA Tutorial 44

CCA
Common Component Architecture

87

What I mean by
“Language Interoperability”

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(f77)

Scripting Driver
(Python)

Visualization System
(Java)

Callback Handlers
(Python)

Callback Handlers
(Python)

CCA
Common Component Architecture

88

One reason why mixing
languages is hard Native

cfortran.h

SWIG

JNI

Siloon

Chasm

Platform
Dependent

C

C++

f77

f90

Python

Java

Welcome

CCA Tutorial 45

CCA
Common Component Architecture

89

Babel makes all supported
languages peers

C

C++

f77

f90

Python

Java

Once a library has been
“Babelized” it is equally

accessable from all
supported languages

This is not a
Lowest Common

Denominator
Solution!

CCA
Common Component Architecture

90

Babel Module’s Outline

• Introduction
• Babel Basics

– How to use Babel in a “Hello World” Example
– SIDL Grammar
– Example: Babel & Legacy Code

• Babel & CCA
– Relationship between them
– How to write a Babelized CCA Component

Welcome

CCA Tutorial 46

CCA
Common Component Architecture

91

Babel’s Two Parts:
Code Generator + Runtime Library

SIDL
interface

description

Babel
Compiler

C++

F77

F90

Python

C

XML

Matlab?

Java

Babel
Runtime

Application

CCA
Common Component Architecture

92

greetings.sidl: A Sample SIDL File

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

Welcome

CCA Tutorial 47

CCA
Common Component Architecture

93

Library Developer Does This...

1. `babel --server=C++ greetings.sidl`
2. Add implementation details
3. Compile & Link into Library/DLL

SIDL
interface

description

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so

CCA
Common Component Architecture

94

Adding the Implementation

string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

Welcome

CCA Tutorial 48

CCA
Common Component Architecture

95

Library User Does This...

1. `babel --client=F90 greetings.sidl`
2. Compile & Link generated Code & Runtime
3. Place DLL in suitable location

SIDL
interface

description

Babel
Compiler IOR

Headers

F90 Stubs

libgreetings.so

Babel
Runtime

Application

CCA
Common Component Architecture

96

F90/Babel “Hello World” Application
program helloclient

use greetings_English

implicit none

type(greetings_English_t) :: obj

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj)

call setName(obj, name)

call sayIt(obj, msg)

call deleteRef(obj)

print *, msg

end program helloclient

These subroutines
come from directly
from the SIDL

Some other subroutines
are “built in” to every
SIDL class/interface

Welcome

CCA Tutorial 49

CCA
Common Component Architecture

97

SIDL Grammar (1/3):
Packages and Versions

• Packages can be nested

• Versioned Packages
– defined as packages with explicit version number

OR packages enclosed by a versioned package
– Reentrant by default, but can be declared final
– May contain interfaces, classes, or enums

• Unversioned Packages
– Can only enclose more packages, not types
– Must be re-entrant. Cannot be declared final

package foo version 0.1 { package bar { ... } }

CCA
Common Component Architecture

98

SIDL Grammar (2/3):
Classes & Interfaces

• SIDL has 3 user-defined objects
– Interfaces – APIs only, no implementation
– Abstract Classes – 1 or more methods unimplemented
– Concrete Classes – All methods are implemented

• Inheritance (like Java/Objective C)
– Interfaces may extend Interfaces
– Classes extend no more than one Class
– Classes can implement multiple Interfaces

• Only concrete classes can be instantiated

Welcome

CCA Tutorial 50

CCA
Common Component Architecture

99

SIDL Grammar (3/3):
Methods and Arguments

• Methods are public virtual by default
– static methods are not associated with an object

instance
– final methods can not be overridden

• Arguments have 3 parts
– Mode: can be in, out, or inout (like CORBA, but

semantically different than F90)
– Type: one of (bool, char, int, long, float, double,

fcomplex, dcomplex, array<Type,Dimension>, enum,
interface, class)

– Name

CCA
Common Component Architecture

100

Babelizing Legacy Code

1. Write your SIDL interface
2. Generate server side in your native langauge
3. Edit Implementation (Impls) to dispatch to your code

(Do NOT modify the legacy library itself!)
4. Compile & Link into Library/DLL

mycode.sidl Babel
Compiler Skels

Impls

IORs

Stubs

libmycode.so

legacy_library.so

Welcome

CCA Tutorial 51

CCA
Common Component Architecture

101

Known Projects Using Babel
(see www.llnl.gov/CASC/components/gallery.html for more)

I implemented a Babel-based interface
for the hypre library of linear equation
solvers. The Babel interface was
straightforward to write and gave us
interfaces to several languages for less
effort than it would take to interface to a
single language.

--Jeff Painter, LLNL.

research.cs.vt.edu/lacsa

CCA
Common Component Architecture

102

Babel & Legacy Code (e.g. MPI)

package mpi version 2.0 {
class Comm {

int send[Int](in array<int,1,row-major> data,
in int dest, in int tag);

...
}

}

mpi.sidl

Welcome

CCA Tutorial 52

CCA
Common Component Architecture

103

Babel & Legacy Code (e.g. MPI)
struct mpi_Comm__data {

/* DO-NOT-DELETE splicer.begin(mpi.Comm._data) */
MPI_Comm com;
/* DO-NOT-DELETE splicer.end(mpi.Comm._data) */

};

mpi_comm_Impl.h

int32_t
impl_mpi_Comm_sendInt(mpi_Comm self, SIDL_int__array data,

int32_t dest, int32_t tag) {
/* DO-NOT-DELETE splicer.begin(mpi.Comm.sendInt) */
struct mpi_Comm__data *dptr = mpi_Comm__get_data(self);
void * buff = (void*) SIDL_int__array_first(data);
int count = length(data);
return mpi_send(buff, count, MPI_INT, dest, tag, dptr->comm);
/* DO-NOT-DELETE splicer.end(mpi.Comm.sendInt) */

}

mpi_comm_Impl.c

CCA
Common Component Architecture

104

Investing in Babelization can improve
the interface to the code.

“When Babelizing LEOS [an equation of
state library at LLNL], I completely ignored
the legacy interface and wrote the SIDL the
way I thought the interface should be. After
running Babel to generate the code, I found
all the hooks I needed to connect LEOS
without changing any of it. Now I’ve got a
clean, new, object-oriented python interface
to legacy code. Babel is doing much more
than just wrapping here.”

-- Charlie Crabb, LLNL
(conversation)

Welcome

CCA Tutorial 53

CCA
Common Component Architecture

105

Babel Module’s Outline

• Introduction
• Babel Basics

– How to use Babel in a “Hello World” Example
– SIDL Grammar
– Example: Babel & Legacy Code

• Babel & CCA
– Relationship between them
– How to write a Babelized CCA Component

CCA
Common Component Architecture

106

SCIRun2

History of Babel & CCA

XCAT (Indiana)
SciRUN (Utah)
Ccaffeine (SNL)

Babel (LLNL)

Tutorial

Fr
am

ew
or
ks

Language

Interoperability

Applications
Data

MxN

Decaf

Babelized
Frameworks

t

Ccaffeine

Welcome

CCA Tutorial 54

CCA
Common Component Architecture

107

The CCA Spec is a SIDL File

package gov {

package cca version 0.6.2 {

interface Port { }

interface Component {

void setServices(in Services svcs);
}

interface Services {

Port getPort(in string portName);

registerUsesPort(/*etc*/);

addProvidesPort(/*etc*/);

/*etc*/

CCA
Common Component Architecture

108

The CCA from Babel’s POV

Welcome

CCA Tutorial 55

CCA
Common Component Architecture

109

Decaf:
Details & Disclaimers

• Babel is a hardened tool
• Decaf is an example, not a product

– Distributed in “examples” subdirectory of Babel
– Decaf has no GUI

• Decaf is CCA compliant
– Babelized CCA Components can be loaded into

Decaf, CCAFFEINE, and SCIRun2
• “Understanding the CCA Specification

Using Decaf”
http://www.llnl.gov/CASC/components/do
cs/decaf.pdf

CCA
Common Component Architecture

110

How I Implemented Decaf

1. wrote decaf.sidl file
2. `babel --server=C++ cca.sidl decaf.sidl`
3. Add implementation details
4. Compile & Link into Library/DLL

cca.sidl
&

decaf.sidl

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libdecaf.so

Welcome

CCA Tutorial 56

CCA
Common Component Architecture

111

How to Write and Use
Babelized CCA Components

1. Define “Ports” in SIDL
2. Define “Components” that implement those

Ports, again in SIDL
3. Use Babel to generate the glue-code
4. Write the guts of your component(s)

CCA
Common Component Architecture

112

How to Write A
Babelized CCA Component (1/3)

1. Define “Ports” in SIDL
– CCA Port =

• a SIDL Interface
• extends gov.cca.Port

package functions version 1.0 {
interface Function extends gov.cca.Port {

double evaluate(in double x);
}

}

Welcome

CCA Tutorial 57

CCA
Common Component Architecture

113

How to Write A
Babelized CCA Component (2/3)

2. Define “Components” that implement those Ports
– CCA Component =

• SIDL Class
• implements gov.cca.Component (& any provided ports)

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

CCA
Common Component Architecture

114

Tip: Use Babel’s XML output like
precompiled headers in C++

1. precompile SIDL into XML
--text=xml

2. store XML in a directory
3. Use Babel’s –R option to

specify search directories

cca.sidl Babel
Compiler XML

Type
Repository

functions.sidl Babel
Compiler Skels

Impls

IORs

Stubs

Welcome

CCA Tutorial 58

CCA
Common Component Architecture

115

How to Write A
Babelized CCA Component (3/3)

3. Use Babel to generate the glue code
– `babel --server=C –Rrepo function.sidl`

4. Add implementation details

SIDL
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

Repo
(XML)

CCA
Common Component Architecture

116

To Use the Decaf Framework

1. `babel --client=Java –Rrepo function.sidl`
2. Compile & Link generated Code & Runtime
3. Place DLLs in suitable location

SIDL files Babel
Compiler IOR

Headers

Java Stubs

Babel
Runtime

Application

Repo
(XML)

component1.so

libdecaf.so

Welcome

CCA Tutorial 59

CCA
Common Component Architecture

117

Limitations of Babel’s Approach
to Language Interoperabilty

• Babel is a code generator
– Do obscure tricks no one would do by hand
– Don’t go beyond published language standards

• Customized compilers / linkers / loaders beyond our
scope
– E.g. icc and gcc currently don’t mix on Linux
– E.g. No C++-style templates in SIDL. (Would require special

linkers/loaders to generate code for template instantiation,
like C++ does.)

• Babel makes language interoperability feasible, but
not trivial
– Build tools severely underpowered for portable multi-

language codes

CCA
Common Component Architecture

118

What’s the Hardest Part
of this Process?

• Properly building libraries for multi-language use
• Dynamically loadable .so files are especially error prone

– Not a lot of understanding or expertise in community
– Causality chain between improperly constructed DLLs and

observed bugs is often inscrutable and misleading

SIDL
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

Welcome

CCA Tutorial 60

CCA
Common Component Architecture

119

Summary
Legacy codes Babelized CCA Components

• Reclassify your objects in your legacy code
– Things customers create CCA components
– Logical groups of a component’s functionality CCA Port
– Low level objects in your implementation not exposed

• Generate SIDL File
– CCA port Babel Interface that extends the Babel interface

called “gov.cca.Port”
– CCA component Babel Class that implements the Babel

interface called “gov.cca.Component” (and possibly its
“provides ports”)

• Run Babel (choose server-language for your code)
• Articulate Impl files to dispatch to legacy code

CCA
Common Component Architecture

120

Contact Info
• Project: http://www.llnl.gov/CASC/components

– Babel: language interoperability tool
– Alexandria: component repository
– Quorum: web-based parliamentary system
– Gauntlet (coming soon): testing framework

• Bug Tracking: http://www-casc.llnl.gov/bugs
• Project Team Email: components@llnl.gov
• Mailing Lists: majordomo@lists.llnl.gov

subscribe babel-users [email address]
subscribe babel-announce [email address]

Welcome

CCA Tutorial 61

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

121

A Simple CCA Component Application

CCA
Common Component Architecture

122

Goals

Show how CCA components are used to build an
application to integrate numerically a continuous
function using two different integration techniques

1. What the example does: the math
2. From math to components: the architecture
3. The making of components: inheritance and ports
4. Framework-component interactions
5. Putting it all together: the Ccaffeine way

Welcome

CCA Tutorial 62

CCA
Common Component Architecture

123

The Math: Integrator (1)

)
2

()(
1

1∑∫
=

− +−
≈

n

j

jj
b

a

xx
f

n
abdxxf

The midpoint numerical integrator

a b x

)(xf

CCA
Common Component Architecture

124

The Math: Integrator (2)

The Monte Carlo integrator









−

≈ ∑∫
=

N

i
n

b

a

xf
Nab

dxxf
1

)(11)(

[]baxn ,in ddistributely Uniformal
xa b

)(xf

Welcome

CCA Tutorial 63

CCA
Common Component Architecture

125

The math: Functions

xxf 2)(1 =Linear Function

2
2)(xxf =Nonlinear Function

23 1
4)(
x

xf
+

=Pi Function

CCA
Common Component Architecture

126

Available Components

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPortGoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Driver

Welcome

CCA Tutorial 64

CCA
Common Component Architecture

127

The MonteCarloIntegrator Component

What makes it a component?
Inheritance from gov.cca.Component

integrators.Integrator gov.cca.Component

MonteCarloIntegrator

Inheritance Tree

Where does the provided IntegratorPort come from?
Inheritance from integrators.Integrator

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

CCA
Common Component Architecture

128

SIDL Definition of the Integrator Port

Port definitions are used by:
• Components implementing (providing) the port
• Components using the port

package example version 1.0 {
package ports version 1.0 {

package integrators version 1.0 {
interface Integrator extends gov.cca.Port
{

double integrate(in double lowBound, in double upBound, in int count);
}

}
…….
}

CCA ports must inherit
from gov.cca.Port, which
contains no methods

Welcome

CCA Tutorial 65

CCA
Common Component Architecture

129

SIDL Definition for a Component

package components version 1.0 {
package integrators version 1.0 {

class MonteCarloIntegrator implements-all ports.integrators.Integrator,
gov.cca.Component

{ }
……

}
….

}
}

CCA components must implement
the setServices() method defined
in gov.cca.Component

CCA components must implement
all of the ports they provide

implements-all is Babel shorthand
for listing all methods individually

CCA
Common Component Architecture

130

Interactions Between
Components and the Framework

• Framework-to-Component: setServices()
– Every CCA component must implement

setServices()
– Called by framework after the component is

instantiated.
– Allows the component to tell the framework

• Ports it provides
• Ports it uses

– Component should not acquire the port here –
Reason: it may not be there yet !!!!

Welcome

CCA Tutorial 66

CCA
Common Component Architecture

131

Component-to-Framework

• Mainly through Services object initially passed into
setServices().

• addProvidesPort(), registerUsesPort():
– Args: Component “pointer”, PortName, PortType,

PortProperties
– Used in setServices(), and sometimes elsewhere, to tell

framework what component will provide/use
• getPort(), releasePort()

– Called when component needs to actually invoke methods
on another port

– Matching using portType (not name).
• removeProvidesPort():

– When all is done.

CCA
Common Component Architecture

132

The Life Cycle Revisited
Framework

PiFunction

Create PiFunction

create
setServices()addProvidesPort()

setServices()

setServices()

setServices()

MonteCarloIntegrator

Create MonteCarloIntegrator

create

addProvidesPort()
registerUsesPort()

Construction

Connect MonteCarloIntegrator,
PiFunction

getPort()

evaluate()
integrate()

Execution

evaluate()

integrate()

132

Welcome

CCA Tutorial 67

CCA
Common Component Architecture

133

Actual Code for the
MonteCarloIntegrator Component

The following slides illustrate the actual code for
the component in C++

• setServices() method
• integrate() method

• .cca file (component metadata)

More examples to be
shown in detail later

CCA
Common Component Architecture

134

Example: setservices() in
MonteCarloIntegrator (C++)

………
frameworkServices = services;
if (frameworkServices._not_nil ()) {

gov::cca::TypeMap tm = frameworkServices.createTypeMap ();
gov::cca::Port p = self;
frameworkServices.addProvidesPort (p,

"IntegratorPort",
"integrators.Integrator", tm);

// The Ports I use
frameworkServices.registerUsesPort (

"FunctionPort",
"functions.Function", tm);

frameworkServices.registerUsesPort (
"RandomGeneratorPort",
"randomgen.RandomGenerator", tm);

………

portName

portProperties

portType

Welcome

CCA Tutorial 68

CCA
Common Component Architecture

135

Notes

• setServices() mainly used to inform the framework
which ports the current component provides and/or
uses.

• No actual connections between ports are established
in setServices(), since the “other” port may not yet
exist !!!

• portName is unique per component.
• portType identifies the “interface” that the port

implements (used to match user and provider).
• portProperties : list of port-specific key-value pairs.

CCA
Common Component Architecture

136

Example: integrate() in
MonteCarloIntegrator (C++)

………
example::ports::functions::Function functionPort;
example::ports::randomgen::RandomGenerator randomPort;
double sum = 0.0;
randomPort = frameworkServices.getPort ("RandomGeneratorPort");
functionPort = frameworkServices.getPort ("FunctionPort");
for (int i = 0; i < count; i++){

double x = lowBound + (upBound - lowBound) *
randomPort.getRandomNumber();

sum = sum + functionPort.evaluate(x);
}
frameworkServices.releasePort ("FunctionPort");
frameworkServices.releasePort ("RandomGeneratorPort");
return (upBound - lowBound) * sum / count;

………

Welcome

CCA Tutorial 69

CCA
Common Component Architecture

137

Putting it all together

• Getting the application to do something:
– Assembling the components into an application.
– Launching the Application.

• Application assembly:
– Framework need to be told what components to use, and

where to find them.
– Framework need to be told which uses port connects to

which provides port.
• Application execution: the GO port:

– Special provides port used to launch the application (after
connections are established).

– Has one method, go(), that is called by the framework to get
the application going.

CCA
Common Component Architecture

138

Oh Component , where art thou?
Component meta information

More details in the Ccaffeine Module

MonteCarloIntegrator.depl.cca
<componentDeployment

name=“example.components.integrators.MonteCarloIntegrator"
uniqueID=“norris@196.128.3.2#9.17.2003.dbg:/MonteCarloIntegrator"
palletClassAlias=“integrators_MonteCarlo">
<environment>

<ccaSpec binding="babel"/>
<library loading="dynamic"

name="libIntegrator-component-f90.so"
location="/home/norris/cca/tutorial/src/components/integrators/f90/lib" />

</environment>
</componentDeployment>

Welcome

CCA Tutorial 70

CCA
Common Component Architecture

139

App. Assembly The Ccafeine way
Command line “script”

GUI Interface

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

140

Writing Components

Welcome

CCA Tutorial 71

CCA
Common Component Architecture

141

Module Overview

• Goal: present a step-by-step approach to designing
and implementing CCA components

• Example application
• Steps involved in writing CCA components

1. Interface definition; ports
2. Defining SIDL packages
3. Component implementation

1. Framework interactions
2. Component interactions: uses and provides ports

4. Building

CCA
Common Component Architecture

142

Example Applications

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPortGoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

Rand-
RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

FunctionPort

MidpointIntegrator

IntegratorPort

Driver

Implement Integrator interface
Implement Function interface

Implements RandomGenerator interface

Welcome

CCA Tutorial 72

CCA
Common Component Architecture

143

Port Definitions

• Integrator
– Computes the integral of a scalar function

• Random number generator
– Generates a pseudo-random number

• Function
– Computes a scalar function

• Go
– Entry point into the application

CCA
Common Component Architecture

144

Components

• Integrators (provides IntegratorPort, uses FunctionPort)
– MonteCarloIntegrator (also uses RandomGeneratorPort)
– MidpointIntegrator
– ParallelIntegrator

• Functions (provides FunctionPort)
– LinearFunction
– NonlinearFunction
– PiFunction

• Random number generators (provides
RandomGeneratorPort)
– RandRandomGenerator

• Driver (provides GoPort, uses IntegratorPort)

Welcome

CCA Tutorial 73

CCA
Common Component Architecture

145

SIDL Packages

ports

functions randomgenintegrators

components

functions randomgen driversintegrators

Function Integrator RandomGenerator

example

package

Interface

Arrows represent package nesting.

MidpointIntegrator
MonteCarloIntegrator

ParallelIntegrator

LinearFunction
NonlinearFunction

PiFunction

RandRandomGenerator Driver

Class

CCA
Common Component Architecture

Organizing the SIDL into Files

ports

functions randomgenintegrators

components

functions randomgen driversintegrators

Function Integrator RandomGenerator

example

MidpointIntegrator
MonteCarloIntegrator

ParallelIntegrator

LinearFunction
NonlinearFunction

PiFunction

RandRandomGenerator Driver

examplePorts.sidl

exampleComponents.sidl

146

Welcome

CCA Tutorial 74

CCA
Common Component Architecture

147

examplePorts.sidlpackage example version 1.0 {
package ports version 1.0 {

package functions version 1.0 {
interface Function extends gov.cca.Port
{

double evaluate(in double x);
}

}
package integrators version 1.0 {
interface Integrator extends gov.cca.Port
{

double integrate(in double lowBound, in double upBound, in int count);
}

}
package randomgen version 1.0 {
interface RandomGenerator extends gov.cca.Port
{

double getRandomNumber();
}

}
}

}

CCA
Common Component Architecture

148

exampleComponents.sidl
package example version 1.0 {

package components version 1.0 {
package functions version 1.0 {
class LinearFunction implements-all ports.functions.Function, gov.cca.Component
{ }
class NonlinearFunction implements-all ports.functions.Function, gov.cca.Component
{ }
class PiFunction implements-all ports.functions.Function, gov.cca.Component
{ }

} // end package functions
package integrators version 1.0 {
class MonteCarloIntegrator implements-all ports.integrators.Integrator,

gov.cca.Component
{ }
class MidpointIntegrator implements-all ports.integrators.Integrator,

gov.cca.Component
{ }
class ParallelIntegrator implements-all ports.integrators.Integrator,

gov.cca.Component
{ }

} // end package integrators

Welcome

CCA Tutorial 75

CCA
Common Component Architecture

149

exampleComponents.sidl (cont.)
package randomgen version 1.0 {
class RandRandomGenerator implements-all ports.randomgen.RandomGenerator,

gov.cca.Component
{ }

}

// Driver component
package drivers version 1.0 {
class Driver implements-all gov.cca.ports.GoPort, gov.cca.Component
{ }

}
} // end package components

} // end package example

CCA
Common Component Architecture

150

Generating Code with Babel

> babel --text=XML --output-directory=repository cca.sidl \
examplePorts.sidl exampleComponents.sidl

Babel: Parsing URL "file:/cca/tutorial/src/cca.sidl"...
Babel: Parsing URL "file:/cca/tutorial/src/examplePorts.sidl"...
Babel: Parsing URL "file:/cca/tutorial/src/exampleComponents.sidl"...

Goals:
• Generate implementation skeletons for example

component classes only.
• Generate client stubs for interfaces and classes

example classes implement or extend, e.g., CCA Port
interface specification in cca.sidl.

• The XML representation equivalent to the SIDL
specification in cca.sidl, examplePorts.sidl, and
exampleComponents.sidl was generated and stored in the
repository directory.

Welcome

CCA Tutorial 76

CCA
Common Component Architecture

151

Generating Code with Babel (Cont.)

Package name

• Using the XML repository in the xml directory for name
resolution, the C++ client code for the example.ports
package interfaces is generated in the ports/c++
directory.

• Using the XML repository in the xml directory for name
resolution, the C++ client code for cca.sidl classes and
interfaces is generated in the cca-client/c++ directory.

> babel --client=C++ --repository-path=repository \
--output-directory=cca-client/c++ gov.cca

Babel: Resolved symbol “gov.cca"...
Package name

> babel --client=C++ --repository-path=repository \
--output-directory=ports/c++ example.ports

Babel: Resolved symbol "example.ports"...
> ls
cca-client/ cca.sidl components/ examplePorts.sidl
exampleComponents.sidl ports/ repository/

Package name

CCA
Common Component Architecture

152

Generating Code with Babel (Cont.)

> babel --server=C++ --repository-path=repository --hide-glue \
-o components/randomgen/c++ example.components.randomgen

> babel --server=C++ --repository-path=repository --hide-glue \
-o components/drivers/c++ example.components.drivers

> babel --server=C++ --repository-path=repository --hide-glue \
-o components/integrators/c++ \
example.components.integrators.MidpointIntegrator \
example.components.integrators.ParallelIntegrator

> babel --server=F90 --repository-path=repository --hide-glue \
-o components/integrators/f90 \
example.components.integrators.MonteCarloIntegrator

> babel --server=C++ --repository-path=repository --hide-glue \
-o components/functions/c++ example.components.functions

Babel: Resolved symbol "example.components.functions"...

• Using the XML repository in the xml directory for name
resolution, the C++ server and client code for the
example.components.functions package classes is
generated in the components/functions/c++ directory.

Welcome

CCA Tutorial 77

CCA
Common Component Architecture

153

components/drivers/c++/
|-- babel.make
|-- example_components_drivers_Driver_Impl.cc
|-- example_components_drivers_Driver_Impl.hh
`-- glue/

components/functions/c++/
|-- babel.make
|-- example_components_functions_LinearFunction_Impl.cc
|-- example_components_functions_LinearFunction_Impl.hh
|-- example_components_functions_NonlinearFunction_Impl.cc
|-- example_components_functions_NonlinearFunction_Impl.hh
|-- example_components_functions_PiFunction_Impl.cc
|-- example_components_functions_PiFunction_Impl.hh
`-- glue/

components/integrators/c++/
|-- babel.make
|-- example_components_integrators_MidpointIntegrator_Impl.cc
|-- example_components_integrators_MidpointIntegrator_Impl.hh
|-- example_components_integrators_ParallelIntegrator_Impl.cc
|-- example_components_integrators_ParallelIntegrator_Impl.hh
`-- glue/

components/integrators/f90/
|-- babel.make
|-- example_components_integrators_MonteCarloIntegrator_Impl.F90
|-- example_components_integrators_MonteCarloIntegrator _Mod.F90
`-- glue/

components/randomgen/c++/
|-- babel.make
|-- example_components_randomgen_RandRandomGenerator_Impl.cc
|-- example_components_randomgen_RandRandomGenerator_Impl.hh
`-- glue/

Resulting
Directory
Structure

CCA
Common Component Architecture

154

Component Implementation

• User code goes in *_Impl.* and/or *_Mod.*
files, always within splicer blocks:

// DO-NOT-DELETE splicer.begin(…)
// Put additional inheritance here...
// DO-NOT-DELETE splicer.end(…)

Welcome

CCA Tutorial 78

CCA
Common Component Architecture

namespace example {
namespace components {
namespace integrators {

/**
* Symbol "example.components.integrators.MidpointIntegrator" (version 1.0)
*/

class MidpointIntegrator_impl
// DO-NOT-DELETE splicer.begin(example.components.integrators.MidpointIntegrator._inherits)
// Put additional inheritance here...
// DO-NOT-DELETE splicer.end(example.components.integrators.MidpointIntegrator._inherits)
{

private:
// Pointer back to IOR.
// Use this to dispatch back through IOR vtable.
MidpointIntegrator self;

// DO-NOT-DELETE splicer.begin(example.components.integrators.MidpointIntegrator._implementation)
// Put additional implementation details here...

gov::cca::Services frameworkServices;
// DO-NOT-DELETE splicer.end(example.components.integrators.MidpointIntegrator._implementation)

… more Babel-generated code …

MidpointIntegrator Component: Header File Fragment (C++)
File: components/integrators/c++/example_components_integrators_MidpointIntegrator_Impl.hh

File generated by Babel.
One line added by programmer.

155

CCA
Common Component Architecture

156

// user defined constructor
void example::components::integrators::MidpointIntegrator_impl::_ctor() {
// DO-NOT-DELETE splicer.begin(example.components.integrators.MidpointIntegrator._ctor)
// add construction details here
// DO-NOT-DELETE splicer.end(example.components.integrators.MidpointIntegrator._ctor)

}
// user defined destructor
void example::components::integrators::MidpointIntegrator_impl::_dtor() {
// DO-NOT-DELETE splicer.begin(example.components.integrators.MidpointIntegrator._dtor)
// add destruction details here
// DO-NOT-DELETE splicer.end(example.components.integrators.MidpointIntegrator._dtor)

}
void example::components::integrators::MidpointIntegrator_impl::setServices (
/*in*/ gov::cca::Services services) throw ()

{
// DO-NOT-DELETE splicer.begin(example.components.integrators.MidpointIntegrator.setServices)
// insert implementation here
// DO-NOT-DELETE splicer.end(example.components.integrators.MidpointIntegrator.setServices)

}
Double example::components::integrators::MidpointIntegrator_impl::integrate (
/*in*/ double lowBound, /*in*/ double upBound, /*in*/ int32_t count) throw ()

{
// DO-NOT-DELETE splicer.begin(example.components.integrators.MidpointIntegrator.integrate)
// insert implementation here
// DO-NOT-DELETE splicer.end(example.components.integrators.MidpointIntegrator.integrate)

}

MidpointIntegrator Impl file fragment (C++)
File: components/integrators/c++/example_components_integrators_MidpointIntegrator_Impl.cc

As originally generated by Babel,
before modified by programmer

Welcome

CCA Tutorial 79

CCA
Common Component Architecture

157

example::components::integrators::MidpointIntegrator_impl::setServices (
/*in*/ gov::cca::Services services)

throw ()
{
// DO-NOT-DELETE splicer.begin(example.components.integrators.MidpointIntegrator.setServices)
frameworkServices = services;
if (frameworkServices._not_nil ()) {

gov::cca::TypeMap tm = frameworkServices.createTypeMap ();
gov::cca::Port p = self; // Babel required cast

// Port provided by all Integrator implementations
frameworkServices.addProvidesPort (p, "IntegratorPort", "integrators.Integrator", tm);

// Ports used by MonteCarloIntegrator
frameworkServices.registerUsesPort ("FunctionPort", "functions.Function",

tm);
}
// DO-NOT-DELETE splicer.end(example.components.integrators.MidpointIntegrator.setServices)

}

MidpointIntegrator Component: Framework Interaction (C++)

Save a reference to the framework’s Services object

Port name

Port type

File: components/integrators/c++/example_components_integrators_MidpointIntegrator_Impl.cc

CCA
Common Component Architecture

158

double
example::components::integrators::ParallelIntegrator_impl::integrate(/*in*/ double lowBound,

/*in*/ double upBound, /*in*/ int32_t count) throw ()
{
// DO-NOT-DELETE

splicer.begin(example.components.integrators.ParallelIntegrator.integrate)
gov::cca::Port port;
example::ports::functions::Function function_port;

// Get Function port
function_port = frameworkServices.getPort("FunctionPort");

int n, myid, numprocs, i;
double result, myresult, h, sum, x;
int namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Get_processor_name(processor_name, &namelen);

fprintf(stderr, "Process %d on %s: number of intervals = %d\n", myid,
processor_name, count);

fflush(stderr);
// … Continued on next page…

ParallelIntegrator integrate() Method (C++)

Parallel environment details

Get a Function reference

File: components/integrators/c++/example_components_integrators_ParallelIntegrator_Impl.cc

Based on MidpointIntegrator

Welcome

CCA Tutorial 80

CCA
Common Component Architecture

159

// …
MPI_Bcast(&count, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (count == 0) {

return -1;
} else {

h = (upBound - lowBound) / (double) count;
sum = 0.0;
for (i = myid + 1; i <= count; i += numprocs) {

x = h * ((double) i - 0.5);
sum += function_port.evaluate(x);

}
myresult = h * sum;

MPI_Reduce(&myresult, &result, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);

}

frameworkServices.releasePort("FunctionPort");
printf("result is %f\n", result);
return result;

// DO-NOT-DELETE splicer.end(example.components.integrators.ParallelIntegrator.integrate)
}

ParallelIntegrator integrate() Method (Cont.)

Compute integral
in parallel

Release port

Evaluate function

Return integral value

File: components/integrators/c++/example_components_integrators_ParallelIntegrator_Impl.cc

CCA
Common Component Architecture

160

A Fortran Integrator Implementation:
MonteCarloIntegrator

• Babel code generation
– Port (client):
> babel --client=F90 --repository-path=repository -o ports/f90 \

example.ports.integrators.Integrator

> babel --server=F90 --repository-path=repository --hide-glue \
-o components/integrators/f90 \
example.components.integrators.MonteCarloIntegrator

– Component (server):

Welcome

CCA Tutorial 81

CCA
Common Component Architecture

161

#include“example_components_integrators_MonteCarloIntegrator_fAbbrev.h"
module example_components_integrators_MonteCarloIntegrator_impl

! DO-NOT-DELETE splicer.begin(example.components.integrators.MonteCarloIntegrator.use)
! Insert use statements here...
! Framework Services module
use gov_cca_Services
! DO-NOT-DELETE splicer.end(example.components.integrators.MonteCarloIntegrator.use)

type example_components_integrators_MonteCarloIntegrator_private
sequence
! DO-NOT-DELETE splicer.begin(example.components.integrators.MonteCarloIntegrator.private_data)
! integer :: place_holder ! replace with your private data
type(gov_cca_Services_t) :: frameworkServices
! DO-NOT-DELETE splicer.end(example.components.integrators.MonteCarloIntegrator.private_data)

end type example_components_integrators_MonteCarloIntegrator_private

type example_components_integrators_MonteCarloIntegrator_wrap
sequence
type(example_components_integrators_MonteCarloIntegrator_private), pointer :: d_private_data

end type example_components_integrators_MonteCarloIntegrator_wrap

end module example_components_integrators_MonteCarloIntegrator_impl

MonteCarloIntegrator Component: Module File (F90)

Framework Services object handle

File: components/integrators/f90/example_components_integrators_MonteCarloIntegrator_Mod.F90

CCA
Common Component Architecture

162

recursive subroutine MonteC_setServicesucff4xebul_mi(self, services)
use example_components_integrators_MonteCarloIntegrator
use gov_cca_Services
use example_components_integrators_MonteCarloIntegrator_impl
! DO-NOT-DELETE splicer.begin(example.components.integrators.MonteCarloIntegrator.setServices.use)
! Insert use statements here...
use gov_cca_TypeMap
use gov_cca_Port
use SIDL_BaseException
! DO-NOT-DELETE splicer.end(example.components.integrators.MonteCarloIntegrator.setServices.use)
implicit none
type(example_components_integrators_MonteCarloIntegrator_t) :: self
type(gov_cca_Services_t) :: services
! DO-NOT-DELETE splicer.begin(example.components.integrators.MonteCarloIntegrator.setServices)
type(gov_cca_TypeMap_t) :: myTypeMap
type(gov_cca_Port_t) :: integratorPort
type(SIDL_BaseException_t) :: excpt
! Access private data
type(example_components_integrators_MonteCarloIntegrator_wrap) :: pd
external example_components_integrators_MonteCarloIntegrator__get_data_m
call example_components_integrators_MonteCarloIntegrator__get_data_m(self, pd)
! Set my reference to the services handle
pd%d_private_data%frameworkServices = services
call addRef(services)
! Create a TypeMap with my properties
call createTypeMap(pd%d_private_data%frameworkServices, myTypeMap, excpt)

MonteCarloIntegrator Component: Framework Interaction (F90)

Save a handle to the Services object

File: components/integrators/f90/example_components_integrators_MonteCarloIntegrator_Impl.F90

Welcome

CCA Tutorial 82

CCA
Common Component Architecture

163

call cast(self, integratorPort)

! Register my provides port
call addProvidesPort(pd%d_private_data%frameworkServices, integratorPort, &

'IntegratorPort', 'integrators.Integrator', &
myTypeMap, excpt)

if (not_null(excpt)) then
write(*, *) 'Exception: MonteCarloIntegratory:setServices addProvidesPort'

end if

! The ports I use
call registerUsesPort(pd%d_private_data%frameworkServices, &

'FunctionPort', 'functions.Function', &
myTypeMap, excpt)

call registerUsesPort(pd%d_private_data%frameworkServices, &
'RandomGeneratorPort', 'ramdomgen.RandomGenerator', &
myTypeMap, excpt)

call deleteRef(myTypeMap)

! DO-NOT-DELETE splicer.end(example.components.integrators.MonteCarloIntegrator.setServices)
end subroutine MonteC_setServicesucff4xebul_mi

MonteCarloIntegrator Component:
Framework Interaction (Continued)

Port name

TypeMap

File: components/integrators/f90/example_components_integrators_MonteCarloIntegrator_Impl.F90

Port type

Explicit cast to Port

Exception

Port type

CCA
Common Component Architecture

164

recursive subroutine MonteCar_integrateni9nnumrzd_mi(self, lowBound, upBound, &
count, retval)
use example_components_integrators_MonteCarloIntegrator
use example_components_integrators_MonteCarloIntegrator_impl
! DO-NOT-DELETE splicer.begin(example.components.integrators.MonteCarloIntegrator.integrate.use)
! Insert use statements here...
use example_ports_functions_Function
use example_ports_randomgen_RandomGenerator
use gov_cca_Services
use gov_cca_Port
use sidl_BaseException
! DO-NOT-DELETE splicer.end(example.components.integrators.MonteCarloIntegrator.integrate.use)
implicit none
type(example_components_integrators_MonteCarloIntegrator_t) :: self
real (selected_real_kind(15, 307)) :: lowBound
real (selected_real_kind(15, 307)) :: upBound
integer (selected_int_kind(9)) :: count
real (selected_real_kind(15, 307)) :: retval

! DO-NOT-DELETE splicer.begin(example.components.integrators.MonteCarloIntegrator.integrate)
! Insert the implementation here...

MonteCarloIntegrator Component:
integrate() Method (F90)

File: components/integrators/f90/example_components_integrators_MonteCarloIntegrator_Impl.F90

Welcome

CCA Tutorial 83

CCA
Common Component Architecture

165

! DO-NOT-DELETE splicer.begin(example.components.integrators.MonteCarloIntegrator.integrate)
! Insert the implementation here...
type(gov_cca_Port_t) :: generalPort
type(example_ports_functions_Function_t) :: functionPort
type(example_ports_randomgen_RandomGenerator_t) :: randomPort
type(SIDL_BaseException_t) :: excpt
type(example_components_integrators_MonteCarloIntegrator_wrap) :: pd
external example_components_integrators_MonteCarloIntegrator__get_data_m
real (selected_real_kind(15, 307)) :: sum, width, x, func
integer (selected_int_kind(9)) :: i
! Access private data
call example_components_integrators_MonteCarloIntegrator__get_data_m(self, pd)
retval = -1
if (not_null(pd%d_private_data%frameworkServices)) then

! Obtain a handle to a FunctionPort
call getPort(pd%d_private_data%frameworkServices, 'FunctionPort', generalPort, excpt)
call cast(generalPort, functionPort)
! Obtain a handle to a RandomGeneratorPort
call getPort(pd%d_private_data%frameworkServices, 'RandomGeneratorPort', generalPort, excpt)
call cast(generalPort, randomPort)
! Compute integral
sum = 0
width = upBound - lowBound
do i = 1, count

call getRandomNumber(randomPort, x)
x = lowBound + width*x
call evaluate(functionPort, x, func)
sum = sum + func

enddo
retval = width*sum/count
call deleteRef(generalPort)
call deleteRef(randomPort)
call releasePort(pd%d_private_data%frameworkServices, ‘RandomGeneratorPort', excpt)
call deleteRef(functionPort)
call releasePort(pd%d_private_data%frameworkServices, 'FunctionPort', excpt)

endif ! end of implementation

MonteCarloIntegrator Component: integrate() Method (Cont.)

Get a RandomGenerator reference

Release ports

Get a Function reference

Return integral value

File: components/integrators/f90/example_components_integrators_MonteCarloIntegrator_Impl.F90

Access component’s data

CCA
Common Component Architecture

166

Building components
• Dynamic (shared) libraries

– For each port, build a dynamic library of the client
code for each supported language

– For each component or a set of components, build a
dynamic library

• Babel components and Ccaffeine: build a shared library for
the implementation (server). No linking required of libraries
for implementations of components on which current
component depends; instead, link to the client libraries for the
ports used and provided.

• Non-component libraries on which a component depends
directly (e.g., BLAS), must be linked explicitly when the
shared library is created

Welcome

CCA Tutorial 84

CCA
Common Component Architecture

167

Makefile for MidpointIntegrator (C++)

File: components/integrators/c++/Makefile
include ../../../../Makefile.Vars
include babel.make
include glue/babel.make
VPATH = glue
INCLUDES = -I$(BABEL_ROOT)/include -I. \

–I$(CCATUT_SIDL_ROOT)/ports/c++/include
all: libIntegrator-component-c++.so
.c.o:

gcc -g -fPIC $(INCLUDES) -c $< -o $(<:.c=.o)
.cc.o:

g++ -g -fPIC $(INCLUDES) -c $< -o $(<:.cc=.o)
IMPLOBJS = $(IMPLSRCS:.cc=.o)
GLUEOBJS = glue/$(IORSRCS:.c=.o) glue/$(SKELSRCS:.cc=.o) \

glue/$(STUBSRCS:.cc=.o)
OBJS = $(IMPLOBJS) $(GLUEOBJS)
LIBS = -Wl,-rpath,$(BABEL_ROOT)/lib -L$(BABEL_ROOT)/lib -lsidl \

-L$(CCATUT_SIDL_ROOT)/ports/c++/lib –lfunction-port-c++ \
-L$(CCATUT_SIDL_ROOT)/ports/c++/lib –lintegrator-port-c++ \
-L$(CCATUT_SIDL_ROOT)/cca-client/c++ -lcca-client-c++

libIntegrator-component-c++.so: $(OBJS)
g++ -shared $(INCLUDES) $(IMPLOBJS) glue/*.o -o $@ $(LIBS)

clean:
$(RM) *.o glue/*.o libIntegrator-component-c++.so

CCA
Common Component Architecture

168

MonteCarloIntegrator: integrators.depl.cca

<componentDeployment
name=“example.components.integrators.MonteCarloIntegrator"
uniqueID=“norris@196.128.3.2#9.17.2003.dbg:/MonteCarloIntegrator"
palletClassAlias=“integrators_MonteCarlo">
<environment>

<ccaSpec binding="babel"/>
<library loading="dynamic"

name="libIntegrator-component-f90.so"
location="/home/norris/cca/tutorial/src/components/integrators/f90/lib" />

</environment>
</componentDeployment>

Welcome

CCA Tutorial 85

CCA
Common Component Architecture

169

MonteCarloIntegrator: integrators.cca
(soon to be deprecated)

• Ccaffeine-specific file giving the type of
component (e.g., “babel”), name of the
dynamic library, and creation method for each
component.

!date=Thu Aug 15 14:53:23 CDT 2002
!location=
!componentType=babel
dummy_libIntegrator-component-f90.so
dummy_create_MonteCarloIntegrator integrators.MonteCarloIntegrator

C wrapper function name Component name

Component type: “babel” or “classic”

File: components/integrators/c++/integrators.cca

CCA
Common Component Architecture

170

Additional Examples

Welcome

CCA Tutorial 86

CCA
Common Component Architecture

171

Other Component Implementations

• MidpointIntegrator: C++
• MonteCarloIntegrator: F90
• RandRandomGenerator: C++
• PiFunction: C++
• Driver: C++

CCA
Common Component Architecture

172

namespace example {
namespace components {
namespace randomgen {
/**
* Symbol “example.components.randomgen.RandRandomGenerator" (version 1.0)
*/

class RandRandomGenerator_impl
{

private:
// Pointer back to IOR.
// Use this to dispatch back through IOR vtable.
RandRandomGenerator self;

// DO-NOT-DELETE splicer.begin(example.components.randomgen.RandRandomGenerator._implementation)
// Put additional implementation details here...
gov::cca::Services frameworkServices;
// DO-NOT-DELETE splicer.end(example.components.randomgen.RandRandomGenerator._implementation)

…
}; // end class RandRandomGenerator_impl

} // end namespace randomgen
} // end namespace components

} // end namespace example

RandRandomGenerator Component:
C++ Implementation Header Fragment

Reference to framework Services object

File: components/randomgen/c++/example_components_randomgen_RandRandomGenerator_Impl.hh

172

Welcome

CCA Tutorial 87

CCA
Common Component Architecture

173

/**
* Method: getRandomNumber[]
*/
double
examples::components::randomgen::RandRandomGenerator_impl::getRandomNumber ()
throw ()

{
// DO-NOT-DELETE splicer.begin(example.components.randomgen.RandRandomGenerator.getRandomNumber)
// insert implementation here
double random_value = static_cast < double >(rand ());
return random_value / RAND_MAX;

// DO-NOT-DELETE splicer.end(example.components.randomgen.RandRandomGenerator.getRandomNumber)
}

RandRandomGenerator Component (C++):
getRandomNumber() Implementation

File: components/randomgen/c++/example_components_randomgen_RandRandomGenerator_Impl.cc

CCA
Common Component Architecture

174

namespace example {
namespace components {
namespace functions {

/**
* Symbol “example.components.functions.PiFunction" (version 1.0)
*/

class PiFunction_impl
{
private:

// Pointer back to IOR.
// Use this to dispatch back through IOR vtable.
PiFunction self;

// DO-NOT-DELETE splicer.begin(functions.PiFunction._implementation)
// Put additional implementation details here...
gov::cca::Services frameworkServices;
// DO-NOT-DELETE splicer.end(functions.PiFunction._implementation)
…
}; // end class PiFunction_impl

} // end namespace functions
} // end namespace components

} // end namespace example

PiFunction Component (C++): Impl. Header Fragment
File: components/functions/c++/example_components_functions_PiFunction_Impl.hh

Welcome

CCA Tutorial 88

CCA
Common Component Architecture

175

/**
* Method: evaluate[]
*/
double
example::components::functions::PiFunction_impl::evaluate (/*in*/ double x)
throw ()
{
// DO-NOT-DELETE splicer.begin(example.components.functions.PiFunction.evaluate)
// insert implementation here

return 4.0 / (1.0 + x * x);

// DO-NOT-DELETE splicer.end(example.components.functions.PiFunction.evaluate)
}

PiFunction Component (C++): evaluate() Method

File: components/functions/c++/example_component_functions_PiFunction_Impl.cc

CCA
Common Component Architecture

176

File: components/drivers/c++/example_components_drivers_Driver_Impl.cc

tutorial::Driver_impl::setServices (/*in*/ gov::cca::Services services)
throw ()
{
// DO-NOT-DELETE splicer.begin(example.components.drivers.Driver.setServices)
frameworkServices = services;
if (frameworkServices._not_nil ()) {

gov::cca::TypeMap tm = frameworkServices.createTypeMap ();

gov::cca::Port p = self; // Babel-required cast

// Port provided by Function implementations
frameworkServices.addProvidesPort (p, “GoPort",

“gov.cca.ports.GoPort", tm);

// Port used by the Driver component
frameworkServices.registerUsesPort ("IntegratorPort",

"integrators.Integrator", tm);
}
// DO-NOT-DELETE splicer.end(example.components.drivers.Driver.setServices)

}

Driver Component (C++): Framework Interaction

Welcome

CCA Tutorial 89

CCA
Common Component Architecture

177

File: components/drivers/c++/example_components_drivers_Driver_Impl.cc

int32_t
tutorial::Driver_impl::go () throw ()
{
// DO-NOT-DELETE splicer.begin(example.components.drivers.Driver.go)
double value;
int count = 100000; // number of intervals/random samples
double lowerBound = 0.0, upperBound = 1.0;

// Ports
gov::cca::Port port;
example::ports::integrators::Integrator integrator;

port = frameworkServices.getPort("IntegratorPort");
integrator = port;

value = integrator.integrate (lowerBound, upperBound, count);

fprintf(stdout,"Value = %lf\n", value);

frameworkServices.releasePort ("IntegratorPort");
return 0;

// DO-NOT-DELETE splicer.end(example.components.drivers.Driver.go)
}

Get an Integrator port

Invoke the integrate method

Output integration result

Release ports

Driver Component (C++): GoPort implementation

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

178

Introduction to the Ccaffeine
Framework

Welcome

CCA Tutorial 90

CCA
Common Component Architecture

179

Outline

• What is a CCA Framework and what is Ccaffeine?
• How can I slip my own component into Ccaffeine?
• How do I run Ccaffeine?
• Parallel components using Ccaffeine and MPI.
• Live Demo – how does it work?

CCA
Common Component Architecture

180

CCA What CCA compliant framework
is expected to do …

• Exchange interfaces among components without one
needing to know more about the other than the
interface itself

Component 1 Component 2

CCAServices
2

CCAServices

4

registerUsesPort("A")
1

addProvidesPort(,"A")

= getPort("A")

3

Port

Port

Port

Port

Welcome

CCA Tutorial 91

CCA
Common Component Architecture

181

Interactive Parallel Components:
what Ccaffeine does

• Executable ccafe-client:
– PVM, MPI, or whatever is used for

communication between clients
– Muxer enforces “single process

image” of SPMD parallel computing

• How To:
– Build Ccaffeine
– Run Ccaffeine

http://www.cca-forum.org/ccafe/

CCA
Common Component Architecture

182

How to build Ccaffeine

• Have a look at
http://www.cca-forum.org/ccafe
1. Obtain the required packages

• gcc (http://gcc.gnu.org)
• Java (>jdk1.2) (http://java.sun.com)
• MPI (http://www.mcs.anl.gov/mpi/mpich)
• BOOST headers (http://www.boost.org)
• Babel (http://www.llnl.gov/casc/components/babel.html)
• Ccaffeine tar ball download
• Optional software

– Fortran 77 and 90 compilers
– Ruby
– Python 2.x

2. Install prerequisites

RPMs available for
RedHat Linux, but not
guaranteed to be in
sync with tutorial source
code available on web

Welcome

CCA Tutorial 92

CCA
Common Component Architecture

183

How to build Ccaffeine (cont’d)

• Untar Ccaffeine-xxx.tgz in build dir
– 3 directories appear cca-spec-babel (the spec),

cca-spec-classic (old C++ spec), dccafe
• Run configure

– If confused type “configure --help”; example options:

(cd ./cca-spec-babel; configure --with-babel=/usr/local/babel \
--with-jdk12=/usr/local/java;make; make install)

(cd ./cca-spec-classic; configure; make; make install)

(cd ./dccafe; ./configure --with-cca-babel=`pwd`/../cca-spec-babel \
--with-cca-classic=`pwd`/../cca-spec-classic –with-babel=/usr/local/babel-0.8.4 \
--with-mpi=/usr/local/mpich --with-jdk12=/usr/local/java \
--with-lapack=/home/rob/cca/dccafe/../LAPACK/liblapack.a \
--with-blas=/home/rob/cca/dccafe/../LAPACK/libblas.a; make; make install)

CCA
Common Component Architecture

184

Ccaffeine build (cont’d)
• Example output at “make install” completion:
===

Testing the Ccaffeine build ...
proceeding with env vars:
LD_LIBRARY_PATH=/home/norris/cca/dccafe/cxx/dc/babel/babel-

cca/server:/home/software/mpich-1.2.5-
ifc/lib/shared:/home/norris/cca/babel-
0.8.4/lib:/usr/local/lib/python2.2/config:/usr/local/intel/compiler70/
ia32/lib:/usr/local/lib:/usr/local/lib

SIDL_DLL_PATH=/home/norris/cca/dccafe/lib
didn't crash or hang up early ... looks like it is working.
Looks like CLASSIC dccafe is working.
Looks like BABEL dccafe is working.
done with Ccaffeine tests.
simpleTests: output is in

/home/norris/cca/dccafe/simpleTests.out.XXXAL8Cmk.
===

Note: depending on environment settings, sometimes the simple tests may fail
but you may still have a functional framework.

Welcome

CCA Tutorial 93

CCA
Common Component Architecture

185

Running Ccaffeine

• Framework needs to be told:
– Where to find components
– Which components to instantiate
– Which uses port gets connected to which provides port
– Which go port sets the application in motion

• User-Ccaffeine interaction techniques:
– GUI interface (with some Ccaffeine scripting help)
– Pure Ccaffeine scripting (useful in batch mode)
– Python component driver (with some Ccaffeine scripting help)

CCA
Common Component Architecture

186

How to run Ccaffeine:

• Ccaffeine interactive language
– Used to configure batch and interactive sessions
– Allows useful “defaults”
– Allows the GUI to talk over a socket

Welcome

CCA Tutorial 94

CCA
Common Component Architecture

187

The Ccaffeine GUI

• Java front end to one (or more) framework instances
running in the background

• Events propagated to all frameworks through a
muxer

• Framework(s) still need Ccaffeine script to know
about available components

• GUI used to instantiate, connect, and configure
components (and to launch the whole application as
well)

• Usage modes:
– Compose and launch application from scratch (graphically).
– Load pre-composed applications (the .bld files)

CCA
Common Component Architecture

188

The GUI

#!ccaffeine bootstrap file.
------- don't change anything ABOVE this line.-------------
path set /home/elwasif/CCA/tutorial/src/sidl/random-component-c++
path append /home/elwasif/CCA/tutorial/src/sidl/function-component-c++
path append /home/elwasif/CCA/tutorial/src/sidl/integrator-component-c++
path append /home/elwasif/CCA/tutorial/src/sidl/driver-component-c++
repository get randomgen.RandRandomGenerator
repository get functions.LinearFunction
repository get functions.PiFunction
repository get functions.NonlinearFunction

Component paths and types needed
by the framework(s) (the .rc files)

Click and drag to interact with
the framework(s)

SIDL_DLL_PATH environment
variable also used for locating
component shared libraries! 188

Welcome

CCA Tutorial 95

CCA
Common Component Architecture

189

The Command Line Way:
Using Ccaffeine Scripting

• Simple scripting “language” to talk to the framework.
• For the full list of commands:

UNIX>ccafe-single
cca> help

• Some commands:
– path set <initial path to components>
– path append <directory containing component code>
– repository get <component class>
– instaniate <component class> <component name>
– connect <use component name> <use port name> \

<provide component name> <provide port name>
– go <component name> <Go port name>
– bye

CCA
Common Component Architecture

190

Quick run-through of the Ccaffeine
scripting language

• Scripting language does everything that the
GUI does

• Warning: there are two files that Ccaffeine
uses to locate and load component libraries:
– “rc” and script files for building and running apps
– GUI “.bld” files that store state saved by the

Ccaffeine GUI
These are not the same and will give, sometimes

spectacular, undefined behavior when used
improperly.

Welcome

CCA Tutorial 96

CCA
Common Component Architecture

191

Example: example1_rc
#!ccaffeine bootstrap file.
------- don't change anything ABOVE this line.-------------

path set /home/elwasif/CCA/tutorial/random-component-c++
path append /home/elwasif/CCA/tutorial/function-component-c++
path append /home/elwasif/CCA/tutorial/integrator-component-c++
path append /home/elwasif/CCA/tutorial/driver-component-c++
load components into the “pallet”

repository get functions.PiFunction
repository get integrators.MonteCarloIntegrator
repository get integrators.MidPointIntegrator
repository get integrators.ParallelIntegrator
repository get randomgen.RandRandomGenerator
repository get tutorial.driver

functions.PiFunction
integrators.MonteCarloIntegrator
integrators.MidPointIntegrator
integrators.ParallelIntegrator
randomgen.RandRandomGenerator
tutorial.driver

Component
classes/types

At this point no components are instantiated, but are simply
known to the system

SIDL_DLL_PATH environment
variable also used for locating
component shared libraries!

CCA
Common Component Architecture

192

Example (cont.): Instantiation

create randomgen.RandRandomGenerator rand
create functions.PiFunction function
create integrators.MonteCarloIntegrator integrator
create tutorial.Driver driver

rand
function

integrator
driver

Component
instances names

Welcome

CCA Tutorial 97

CCA
Common Component Architecture

193

Example (cont.): Connection

Connect uses and provides ports
connect integrator FunctionPort function FunctionPort
connect integrator RandomGeneratorPort rand RandomGeneratorPort
connect driver IntegratorPort integrator IntegratorPort

CCA
Common Component Architecture

194

Example (cont.): Application Launch

Good to go()
go driver GoPortGoPort Provided Go port name

At this point Ccaffeine gets
completely out of the way

–So much so that it will not
respond until (or if) your
application returns from the
invocation of the “go()” method
–There is only one thread of
control

Welcome

CCA Tutorial 98

CCA
Common Component Architecture

195

The third way:
Using CCA BuilderService

• Deficiencies of Ccaffeine Scripting
– Non “standard”
– No error checking !!!!

• Solution: Use a more “complete” scripting language,
e.g. Python

• Why Python? Supported By Babel, popular scripting
language

• Strategy:
– Use a Python driver to assemble the application
– Talk to the framework through BuilderService interface
– Still need some Ccaffeine configuration.

CCA
Common Component Architecture

196

The BuilderService Port

• “Provided” by the Framework, “used” by any component
• Major methods:

– createInstance(instanceName, className,
properties)

– connect(userID, usePortName, providerID,
providPortName)

– See file cca.sidl for complete interface.
• Many more methods
• Can be “used” from any language, Python just more

convenient
• See driver-python for details

Welcome

CCA Tutorial 99

CCA
Common Component Architecture

197

MonteCarloIntegrator: integrators.depl.cca

<componentDeployment
name=“example.components.integrators.MonteCarloIntegrator"
uniqueID=“norris@196.128.3.2#9.17.2003.dbg:/MonteCarloIntegrator"
palletClassAlias=“integrators_MonteCarlo">
<environment>

<ccaSpec binding="babel"/>
<library loading="dynamic"

name="libIntegrator-component-f90.so"
location="/home/norris/cca/tutorial/src/components/integrators/f90/lib" />

</environment>
</componentDeployment>

• New XML .cca format

Component class name

Component type: “babel” or “classic”

CCA
Common Component Architecture

198

Parallel Components Using MPI

• Single Component Multiple Data (SCMD):
– Ccaffeine instantiates the same set of components

on all processors.

• Multiple Component Multiple Data (MCMD):
– Ccaffeine instantiates different components on

different processors.
– Needs support components to allow management

of the MPI layer.

Welcome

CCA Tutorial 100

CCA
Common Component Architecture

199

MCMD using Ccaffeine and MPI

• Need to:
– Load different components on different processors.
– Allow the “driver” to make the decision based on “global”

application state (including MPI state).
– Avoid re-implementing all MPI calls as component calls (bad for

wrapped legacy code).
• Solution:

– Use BuilderServices to control component loading.
– Use “mini MPI” component to allow access to MPI

“configuration” calls from various languages (including Python).
– Structure components to work on a subset of processors (no

MPI_COMM_WORLD)

CCA
Common Component Architecture

200

MCMD Port Connections
Framework BuilderPort

CCAMPI

MPISetupPort

FunctionPort

ParallelIntegrator

IntegratorPort

MPISetupPort

BuilderPort

McmdDriver

GoPort

MPISetupPort

IntegratorPort

MPIPort

LinearFunction

FunctionPort

FunctionPort

ParallelIntegrator

IntegratorPort
MPIPort

PiFunction

FunctionPort

All Processors

Group A

Group B

Welcome

CCA Tutorial 101

CCA
Common Component Architecture

201

MCMD Application Logic

• MCMD Driver:
– Provides MPIPort
– Instantiate and connect infrastructure components (e. g.

MPISetupComponent).
– Partition MPI_COMM_WORLD based on application logic.
– Instantiate and connect other components.

• Parallel components
– Use MPIPort port to acquire proper communicator (as

determined by the driver).
– Can use MPI_COMM_WORLD if no such connection exists.

CCA
Common Component Architecture

202

MCMD Issues

• All components share the same MPI library
(linked to the framework, or linked to each
component as shared object.)

• MPIPort port provided by the driver can
export more application-specific methods.

• Alternate simple solution: Each component
exports setCommunicator().

Welcome

CCA Tutorial 102

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

203

A Look at More Complex
Component-Based Applications

CCA
Common Component Architecture

204

Modern Scientific Software Development
• Terascale computing will enable high-fidelity calculations based on

multiple coupled physical processes and multiple physical scales
– Adaptive algorithms and high-order discretization strategies
– Composite or hybrid solution strategies
– Sophisticated numerical tools

Discretization

Algebraic Solvers

Data Redistribution

Mesh

Data Reduction

Physics Modules

Optimization

Derivative Computation

Collaboration

Diagnostics

Steering

Visualization

Adaptive Solution

Time Evolution

Welcome

CCA Tutorial 103

CCA
Common Component Architecture

205

Overview

• Using components in high performance simulation
codes
– Examples of increasing complexity
– Performance

• Single processor
• Scalability

• Developing components for high performance
simulation codes
– Strategies for thinking about your own application
– Developing interoperable and interchangeable components

CCA
Common Component Architecture

206

Our Starting Point

∇2ϕ (x,y) = 0 ∈ [0,1] x [0,1]
ϕ(0,y)=0 ϕ(1,y)=sin (2πy)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Welcome

CCA Tutorial 104

CCA
Common Component Architecture

207

Numerical Solution of Example 1

• Physics: Poisson’s equation
• Grid: Unstructured triangular mesh
• Discretization: Finite element method
• Algebraic Solvers: PETSc (Portable

Extensible Toolkit for Scientific Computation)
• Visualization: VTK tool
• Original Language: C

CCA
Common Component Architecture

208

Creating Components: Step 1
• Separate the application code into well-defined

pieces that encapsulate functionalities
– Decouple code along numerical functionality

• Mesh, discretization, solver, visualization
• Physics is kept separate

– Determine what questions each component can ask of and
answer for other components (this determines the ports)

• Mesh provides geometry and topology (needed by
discretization and visualization)

• Mesh allows user defined data to be attached to its entities
(needed by physics and discretization)

• Mesh does not provide access to its data structures
– If this is not part of the original code design, this is by far the

hardest, most time-consuming aspect of componentization

Welcome

CCA Tutorial 105

CCA
Common Component Architecture

209

Creating the Components: Step 2
• Writing C++ Components

– Create an abstract base class for each port
– Create C++ objects that inherit from the abstract base port

class and the CCA component class
– Wrap the existing code as a C++ object
– Implement the setServices method

• This process was significantly less time consuming
(with an expert present) than the decoupling process
– Lessons learned

• Definitely look at an existing, working example for the targeted
framework

• Experts are very handy people to have around ;-)

CCA
Common Component Architecture

210

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

Welcome

CCA Tutorial 106

CCA
Common Component Architecture

211

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry, topology, and

boundary information
– Provides the ability to attach user

defined data as tags to mesh
entities

– Is used by the driver,
discretization and visualization
components

CCA
Common Component Architecture

212

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, Laplacian, scalar terms)

– Driver determines which terms are
included and their coefficients

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition matrix manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

Welcome

CCA Tutorial 107

CCA
Common Component Architecture

213

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Solver Component
– Provides access to vector and

matrix operations (e.g., create,
destroy, get, set)

– Provides a “solve” functionality for
a linear operator

CCA
Common Component Architecture

214

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Solver Component
– Provides access to vector and

matrix operations (e.g., create,
destroy, get, set)

– Provides a “solve” functionality for
a linear operator

• The Visualization Component
– Uses the mesh component to print

a vtk file of ϕ on the unstructured
triangular mesh

– Assumes user data is attached to
mesh vertex entities

Welcome

CCA Tutorial 108

CCA
Common Component Architecture

215

The next step… time dependence
δϕ/δt = ∇2ϕ (x,y,t) ∈ [0,1] x [0,1]

ϕ(0,y,t)=0 ϕ(1,y,t)=.5sin(2πy)cos(t/2)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0
ϕ(x,y,0)=sin(.5πx) sin (2πy)

Time Evolution

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Data RedistributionDistributed Arrays

CCA
Common Component Architecture

216

Some things change…

• Requires a time integration component
– Based on the LSODE library (LLNL)
– Component implementation developed by Ben Allan (SNL)

• Uses a new visualization component
– Based on AVS
– Requires an MxN data redistribution component
– Developed by Jim Kohl (ORNL)

• The MxN redistribution component requires a Distributed Array
Descriptor component
– Similar to HPF arrays
– Developed by David Bernholdt (ORNL)

• The driver component changes to accommodate the new
physics

Welcome

CCA Tutorial 109

CCA
Common Component Architecture

217

… and some things stay the same

• The mesh component doesn’t change
• The discretization component doesn’t change
• The solver component doesn’t change

– What we use from the solver component changes
– Only vectors are needed

CCA
Common Component Architecture

218

The CCA wiring diagram

Reused
Integration
Visualization
Driver/Physics

Welcome

CCA Tutorial 110

CCA
Common Component Architecture

219

What did this exercise teach us?

• It was easy to incorporate the functionalities of
components developed at other labs and institutions
given a well-defined interface and header file.
– In fact, some components (one uses and one provides) were

developed simultaneously across the country from each
other after the definition of a header file.

– Amazingly enough, they usually “just worked” when linked
together (and debugged individually).

• In this case, the complexity of the component-based
approach was higher than the original code
complexity.
– Partially due to the simplicity of this example
– Partially due to the limitations of the some of the current

implementations of components

CCA
Common Component Architecture

220

Beyond the heat equation…

• Flame Approximation
– H2-Air mixture; ignition via 3 hot-spots
– 9-species, 19 reactions, stiff chemistry

• Governing equation

• Domain
– 1cm X 1cm domain
– 100x100 coarse mesh
– finest mesh = 12.5 micron.

• Timescales
– O(10ns) to O(10 microseconds)

ii
i wY
t
Y

&+∇∇=
∂
∂ α.

Welcome

CCA Tutorial 111

CCA
Common Component Architecture

221

Numerical Solution

• Adaptive Mesh Refinement: GrACE
• Stiff integrator: CVODE (LLNL)
• Diffusive integrator: 2nd Order Runge Kutta
• Chemical Rates: legacy f77 code (SNL)
• Diffusion Coefficients: legacy f77 code (SNL)
• New code less than 10%

CCA
Common Component Architecture

222

The CCA Wiring Diagram

Reused
Slow Time Scale Integration
Fast Time Scale Integration
Driver/Physics

Welcome

CCA Tutorial 112

CCA
Common Component Architecture

223

Evolution of the Solution

Temperature

OH Profile

CCA
Common Component Architecture

224

The need for AMR

• H2O2 chemical subspecies profile
– Only 100 microns thick (about 10 fine level cells)
– Not resolvable on coarsest mesh

Welcome

CCA Tutorial 113

CCA
Common Component Architecture

225

Computational Chemistry:
Molecular Optimization

• Problem Domain: Optimization of
molecular structures using quantum
chemical methods

• Investigators: Yuri Alexeev (PNNL), Steve Benson (ANL),
Curtis Janssen (SNL), Joe Kenny (SNL), Manoj Krishnan
(PNNL), Lois McInnes (ANL), Jarek Nieplocha (PNNL),
Jason Sarich (ANL), Theresa Windus (PNNL)

• Goals: Demonstrate interoperability among software
packages, develop experience with large existing code
bases, seed interest in chemistry domain

CCA
Common Component Architecture

226

Molecular Optimization Overview
• Decouple geometry optimization from electronic structure
• Demonstrate interoperability of electronic structure components
• Build towards more challenging optimization problems, e.g.,

protein/ligand binding studies

Components in gray can be swapped in to create new applications
with different capabilities.

Welcome

CCA Tutorial 114

CCA
Common Component Architecture

227

Wiring Diagram for Molecular Optimization

• Electronic structures components:
• MPQC (SNL)

http://aros.ca.sandia.gov/~cljanss/mpqc

• NWChem (PNNL)

http://www.emsl.pnl.gov/pub/docs/nwchem

• Optimization components: TAO (ANL)
http://www.mcs.anl.gov/tao

• Linear algebra components:
• Global Arrays (PNNL)

http://www.emsl.pnl.gov:2080/docs/global/ga.html

• PETSc (ANL)

http://www.mcs.anl.gov/petsc

CCA
Common Component Architecture

228

Molecular Optimization Summary

• CCA Impact
– Demonstrated unprecedented interoperability in a

domain not known for it
– Demonstrated value of collaboration through

components
– Gained experience with several very different

styles of “legacy” code
• Future Plans

– Extend to more complex optimization problems
– Extend to deeper levels of interoperability

Welcome

CCA Tutorial 115

CCA
Common Component Architecture

229

Componentized Climate Simulations
• NASA’s ESMF project has a component-based design for Earth

system simulations
– ESMF components can be assembled and run in CCA compliant

frameworks such as Ccaffeine.
• Zhou et al (NASA Goddard) has integrated a simple coupled

Atmosphere-Ocean model into Ccaffeine and is working on the
Cane-Zebiak model, well-known for predicting El Nino events.

• Different PDEs for ocean and atmosphere, different grids and
time-stepped at different rates.
– Synchronization at ocean-atmosphere interface; essentially,

interpolations between meshes
– Ocean & atmosphere advanced in sequence

• Intuitively : Ocean, Atmosphere and 2 coupler components
– 2 couplers : atm-ocean coupler and ocean-atm coupler.
– Also a Driver / orchestrator component.

CCA
Common Component Architecture

230

Coupled Atmosphere-Ocean Model Assembly

Data flow

Port link

• Climate Component :

• Schedule
component coupling

• Data flow is via pointer
NOT data copy.

• All components in
C++; run in
CCAFFEINE.

• Multiple ocean models
with the same interface

• Can be selected by
a user at runtime

Welcome

CCA Tutorial 116

CCA
Common Component Architecture

231

Simulation Results

A non-uniform ocean field variable
(e.g., current)

…changes a field variable (e.g.,wind)
in the atmosphere !

CCA
Common Component Architecture

232

• Given a rectangular 2-dimensional domain and
boundary values along the edges of the domain

• Find the surface with minimal area that satisfies the
boundary conditions, i.e., compute

min f(x), where f: R → R
• Solve using optimization

components based on
TAO (ANL)

Unconstrained Minimization Problem

Welcome

CCA Tutorial 117

CCA
Common Component Architecture

233

Unconstrained Minimization Using a Structured Mesh

Reused
TAO Solver
Driver/Physics

CCA
Common Component Architecture

234

Component Overhead
• Negligible overhead for

component implementation
and abstract interfaces when
using appropriate levels of
abstraction

• Linear solver component
currently supports any
methods available via the
ESI interfaces to PETSc and
Trilinos; plan to support
additional interfaces the
future, e.g., those under
development within the
TOPS center

• Here: Use the conjugate
gradient method with no-fill
incomplete factorization
preconditioning

Aggregate time for linear solver component in
unconstrained minimization problem.

Welcome

CCA Tutorial 118

CCA
Common Component Architecture

235

Overhead from Component Invocation

• Invoke a component with
different arguments

• Array
• Complex
• Double Complex

• Compare with f77 method
invocation

• Environment
– 500 MHz Pentium III
– Linux 2.4.18
– GCC 2.95.4-15

• Components took 3X longer
• Ensure granularity is

appropriate!
• Paper by Bernholdt, Elwasif,

Kohl and Epperly

241ns86nsDouble
complex

209ns75nsComplex

224ns80 nsArray

Componentf77Function arg
type

CCA
Common Component Architecture

236

Scalability on a Linux Cluster

• Newton method with
line search

• Solve linear systems
with the conjugate
gradient method and
block Jacobi
preconditioning (with
no-fill incomplete
factorization as each
block’s solver, and 1
block per process)

• Negligible component
overhead; good
scalabilityTotal execution time for the minimum surface minimization

problem using a fixed-sized 250x250 mesh.

Welcome

CCA Tutorial 119

CCA
Common Component Architecture

237

List of Component Re-Use

• Various services in Ccaffeine
• Integrator

– IntegratorLSODE (2)
– RK2 (2)

• Linear solvers
– LinearSolver_Petra (4)
– LinearSolver_PETSc (4)

• AMR
– AMRmesh (3)

• Data description
– DADFactory (3)

• Data redistribution
– CumulvsMxN (3)

• Visualization
– CumulvsVizProxy (3)

Component interfaces
to parallel data
management and
visualization tools

Component interfaces
to numerical libraries

CCA
Common Component Architecture

238

The Next Level
• Common Interface Specification

– Provides plug-and-play interchangeability
– Requires domain specific experts
– Typically a difficult, time-consuming task
– A success story: MPI

• A case study… the TSTT/CCA mesh interface
– TSTT = Terascale Simulation Tools and

Technologies (www.tstt-scidac.org)
– A DOE SciDAC ISIC focusing on meshes

and discretization
– Goal is to enable

• hybrid solution strategies
• high order discretization
• Adaptive techniques

Geometry
Information
(Level A)

Full
Geometry
Meshes
(Level B)

Mesh
Compone
nts
(Level C)

Welcome

CCA Tutorial 120

CCA
Common Component Architecture

239

Current Situation
Current Situation
• Public interfaces for numerical libraries are unique
• Many-to-Many couplings require Many2 interfaces

• Often a heroic effort to understand the inner workings of both
codes

• Not a scalable solution

Dist. Array

Overture

PAOMD

SUMAA3d

PETSc

ISIS++

Trilinos

CCA
Common Component Architecture

240

Common Interface Specification
Reduces the Many-to-Many problem to a Many-to-One problem

– Allows interchangeability and experimentation
– Challenges

• Interface agreement
• Functionality limitations
• Maintaining performance

Dist. Array

Overture

PAOMD

SUMAA3d

ISIS++

PETSc

Trilinos

T
S
T
T

E
S
I

Welcome

CCA Tutorial 121

CCA
Common Component Architecture

241

TSTT Philosophy

• Create a small set of interfaces that existing
packages can support
– AOMD, CUBIT, Overture, GrACE, …
– Enable both interchangeability and interoperability

• Balance performance and flexibility
• Work with a large tool provider and application

community to ensure applicability
– Tool providers: TSTT and CCA SciDAC centers
– Application community: SciDAC and other DOE applications

CCA
Common Component Architecture

242

Basic Interface

• Enumerated types
– Entity Type: VERTEX, EDGE, FACE, REGION
– Entity Topology: POINT, LINE, POLYGON, TRIANGLE,

QUADRILATERAL, POLYHEDRON, TETRAHEDRON,
HEXAHEDRON, PRISM, PYRAMID, SEPTAHEDRON

• Opaque Types
– Mesh, Entity, Workset, Tag

• Required interfaces
– Entity queries (geometry, adjacencies), Entity iterators,

Array-based query, Workset iterators, Mesh/Entity Tags,
Mesh Services

Welcome

CCA Tutorial 122

CCA
Common Component Architecture

243

Issues that have arisen
• Nomenclature is harder than we first thought
• Cannot achieve the 100 percent solution, so...

– What level of functionality should be supported?
• Minimal interfaces only?
• Interfaces for convenience and performance?

– What about support of existing packages?
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be

required?
– What about additional functionalities such as locking?

• Language interoperability is a problem
– Most TSTT tools are in C++, most target applications are in

Fortran
– How can we avoid the “least common denominator” solution?
– Exploring the SIDL/Babel language interoperability tool

CCA
Common Component Architecture

244

Summary
• Complex applications that use components are possible

– Combustion
– Chemistry applications
– Optimization problems
– Climate simulations

• Component reuse is significant
– Adaptive Meshes
– Linear Solvers (PETSc, Trilinos)
– Distributed Arrays and MxN Redistribution
– Time Integrators
– Visualization

• Examples shown here leverage and extend parallel software and
interfaces developed at different institutions

– Including CUMULVS, ESI, GrACE, LSODE, MPICH, PAWS, PETSc, PVM, TAO,
Trilinos, TSTT.

• Performance is not significantly affected by component use
• Definition of domain-specific common interfaces is key

Welcome

CCA Tutorial 123

CCA
Common Component Architecture

245

Componentizing your own application

• The key step: think about the decomposition strategy
– By physics module?
– Along numerical solver functionality?
– Are there tools that already exist for certain pieces? (solvers,

integrators, meshes?)
– Are there common interfaces that already exist for certain

pieces?
– Be mindful of the level of granularity

• Decouple the application into pieces
– Can be a painful, time-consuming process

• Incorporate CCA-compliance
• Compose your new component application
• Enjoy!

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

246

CCA Status and Plans

Welcome

CCA Tutorial 124

CCA
Common Component Architecture

247

CCTTSS Research Thrust Areas
and Main Working Groups

• Scientific Components
– Scientific Data Objects
Lois Curfman McInnes, ANL (curfman@mcs.anl.gov)

• “MxN” Parallel Data Redistribution
Jim Kohl, ORNL (kohlja@ornl.gov)

• Frameworks
– Language Interoperability / Babel / SIDL
– Component Deployment / Repository
Gary Kumfert, LLNL (kumfert@llnl.gov)

• User Outreach
David Bernholdt, ORNL (bernholdtde@ornl.gov)

CCA
Common Component Architecture

248

Scientific Components

• Abstract Interfaces and Component
Implementations
– Mesh management
– Linear, nonlinear, and optimization solvers
– Multi-threading and load redistribution
– Visualization and computational steering

• Quality of Service Research
• Fault Tolerance

– Components and Frameworks

Welcome

CCA Tutorial 125

CCA
Common Component Architecture

249

Scientific Components
Extended R&D Agenda

• Complete development of abstract interfaces and base
component prototypes

• Advanced component development
– Second-level component extensions
– Application-specific components for chemistry and climate

• Implement fault tolerance and recovery mechanisms
• Develop quality of service models for numerical components

– Integrate QoS system into repository

• Develop interfaces and implementations for multi-level
nonlinear solvers and hybrid mesh management schemes
– Collaboration with TOPS and TSTT centers

CCA
Common Component Architecture

250

Scientific Data Objects
& Interfaces

• Define “Standard” Interfaces for HPC Scientific Data
– Descriptive, Not (Necessarily) Generative…

• Basic Scientific Data Object
– David Bernholdt, ORNL

• Structured & Unstructured Mesh
– Lori Freitag, LLNL
– Collaboration with SciDAC TSTT Center

• Block Structured AMR
– Phil Colella, LBNL
– Collaboration with APDEC & TSTT

Welcome

CCA Tutorial 126

CCA
Common Component Architecture

251

Basic Scientific Data Interfaces

• Low Level, Raw Data
– Supports high performance access to memory
– Based on IOVec

(e.g. http://www-sld.slac.stanford.edu/HELP/POSIX/DATA_STRUCTURES/IOVEC)
• Assumes a contiguous memory block
• Supports basic data types such as integer, float, double
• No topology information

• Local & Distributed Arrays
– Abstract interfaces for higher-level data description

• 1D, 2D, 3D dense arrays
• Various distribution strategies

– HPF-like decomposition types (Block/Cyclic…)

CCA
Common Component Architecture

252

“MxN” Parallel Data Redistribution:
The Problem…

“M”

“N”

Welcome

CCA Tutorial 127

CCA
Common Component Architecture

253

“MxN” Parallel Data Redistribution:
The Problem…

• Create complex scientific simulations by coupling
together multiple parallel component models
– Share data on “M” processors with data on “N”

• M != N ~ Distinct Resources (Pronounced “M by N”)

– Model coupling, e.g., climate, solver / optimizer
– Collecting data for visualization

• Mx1; increasingly MxN (parallel rendering clusters)

• Define “standard” interface
– Fundamental operations for any parallel data coupler

• Full range of synchronization and communication options

CCA
Common Component Architecture

254

Hierarchical MxN Approach
• Basic MxN Parallel Data Exchange

– Component implementation
– Initial prototypes based on CUMULVS & PAWS

• Interface generalizes features of both

• Higher-Level Coupling Functions
– Time & grid (spatial) interpolation, flux conservation
– Units conversions…

• “Automatic” MxN Service via Framework
– Implicit in method invocations, “parallel RMI”

http://www.csm.ornl.gov/cca/mxn/

Welcome

CCA Tutorial 128

CCA
Common Component Architecture

255

CCA Frameworks

• Component Containers & Run-Time Environments
• Research Areas:

– Integration of prototype frameworks
• SCMD/parallel with distributed, bridged for one application
• Unify framework services & interactions…

– Language interoperability tools
• Babel/SIDL, incorporate difficult languages (F90…)
• Production-scale requirement for application areas

– Component deployment
• Component repository, interface lookup & semantics

CCA
Common Component Architecture

256

CCA Framework Prototypes

• Ccaffeine
– SPMD/SCMD parallel
– Direct connection

• CCAT / XCAT
– Distributed
– Network connection

• SCIRun
– Parallel, multithreaded
– Direct connection

• Decaf
– Original language interoperability

via Babel…

Welcome

CCA Tutorial 129

CCA
Common Component Architecture

257

Outreach and Applications Integration

• Tools Not Just “Thrown Over The Fence”…
• Several Outreach Efforts:

– General education and awareness
• Tutorials, like this one!
• Papers, conference presentations

– Strong liaison with adopting groups
• Beyond superficial exchanges
• Real production requirements & feedback

– Chemistry and climate work within CCTTSS
• Actual application development work ($$$)

• SciDAC Emphasis
– More vital applied advanced computing research!

CCA
Common Component Architecture

258

Active CCA Forum Working Groups
• Adaptive Mesh Refinement
• Generalized Data Objects
• Tutorial Presentations
• Application Domain Groups:

– Climate, Chemistry
• MxN Data Redistribution
• Embeddable Scripting
• Fortran Users
• Babel Development & Users
• Deployment / XML Schemas
• Ccaffeine Open Framework
• Component-Based Debugging…

See http://www.cca-forum.org/working_groups.html for more info.

Welcome

CCA Tutorial 130

CCA
Common Component Architecture

259

Current CCA / CCTTSS Status
• CCA Specification at Version 0.6.2
• Several Operational Prototype Frameworks
• Growing Number of Reusable Component Modules
• Draft specifications for

– Basic scientific data objects
– MxN parallel data redistribution

• Demonstration Software Available for Download
– Several Multi-Component Parallel and Distributed

Demonstration Applications
– Variety of components for: optimization, solvers, meshes,

data decompositions, visualization, MxN…
– RPM packages for easy Linux install!

http://www.cca-forum.org/software.html

CCA
Common Component Architecture

260

CCA Tutorial Summary

• Go Forth and Componentize…
– And ye shall bear good scientific software

• Come Together for Domain Standards
– Attain true interoperability & code re-use

• Use The Force:
– http://www.cca-forum.org/tutorials/
– tutorial-wg@cca-forum.org
– cca-forum@cca-forum.org

