
A Hands-On Guide to the Common
Component Architecture

The Common Component Architecture Forum Tutorial Working Group

A Hands-On Guide to the Common Component Architecture
by The Common Component Architecture Forum Tutorial Working Group

Published 2004-08-26 12:25:22-04:00 (time this instance was generated)
Copyright © 2004 The Common Component Architecture Forum

Table of Contents
Preface .. v

1. Help us Improve this Guide ... v
2. Typographic Conventions .. v
3. Acknowledgments ... v

1. Introduction .. 1
1.1. The CCA Software Environment .. 1
1.2. The Execution Environment .. 1
1.3. Preparing to do the Exercises ... 2

2. Assembling and Running a CCA Application .. 6
2.1. A CCA Application in Detail ... 6
2.2. Running Ccaffeine Using an rc File .. 13
2.3. Using the GUI Front-End to Ccaffeine .. 15

3. The Driver Component ... 16
3.1. The SIDL Definition of the Driver Component ... 16
3.2. Implementation of the CXXDriver in C++ ... 19

3.2.1. The setServices Implementation .. 20
3.2.2. The go Implementation .. 23

3.3. Implementation of the F90Driver in Fortran 90 ... 25
3.3.1. The setServices Implementation .. 26
3.3.2. Implementing the Constructor and Destructor ... 30
3.3.3. The go Implementation .. 31

3.4. SIDL and CCA Object Orientation in Fortran ... 34
3.5. Using Your New Component ... 35

4. Creating a Component from an Existing Library .. 37
4.1. The legacy Fortran integrator ... 37
4.2. The FunctionModule wrapper. ... 39
4.3. Implementing the integrators.Midpoint component .. 40
4.4. SIDL definition of the Midpoint component ... 40
4.5. Fortran 90 implementation of the Midpoint integrator ... 42

4.5.1. The Midpoint module implementation .. 42
4.5.2. Defining the constructor and destructor ... 43
4.5.3. The setServices implementation ... 44
4.5.4. The integrate implementation .. 45

4.6. Building the Fortran 90 implementation of the integrators.Midpoint component. 47
4.7. Using your new integrators.Midpoint component ... 48

5. Creating a New Component from Scratch ... 50
5.1. SIDL Component Class Specification .. 50
5.2. Generating Babel Server Code for the New Component 51
5.3. Implementing the New Component ... 52
5.4. Using Your New Component ... 53

A. Installing the CCA Environment and Tutorial Source Code ... 54
A.1. Building the CCA Tool Chain ... 54
A.2. Building the Tutorial Source ... 55

iv

Preface
$Revision: 1.8 $
$Date: 2004/08/26 12:14:03 $

The Common Component Architecture (CCA) is an environment for component-based software engin-
eering (CBSE) specifically designed to meet the needs of high-performance scientific computing. It has
been developed by members of the Common Component Architecture Forum
[http://www.cca-forum.org].

This document is intended to guide the reader through a series of increasingly complex tasks starting
from composing and running a simple scientific application using pre-installed CCA components and
tools, to writing (simple) components of your own. It was originally designed and used to guide the
“hands-on” portion of the CCA tutorial, but we hope that it will eventually become complete enough
that it can be used for self-study as well.

We assume that you've had an introduction to the terminology and concepts of CBSE and the CCA in
particular. If not, we recommend you peruse a recent version of the CCA tutorial
[http://www.cca-forum.org/tutorials/] presentations before undertaking to complete the tasks in this
Guide.

1. Help us Improve this Guide
If you find errors in this document, or have trouble understanding any portion of it, please let us know so
that we can improve the next release. Email us at <tutorial-wg@cca-forum.org> with your
comments and questions.

2. Typographic Conventions

• This font is used for file and directory names.

• This font is used for commands.

• This font is used for input the user is expected to enter.

• This font is used for “replaceable” text or variables. Replaceable text is text that describes
something you're supposed to type, like a filename, in which the word “filename” is a placehold-
er for the actual filename.

• This font is used for for the names of interfaces (i.e. CCA “ports”).

• URLs [http://www.cca-forum.org/] are presented in square brackets after the name of the resource
they describe in the print version of the book.

• Sometime we must break lines in computer output or program listings to fit the line widths available.
In these cases, the break will be marked by a “\” character. In real computer output, you a long con-
tinuous line rather than a broken one. For program listings, unless otherwise indicated, you can join
up the broken lines. In shell commands, you can use the “\” and break the input over multiple lines.

3. Acknowledgments
There are quite a few people active in the Tutorial Working Group who have contributed to the general
development of the CCA tutorial and this Guide in particular:

v

http://www.cca-forum.org
http://www.cca-forum.org/tutorials/
http://www.cca-forum.org/

People Rob Armstrong, David Bernholdt (chair), Randy Bramley, Lori Freitag Diachin,
Wael Elwasif, Madhusudhan Govindaraju, Ragib Hasan, Dan Katz, Jim Kohl, Gary
Kumfert, Lois Curfman McInnes, Boyana Norris, Craig Rasmussen, Jaideep Ray,
Sameer Shende, Torsten Wilde, Shujia Zhou

Institutions Argonne National Laboratory, Binghamton University - State University of New
York, Indiana University, Jet Propulsion Laboratory, Los Alamos National Laborat-
ory, Lawrence Livermore National Laboratory, NASA/Goddard, University of
Illinois, Oak Ridge National Laboratory, Sandia National Laboratories, University
of Oregon

Computer facilities for the hands-on exercise in this tutorial have been provided by the Computer Sci-
ence Department and University Information Technology Services of Indiana University, supported in
part by NSF Grants CDA-9601632 and EIA-0202048.

Finally, we must acknowledge the efforts of the numerous additional people who have worked very hard
to make the Common Component Architecture what it is today. Without them, we wouldn't have any-
thing to present tutorials about!

Preface

vi

Chapter 1. Introduction
$Revision: 1.18 $
$Date: 2004/08/26 15:32:40 $

In this Guide, we will take you step by step through a series of hands-on tasks with CCA components in
the CCA software environment. We've intentionally chosen a very simple example from a scientific
viewpoint, numerical integration in one dimension, so that we can focus on the issues of the component
environment. It may look like overkill to have broken down such a simple task into multiple compon-
ents, but once you have a basic understanding of how to use and create components, you should be able
to extend the concepts to components that are scientifically interesting to you and far more complex.

In this integration example, which you've probably already seen mentioned in the tutorial presentations,
we have:

• driver components, which are used like the main routine in a traditional program to orchestrate the
overall calculation;

• a number of integrator components implementing different integration algorithms; and
• a selection of function components that can be integrated.

The exercises are laid out as follows:

• In Chapter 2, Assembling and Running a CCA Application, you will use pre-built components to as-
semble and run several different numerical integration applications.

• In Chapter 3, Sewing CCA Components into an Application: the Driver Component, you will con-
struct your own driver component.

• In Chapter 4, Creating a Component from an Existing Library, you will wrap up an existing For-
tran90 library as an integrator component.

• In Chapter 5, Creating a New Component from Scratch, you will create a new function component
from scratch.

1.1. The CCA Software Environment
The CCA is, at its heart, just a specification. There are numerous realizations of the CCA as a software
environment. In this Guide, we use the following tools to provide that software environment:

Ccaffeine A CCA framework which emphasizes local and parallel high-performance computing,
and currently the predominate CCA framework in real applications. For more informa-
tion, see http://www.cca-forum.org/ccafe/.

Babel A tool for language interoperability. It allows components written in different languages
to be connected together. The Scientific Interface Definition Language (SIDL) is associ-
ated with Babel. For more information, see ht-
tp://www.llnl.gov/CASC/components/babel.html.

Many of the commands you will type are specific to the fact that you're using these tools as your CCA
software environment. But the components you will use and create are independent of the particular
tools being used.

1.2. The Execution Environment
The instructions in this guide assume you will be working on the Thor cluster at the Indiana University
Computer Science Department. Thor runs Red Hat Linux 8.0. The tutorial instructors will provide you

1

http://www.cca-forum.org/ccafe/
http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/components/babel.html

with information you need to get logged in to the system. The following information may help you nav-
igate around the system:

• This system has the Intel Fortran Compiler 8.0 (ifort) installed for Fortran90/95 code.

• Your home directory will be something like
/.automount/whale/root/san/r1a0l0/username, depending on the specific disk and
your username. In these exercises, you will be working primarily in your home directory tree, but
you'll need to reference some files outside of it as well. If you see a relative filename in this Guide
(i.e. one that does not begin with a “/”) you should read it relative to your home directory. So that
student-src/Makefile would refer to
/.automount/whale/root/san/r1a0l0/username/student-src/Makefile

• A variety of files and tools have been installed for you to use in these exercises. The root of the in-
stallation is /san/shared/cca/tutorial, which once you complete the setup procedure be-
low, you will be able to refer to as $CCA. We will always use the notation $CCA/file to refer to
files in this tree except in situations where the $CCA would not be properly expanded.

• The CCA software tools (Ccaffeine, Babel, and related things) are installed in $CCA/bin.

• $CCA/share contains several files that you will reference or use, including the source code tree
that you will start from to build your own components, and the SIDL files for the CCA specification.

• $CCA/src contains a pre-built version of the entire set of components for these exercises. In
Chapter 2, Assembling and Running a CCA Application, you will use these components directly.
You will also find the complete source code, including for the components you will write in the sub-
sequent exercises. So if you're ever stuck, or unsure if you've done something correctly, you can look
at the corresponding file in this tree and compare it to your own.

1.3. Preparing to do the Exercises

1. Obtain your individual username, password, and assignment of which node on the Thor cluster you
will use from the tutorial staff.

2. Use an ssh client to login to the appropriate system.

a. If you're working on a Linux or other unix-based system, you will probably use a command
like ssh -l username thorN.cs.indiana.edu. You will be prompted for your
password.

b. There are a variety of ssh clients for Windows. In PuTTY, for example, you would enter the
thorN.cs.indiana.edu in the Session->Host Name field of PuTTY Configuration win-
dow. Make sure the Protocol is set to SSH, as well. On the Connection page, set the Auto-lo-
gin username field to the username you were given. Finally, return to the Session page, give
these settings a name, such as cca-tutorial in the Saved Sessions field and click the Save
button. This will allow you to quickly load these settings when you have to log back in later.

If you have trouble getting your ssh client to connect to the Thor cluster, please ask for assist-
ance.

Note

Introduction

2

We have written this guide so that all exercises can be performed simply using the
command line tools, so it is not necessary for you to have an X11 server on your local
system. If you do have an X11 server available, you may wish to try to use the GUI
front-end for Ccaffeine in some of these exercises, and you may prefer to use the
graphical version of your favorite text editor or other tools. However if the network
performance between here and Indiana is poor, or systems on either end are too heav-
ily loaded, the X11 option may be too slow for your taste. For these reasons, and de-
pending on the defaults on your ssh client, you may need to enable or disable tunnel-
ing of the X11 protocol through the ssh session.

On unix/Linux clients, the command line switches -x and -X disable and enable X11
forwarding.

On PuTTY, there is a checkbox to Enable X11 forwarding on the Connection-
>SSH->Tunnels configuration page.

3. Since the CCA tools are not installed on this system in the “usual” locations (i.e. /usr/bin or /
usr/local/bin), you must setup your login environment to the appropriate directories to your
PATH and LD_LIBRARY_PATH. To speed things along, we've created a short script that you can
just include in your login files.

Type echo $SHELL to determine which shell you're running. If it is a C-shell variant (i.e. /
bin/tcsh or /bin/csh) then perform Step 3.a. If it is a Bourne shell variant (i.e. /bin/bash or /bin/sh)
then perform Step 3.b.

a. Edit ~/.cshrc and at the end of the file, add the line

source /san/shared/cca/tutorial/share/cca.cshrc.thor.

b. Edit ~/.profile and at the end of the file, add the line

. /san/shared/cca/tutorial/share/cca.profile.thor.

Warning

Note that you cannot use $CCA/share/cca.cshrc.thor (or
$CCA/share/cca.profile.thor) in this case because this is the file that
defines the $CCA environment variable !

You may wish to take a moment to read through this file to understand what it is doing to your en-
vironment. Each section is commented.

4. In order for these changes to affect your environment, you need to log out and log back in again.
After you've done this, check that you're getting the new settings. If you type echo $CCA, you
should get /san/shared/cca/tutorial. If you type which ccafe-single. you should
get /san/shared/cca/tutorial/bin/ccafe-single. If you don't get these results,
please ask for assistance.

5. In order to get a private copy of the tutorial source tree that you can work on, make sure you're in
your home directory and enter tar xf $CCA/share/student-src.tar. This should give
you a directory tree named student-src. This tree is the same as the pre-built on in $CCA/src
except that we have removed all of the files that you'll be creating and "unmodified" the ones you'll
be modifying as you work through the exercises.

Introduction

3

The layout of the tutorial source code tree was designed to make it easy to introduce new compon-
ents and ports and have everything built with make with minimal configuration. The tree is laid out
so that much of the information the build system needs comes directly from the file and directory
names. If you cd into student-src, you should see a number of subdirectories. Of primary in-
terest are:

student-src/components The source code for the various components lives in this tree.
The general structure is
student-src/components/component_name/im-
plementation_language. Exceptions are the student-
src/components/sidl and student-
src/components/examples directories, which contain
the SIDL definitions for the components and example scripts,
respectively.

student-src/legacy This is where the legacy libraries that you will componentize in
Chapter 4, Creating a Component from an Existing Library
reside.

student-src/ports student-src/ports/sidl contains the SIDL files for the
ports (SIDL interfaces) needed for the tutorial. The code gener-
ated by Babel for these interfaces will be put into directories
like student-src/ports/SIDL_package_name/lan-
guage and compiled into libraries. Both the user and provider
of a port need to link against the port's library.

6. The next step is to build the tree. Although it is incomplete with respect to the code you're going to
add in these exercises, everything that is there should build correctly.

Change directories to student-src and type make. This command will take several minutes to
complete, and you may want to use this time to read ahead a bit. When it completes, you should see
this message:

################ Finished building everything #################
####### You can run some simple tests with 'make check' #######

If the build terminates with an error message instead, please ask for assistance.

Once the build is complete, you can type make check to perform a basic check that the compon-
ent have been built correctly. This is a convenience of the Makefile system we've put together
for the tutorial that tries to instantiate each component within the Ccaffeine framework (you'll un-
derstand this better after the next chapter). This provides a basic check that the software you've
built are “well-formed” CCA components. You should see a message like this, along with a couple
of lines of output from make itself:

Testing component instantiation.

====
==== Simple tests passed, all built components were successfully \

instantiated.
====

Testing component connection and execution.

Introduction

4

**** Some run tests did NOT succeed, go command failed (see \

examples/ex1_rc.log).

Note that the test of component connection and execution is expected to fail at the moment, be-
cause it expects to have all of the components available, whereas at the moment, the ones you're
going to write in these hands-on exercises are missing. The main thing to look for at this moment
was that all components that are present could be instantiated (the first test).

Now you should be ready for the first exercise.

Note

If you move your student-src tree to another location (for example, rearranging your
directory structure, or moving a copy of your thor directory tree to your home system to
continue these exercises on your own), you will need to do a make clean rebuild the
tree (starting with Building the tutorial source tree, above). Otherwise many of the gener-
ated files (rc files and the like) will contain the incorrect path.

Introduction

5

Chapter 2. Assembling and Running a
CCA Application
$Revision: 1.17 $
$Date: 2004/08/26 15:59:31 $

In this exercise, you will work with pre-built components from the integrator example to compose a
CCA-based application and execute it. Specifically you will use a Monte Carlo integration algorithm on
the function 4/(1+x^2), which gives pi as the result.

The components available are:

Drivers: drivers.CXXDriver*, drivers.F90Driver*

Integrators: integrators.MonteCarlo, integrators.Midpoint*

Functions: functions.PiFunction, functions.CubeFunction*

Random Number Generators: randomgens.RandNumGenerator (required by integ-
rators.MonteCarlo)

Components marked with a “*” are ones that you will be creating in the subsequent exercises (you only
need to do one of the two driver components), but as we have mentioned, the pre-built tree include com-
pleted examples of all of the components.

Below are three different procedures for this exercise. In Section 2.1, “A CCA Application in Detail”,
you interact directly with Ccaffeine on the command line to do everything. This is the best place to start
to understand how to assemble and run a CCA application. In Section 2.2, “ Running Ccaffeine Using an
rc File ”, you will see how the steps you performed manually in the first procedure can be captured in a
script that Ccaffeine reads. This is the more common scenario because it gives you an easy way to rep-
resent a complete CCA application that is easy to reproduce, or to adapt to other situations, without hav-
ing to re-do everything from scratch every time you want to run it. This is probably the approach you'll
want to use when testing your work in the subsequent exercises. Finally, in Section 2.3, “Using the GUI
Front-End to Ccaffeine”, we use a graphical front-end to Ccaffeine, which allows you to perform the
composition and execution of the application using a “visual programming” metaphor. This procedure
will only work if you have an X11 windowing system installation on your machine.

2.1. A CCA Application in Detail
In this section, you will interact directly with the Ccaffeine framework to assemble and run several dif-
ferent numerical integration applications from pre-built components.

We will present the procedure in the form of a dialog between you and the Ccaffeine framework. Things
you are supposed to type are presented like this and Ccaffeine's output will be presented like
this. Note that Ccaffeine's input prompt is “cca>”. Particular features of the output will sometimes be
marked and discussed in further detail below the output fragment.

Tip

The complete set of Ccaffeine commands for this procedure can be found in
$CCA/src/components/examples/task0_rc. You can use this file for reference,
or to cut and paste commands into Ccaffeine.

6

1. Start the Ccaffeine framework with the command ccafe-single. ccafe-single is one of several
ways to invoke the Ccaffeine framework, and is used for single-process (i.e. sequential) interactive
sessions; ccafe-batch is designed for use in non-interactive situations, including parallel jobs; and
ccafe-client is designed to interact with a front-end GUI rather than with a user at the command
line interface.

Here is what you'll see (note that some of the output lines have been folded for presentation here,
indicated by “\”):

(16251) CmdLineClientMain.cxx: MPI_Init not called in \

ccafe-single mode.
(16251) CmdLineClientMain.cxx: Try running with ccafe-single \

--ccafe-mpi yes , or
(16251) CmdLineClientMain.cxx: try setenv CCAFE_USE_MPI 1 to force MPI_Init.
(16251) my rank: -1, my pid: 16251
my rank: -1, my pid: 16251
my rank: -1, my pid: 16251
my rank: -1, my pid: 16251Type: One Processor Interactive

CCAFFEINE configured with babel.

cca>
CmdContextCCAMPI::initRC: No rc file found. Pallet may be empty.

Lines between these two markers give information about the status of MPI in the Ccaffeine
framework, including the processes rank if MPI is initialized. As the messages indicate,
ccafe-single is intended for single-process use and does not normally call MPI_Init, but if
you're running parallel and having problems with the MPI environment, this is the first place
to look for signs of trouble.
This message confirms that this Ccaffeine executable was configured and built to work with
Babel. This is a useful thing to check when you're using an unfamiliar installation of Ccaf-
feine, or the first time you Ccaffeine after building it yourself.
It is common to use an “rc” file with Ccaffeine to help assemble and run the application.
This is the place where Ccaffeine confirms that it loaded the rc file you intended (or in this
case, it confirms that we didn't specify one). If there is an rc file, the Ccaffeine output from
the commands it contains will follow this message, so there may be a lot more text between
this message and the “cca>” prompt at which you can interact with Ccaffeine.

Note

We present Ccaffeine's output with “spew” disabled (the default). If Ccaffeine is con-
figured and built with the --enable-spew option, you will see a lot of debugging
output from Ccaffeine itself in addition to what we show here.

2. Ccaffeine uses a “path” to determine where it should look for CCA components (specifically the
.cca files, which internally point to the actual libraries that are needed). When it starts up, Ccaf-
feine's path is empty, and it has no idea where to find components. Next you will set the path that
points to the pre-built components:

path
pathBegin
pathEnd! empty path.

cca>path set /san/shared/cca/tutorial/src/components/lib
There are allegedly 8 classes in the component path

Assembling and Running a CCA Application

7

cca>path
pathBegin
pathElement /san/shared/cca/tutorial/src/components/lib
pathEnd

Path-related commands in Ccaffeine include:

path append Adds a directory to the end of the current path.

path init Sets the path from the value of the $CCA_COMPONENT_PATH environment
variable.

path prepend Adds a directory to the beginning of the current path.

path set Sets the path to the value provided.

Tip

Typing help at the Ccaffeine cca> prompt will provide a complete list of the com-
mands Ccaffeine's scripting language understands.

3. Ccaffeine also has the concept of a palette of components from which applications can be as-
sembled. The palette command will show you what is currently in the palette, and the repository
get-global class_name command is used to get the component of the specified class name from
the repository (path) and load it into the palette:

cca>palette
Components available:

cca>repository get-global drivers.CXXDriver
Loaded drivers.CXXDriver NOW GLOBAL .

cca>repository get-global functions.PiFunction
Loaded functions.PiFunction NOW GLOBAL .

cca>repository get-global integrators.MonteCarlo
Loaded integrators.MonteCarlo NOW GLOBAL .

cca>repository get-global randomgens.RandNumGenerator
Loaded randomgens.RandNumGenerator NOW GLOBAL .

cca>palette
Components available:
drivers.CXXDriver
functions.PiFunction
integrators.MonteCarlo
randomgens.RandNumGenerator

4. Next, you need to instantiate the components you're going to use. The instances command will list
all the component instances in Ccaffeine's work area, or arena. The command instantiate
class_name instance_name will create an instance of the specified class from the palette
with the specified instance name and call the new component instance's setServices method.

cca>instances
FRAMEWORK of type Ccaffeine-Support

Assembling and Running a CCA Application

8

cca>instantiate drivers.CXXDriver driversCXXDriver
driversCXXDriver of type drivers.CXXDriver
successfully instantiated

cca>instantiate functions.PiFunction functionsPiFunction
functionsPiFunction of type functions.PiFunction
successfully instantiated

cca>instantiate integrators.MonteCarlo integratorsMonteCarlo
integratorsMonteCarlo of type integrators.MonteCarlo
successfully instantiated

cca>instantiate randomgens.RandNumGenerator randomgensRandNumGenerator
randomgensRandNumGenerator of type randomgens.RandNumGenerator
successfully instantiated

cca>instances
FRAMEWORK of type Ccaffeine-Support
driversCXXDriver of type drivers.CXXDriver
functionsPiFunction of type functions.PiFunction
integratorsMonteCarlo of type integrators.MonteCarlo
randomgensRandNumGenerator of type randomgens.RandNumGenerator

Note

When you instantiate a component, you can name it whatever you like as long as it is
unique with respect to all of the components that you've instantiated in your session
with the framework. It is possible to instantiate the a given component class multiple
times (with different names, of course).

5. Once the components you need are instantiated, you need to connect up their ports appropriately.
The display chain command will list the component instances in Ccaffeine's arena and any connec-
tions among their ports. To make a connection, you use the command connect
user_instance_name user_port_name provider_instance_name pro-
vider_port_name (note that some of the input lines have been folded with “\” to fit on the
page -- you'll have to rejoin them when you type in the commands because Ccaffeine doesn't under-
stand continuation lines):

cca>display chain
Component FRAMEWORK of type Ccaffeine-Support

Component driversCXXDriver of type drivers.CXXDriver
Component functionsPiFunction of type functions.PiFunction
Component integratorsMonteCarlo of type integrators.MonteCarlo
Component randomgensRandNumGenerator of type randomgens.RandNumGenerator

cca>connect driversCXXDriver IntegratorPort integratorsMonteCarlo \
IntegratorPort

driversCXXDriver))))IntegratorPort---->IntegratorPort((((integratorsMonteCarlo
connection made successfully

cca>connect integratorsMonteCarlo FunctionPort functionsPiFunction \
FunctionPort

integratorsMonteCarlo))))FunctionPort---->FunctionPort((((functionsPiFunction
connection made successfully

cca>connect integratorsMonteCarlo RandomGeneratorPort \
randomgensRandNumGenerator RandomGeneratorPort

Assembling and Running a CCA Application

9

integratorsMonteCarlo))))RandomGeneratorPort---->\
RandomGeneratorPort((((randomgensRandNumGenerator
connection made successfully

cca>display chain

Component FRAMEWORK of type Ccaffeine-Support
Component driversCXXDriver of type drivers.CXXDriver
is using IntegratorPort connected to Port: IntegratorPort provided by \
component integratorsMonteCarlo
Component functionsPiFunction of type functions.PiFunction
Component integratorsMonteCarlo of type integrators.MonteCarlo
is using FunctionPort connected to Port: FunctionPort provided by \
component functionsPiFunction
is using RandomGeneratorPort connected to Port: RandomGeneratorPort \
provided by component randomgensRandNumGenerator
Component randomgensRandNumGenerator of type randomgens.RandNumGenerator

At this point, there are no connections, so the output of display chain looks very much like
that of instances -- just a simple listing of the component instances in the arena.
Characteristic of the output of a connect command is the ASCII “cartoon” illustrating the
connection, with the user on the left and the provider on the right.
Now the output of display chain lists the connections associated with each component in-
stance. Note that the connection information is printed with the using component instance
only.

Note

Port names and port types are defined by the person who implements the component.
They have to be unique within the component, but not across an entire application. In
order to connect a uses port to a provides port, the types of the port must match, but
the names need not match.

Tip

In the Ccaffeine framework, you can find out what ports a particular component uses
and provides with the command display component instance_name:

cca>display component integratorsMonteCarlo

Instance name: integratorsMonteCarlo
Class name: integrators.MonteCarlo

UsesPorts registered for integratorsMonteCarlo

0. Instance Name: FunctionPort Class Name: function.FunctionPort
1. Instance Name: RandomGeneratorPort Class Name: \

randomgen.RandomGeneratorPort

ProvidesPorts registered for integratorsMonteCarlo

Instance Name: IntegratorPort Class Name: integrator.IntegratorPort

6. At this point, you have a fully-assembled application and are ready to run it!

Assembling and Running a CCA Application

10

While most CCA ports are defined by component developers, the CCA specification includes a
special port named GoPort. The purpose of this port is have a way of kicking off the execution of
a component. The command go instance_name go_port_name instructs the framework to
invoke the specified go port:

cca>go driversCXXDriver GoPort
Value = 3.141768
##specific go command successful

and you can see a (fairly inaccurate) value for pi computed by Monte Carlo integration of the func-
tion 4/(1+x^2).

At this stage, you have successfully composed and run a CCA application based on existing com-
ponents. In the remainder of this procedure, we'll see how it is possible to dynamically change the
application you've assembled by disconnecting components and connecting others in their place. Or
you can jump straight to Step 11 to (gracefully) end this session with Ccaffeine and move on to oth-
er procedures in this chapter, or on to other tasks altogether.

7. At the moment, Ccaffeine's palette contains only the components we needed for the first applica-
tion. Now, we'll add some more components to the palette and instantiate them in the arena:

cca>repository get-global integrators.Midpoint
Loaded integrators.Midpoint NOW GLOBAL .

cca>instantiate integrators.Midpoint integratorsMidpoint
integratorsMidpoint of type integrators.Midpoint
successfully instantiated

cca>repository get-global functions.CubeFunction
Loaded functions.CubeFunction NOW GLOBAL .

cca>instantiate functions.CubeFunction functionsCubeFunction
functionsCubeFunction of type functions.CubeFunction
successfully instantiated

Note

There is no harm in having components you don't use in the palette, or even having
instances of them in the arena.

8. In order to be able to swap out components for others, we first need to disconnect them. The dis-
connect command has the same syntax as the connect command, with both the uses and provides
end points of the connection being specified.

Let's begin by changing the Monte Carlo integrator for another. The integrator is connected to both
the driver and the function. (And also to the random number generator, but since we don't need it
for anything else, there is no harm in leaving that connection intact.)

cca>disconnect driversCXXDriver IntegratorPort integratorsMonteCarlo \
IntegratorPort

driversCXXDriver))))IntegratorPort-\ \-IntegratorPort((((integratorsMonteCarlo
connection broken successfully

cca>disconnect integratorsMonteCarlo FunctionPort functionsPiFunction \
FunctionPort

integratorsMonteCarlo))))FunctionPort-\ \-FunctionPort((((functionsPiFunction

Assembling and Running a CCA Application

11

connection broken successfully

The disconnect command prints an ASCII cartoon of a broken connection, similar to that
printed by the connect command.

9. Once we connect up a new integrator (in this case, using the mid-point rule algorithm) to the driver
and function, we have a new “application” that's ready to run:

cca>connect driversCXXDriver IntegratorPort integratorsMidpoint \
IntegratorPort

driversCXXDriver))))IntegratorPort---->IntegratorPort((((integratorsMidpoint
connection made successfully

cca>connect integratorsMidpoint FunctionPort functionsPiFunction \
FunctionPort

integratorsMidpoint))))FunctionPort---->FunctionPort((((functionsPiFunction
connection made successfully

cca>display chain
Component FRAMEWORK of type Ccaffeine-Support
Component driversCXXDriver of type drivers.CXXDriver
is using IntegratorPort connected to Port: IntegratorPort provided by \
component integratorsMidpoint
Component functionsCubeFunction of type functions.CubeFunction

Component functionsPiFunction of type functions.PiFunction
Component integratorsMidpoint of type integrators.Midpoint
is using FunctionPort connected to Port: FunctionPort provided by \
component functionsPiFunction
Component integratorsMonteCarlo of type integrators.MonteCarlo

is using RandomGeneratorPort connected to Port: RandomGeneratorPort \
provided by component randomgensRandNumGenerator
Component randomgensRandNumGenerator of type \

randomgens.RandNumGenerator

cca>go driversCXXDriver GoPort
Value = 3.141553
##specific go command successful

Observe that there are a number of component instances in the arena that we have either never
used (functionsCubeFunction) or which we have disconnected from the rest of the ap-
plication (integratorsMonteCarlo and randomgensRandNumGenerator).

10. Finally, we swap the pi function for an x^3 function and run a third application built from the same
set of components:

cca>disconnect integratorsMidpoint FunctionPort functionsPiFunction \
FunctionPort

integratorsMidpoint))))FunctionPort-\ \-FunctionPort((((functionsPiFunction
connection broken successfully

cca>connect integratorsMidpoint FunctionPort functionsCube FunctionPort
integratorsMidpoint))))FunctionPort---->FunctionPort((((functionsCubeFunction
connection made successfully

cca>display chain
Component FRAMEWORK of type Ccaffeine-Support
Component driversCXXDriver of type drivers.CXXDriver
is using IntegratorPort connected to Port: IntegratorPort provided by \

Assembling and Running a CCA Application

12

component integratorsMidpoint
Component functionsCubeFunction of type functions.CubeFunction
Component functionsPiFunction of type functions.PiFunction
Component integratorsMidpoint of type integrators.Midpoint
is using FunctionPort connected to Port: FunctionPort provided by \
component functionsCubeFunction
Component integratorsMonteCarlo of type integrators.MonteCarlo
is using RandomGeneratorPort connected to Port: RandomGeneratorPort \
provided by component randomgensRandNumGenerator
Component randomgensRandNumGenerator of type randomgens.RandNumGenerator

cca>go driversCXXDriver GoPort
Value = 0.250010
##specific go command successful

11. To exit Ccaffeine “politely” and allow it to cleanly shutdown and destroy all components, use the
quit command:

cca>quit

bye!
exit

2.2. Running Ccaffeine Using an rc File
In practice, most people don't use Ccaffeine interactively on a routine basis. Like many applications,
Ccaffeine can be run with a script, or “rc” file that tells it what to do. Any commands that can be
entered at the cca> prompt can be used in in rc file, so it is possible to systematically capture the as-
sembly and execution of an application in a reusable form. The rc also makes it easy to create a new ap-
plication from an existing one by adapting the script.

In this section, you will explore the use of an rc file that captures all of the commands performed in the
previous section. This is the basic approach you will want to use when testing your work in the sub-
sequent exercises.

1. For this procedure, it is best to work in your home directory. To save you a lot of additional typing,
we've created an rc file with all of the commands from the previous section. Make a local copy by
typing cp $CCA/src/components/examples/task0_rc . and open it in your text edit-
or. Here are some of the important features to note in this file:

#!ccaffeine bootstrap file.

------- don't change anything ABOVE this line.-------------

Step 2

path
path set /san/shared/cca/tutorial/src/components/lib
path

Step 3

palette

Assembling and Running a CCA Application

13

repository get-global drivers.CXXDriver
repository get-global functions.PiFunction
repository get-global integrators.MonteCarlo
repository get-global randomgens.RandNumGenerator
palette

Step 4

instances
instantiate drivers.CXXDriver driversCXXDriver
instantiate functions.PiFunction functionsPiFunction
instantiate integrators.MonteCarlo integratorsMonteCarlo
instantiate randomgens.RandNumGenerator randomgensRandNumGenerator
instances

Step 5

display chain
connect driversCXXDriver IntegratorPort integratorsMonteCarlo IntegratorPort
connect integratorsMonteCarlo FunctionPort functionsPiFunction FunctionPort
connect integratorsMonteCarlo RandomGeneratorPort \

randomgensRandNumGenerator RandomGeneratorPort
display chain
display component integratorsMonteCarlo

Step 6

go driversCXXDriver GoPort

Step 7

repository get-global integrators.Midpoint
instantiate integrators.Midpoint integratorsMidpoint
repository get-global functions.CubeFunction
instantiate functions.CubeFunction functionsCubeFunction

Step 8

disconnect driversCXXDriver IntegratorPort integratorsMonteCarlo \
IntegratorPort

disconnect integratorsMonteCarlo FunctionPort functionsPiFunction \
FunctionPort

Step 9

connect driversCXXDriver IntegratorPort integratorsMidpoint IntegratorPort
connect integratorsMidpoint FunctionPort functionsPiFunction FunctionPort
display chain
go driversCXXDriver GoPort

Step 10

disconnect integratorsMidpoint FunctionPort functionsPiFunction FunctionPort
connect integratorsMidpoint FunctionPort functionsCube FunctionPort
display chain
go driversCXXDriver GoPort

Step 11

quit

Assembling and Running a CCA Application

14

Ccaffeine requires this line exactly as written to recognize this file as an input script.
Ccaffeine interprets “#” as the beginning of a comment and ignores the remainder of the line.
(Note that we have marked only the first few comments in this file.)
If your script does not contain a quit command, Ccaffeine will run the script and leave you at
the Ccaffeine prompt, “cca>”, allowing you to interact with the framework manually. For
example, you can use the rc file just to setup the palette; or you can use it to setup the palette
and instantiate the components you need in the arena; or you can use it to assemble the entire
application, but type the go command yourself.

2. Enter the command ccafe-single --ccafe-rc task0_rc >& task0p1.out
(assuming you're using the csh or tcsh shells; if you're using the sh or bash shells, the command is
ccafe-single --ccafe-rc task0_rc > task0.out 2>&1)

Edit the task0.out file and compare the results with those in the prior section. Everything
should be essentially the same.

3. Experiment with changing task0_rc and re-running Step 2. Take a careful look at the output to
make sure each change worked as you expected.

Some suggestions for things to change:

• Rearrange some of the commands so that all of the repository get-global commands are at the
beginning of the file; you could also group all of the instantiations together. Done properly, this
should have no effect your ability to execute the applications.

• Since the original script assembles and runs three distinct applications, you might modify the
script so that it does only one by commenting out the lines that aren't needed.

• Make use of the drivers.F90Driver, which has not been used at all so far. (This means
you will have to add repository get-global and instantiate commands for it.)

Tip

You can copy the original task0_rc to other filenames if you want to preserve the
different variations you try. If you're just eliminating lines (for example to run only a
single application), it may be convenient to just comment them out instead of actually
removing them.

Warning

If you remove the quit command from the rc file, Ccaffeine will leave you in inter-
active mode rather than terminating and returning you to the shell prompt. In this
case, you should not capture Ccaffeine's output into a file, as instructed in Step 2 be-
cause you won't be able to see the cca> prompt and it will appear that Ccaffeine has
hung (in reality it is just waiting for your input). If you make this mistake a Control-c
will interrupt Ccaffeine and return you to the shell prompt.

2.3. Using the GUI Front-End to Ccaffeine
Not yet documented.

Assembling and Running a CCA Application

15

Chapter 3. Sewing CCA Components
into an Application: the Driver
Component
$Revision: 1.31 $
$Date: 2004/08/26 15:17:54 $

In this exercise, you will create a new Driver component. This component is very simple, and basically
only uses other components (it also provides a GoPort). If you're working in an environment in which
components are already available that do most of what you need, it is often sufficient to create a com-
ponent, which we refer to generically as a driver, that orchestrates these existing components to perform
your computation.

Unlike other component models (e.g. Cactus [http://citeseer.nj.nec.com/allen00cactus.html] or ESMF
[http://sdcd.gsfc.nasa.gov/ESS/esmf_tasc/]) CCA does not impose a built-in execution model. CCA al-
lows the user to determine how the components are to be used. The driver component, in essence, takes
the place of the main program in a normal application.

In this section we will walk through the construction of a driver component, either in Fortran (SIDL
name drivers.F90Driver) or C++ (SIDL name drivers.CXXDriver) Regardless of language,
our driver component will use an integrator.IntegratorPort. It will also provide a
gov.cca.ports.GoPort that allows an outside entity (a user or script) to start execution of the
component. (These ports should be familiar from Chapter 2, Assembling and Running a CCA Applica-
tion.)

3.1. The SIDL Definition of the Driver Compon-
ent

The first step in creating a new component is to create its .sidl file. In SIDL, a component is a class
that implements several SIDL interfaces. All CCA components must implement the
gov.cca.Component interface, which is defined as part of the CCA specification (the CCA specific-
ation uses the gov.cca namespace). In addition, components must implement the interfaces corres-
ponding to any CCA ports they wish to provide. The CCA specification defines a few ports, such as
gov.cca.ports.GoPort, but mostly, ports are defined by the people who write components, or by
communities that get together to agree on a “standard” interface.

In order to better understand what is required to implement a given interface, you need to find the SIDL
specification for it. First, we'll look in the SIDL file for the CCA specification to see what the
gov.cca.Component interface looks like.

1. Edit $CCA/share/cca-spec-babel-0_7_0-babel-0.9.4/cca.sidl. First, notice the
package declarations at the beginning of the file:

package gov {
package cca version 0.7.0 {
...

which declare the gov.cca namespace for everything in the file.

2. Now, search for “interface Component”:

16

http://citeseer.nj.nec.com/allen00cactus.html
http://sdcd.gsfc.nasa.gov/ESS/esmf_tasc/

...
/**
* All components must implement this interface.
*/
interface Component {

... Comments elided ...
void setServices(in Services services) throws CCAException;

}
...

Which tells us that our driver will have to implement a setServices. This is the key method
that allows a piece of code to become a CCA component. The component's setServices meth-
od is invoked by the CCA framework when the component is instantiated, and advertises to the
framework the ports the component will provide and use.

3. Since the port this component provides is also part of the CCA specification, this is the place to
look for the definition of the GoPort. Search for “interface GoPort”:

...
package ports {

/**
* Go, component, go!
*/
interface GoPort extends Port {

... Comments elided ...
int go();

}
...

First, notice that there is an additional package declaration here, making the full name of this inter-
face gov.cca.ports.GoPort. This definition tells us that our driver component must also im-
plement a go method.

4. Now you have enough information to write the SIDL declaration for your driver component. At this
point, you should choose whether you want to implement your driver component in C++ or Fortran
90. (Once you get one done, you can implement the other too, if you wish.)

Edit the file student-src/components/sidl/drivers.sidl and type in one of the two
following SIDL declarations, according to your choice of language:

a.

package drivers version 1.0 {
class F90Driver implements gov.cca.ports.GoPort,

gov.cca.Component
{

int go();
void setServices(in gov.cca.Services services)

throws gov.cca.CCAException;
}

}

b.

package drivers version 1.0 {

The Driver Component

17

class CXXDriver implements gov.cca.ports.GoPort,
gov.cca.Component

{
int go();
void setServices(in gov.cca.Services services)

throws gov.cca.CCAException;
}

}

First, notice that the two declarations are identical except for the name, and in reality, you could
choose anything you wanted for the name. The only reason we put an indication of the implementa-
tion language into the class name of this component was pedagogical: to avoid a name collision if
you want to eventually implement both versions, and identify what distinguishes them. Normally,
you might want different implementations of a component if they do things differently (i.e. use dif-
ferent algorithms), or in the case of a driver, solve different problems. Under normal circumstances,
there is no reason to have more than one implementation of a component that does precisely the
same thing.

Second, notice that the class definition references both gov.cca.ports.GoPort and
gov.cca.Component, and declares all of the methods that we saw in those interface definitions,
with precisely the same signatures.

5. Now you need to modify the Makefile system so that it is aware of the new drivers.sidl
file and the component you're adding.

Edit student-src/component/MakeIncl.components and make the following addi-
tions:

SIDL files containing component declarations
For example:
SIDL_FILES = sidl/drivers.sidl
SIDL_FILES = sidl/functions.sidl sidl/integrators.sidl sidl/randomgens.sidl \

sidl/drivers.sidl

The COMPONENTS list contains the fully-qualified names of the component
classes, augmented with -LANGUAGE, where LANGUAGE is the language
in which the component is implemented, e.g., c, c++, f90.
For example:
COMPONENTS = drivers.F90Driver-f90 drivers.CXXDriver-c++
COMPONENTS = functions.PiFunction-c++ \

integrators.MonteCarlo-f90 randomgens.RandNumGenerator-c++ \
drivers.CXXDriver-c++

Of course if you've chose to create the Fortran 90 driver, you should add
drivers.F90Driver-f90 to the definition of COMPONENTS instead. In both cases, notice the
backslash (“\”) used to continue definition on to the next line. make will accept long lines, but the
files are easier to read if they're nicely formatted.

6. In the student-src/components directory, type make .repository to make Babel pro-
cess the .sidl files and update the XML repository. The output should look something like this:

touch .sidl

Generating XML for SIDL packages containing component declarations
/san/shared/cca/tutorial/bin/babel -t xml -R../xml_repository \

The Driver Component

18

-R/san/shared/cca/tutorial/share/cca-spec-babel-0_7_0-babel-0.9.4/xml \
-o ../xml_repository sidl/functions.sidl sidl/integrators.sidl \
sidl/randomgens.sidl sidl/drivers.sidl

Babel: Parsing URL "file:/.automount/whale/root/san/r1a0l0/bernhold/\
student-src/components/sidl/functions.sidl"...

Babel: Warning: Symbol exists in XML repository: \
functions.LinearFunction-v1.0

Babel: Warning: Symbol exists in XML repository: \
functions.NonlinearFunction-v1.0

Babel: Warning: Symbol exists in XML repository: \
functions.PiFunction-v1.0

Babel: Parsing URL "file:/.automount/whale/root/san/r1a0l0/bernhold/\
student-src/components/sidl/integrators.sidl"...

Babel: Warning: Symbol exists in XML repository: \
integrators.MonteCarlo-v1.0

Babel: Parsing URL "file:/.automount/whale/root/san/r1a0l0/bernhold/\
student-src/components/sidl/randomgens.sidl"...

Babel: Warning: Symbol exists in XML repository: \
randomgens.RandNumGenerator-v1.0

Babel: Parsing URL "file:/.automount/whale/root/san/r1a0l0/bernhold/\
student-src/components/sidl/drivers.sidl"...

touch .repository

The next step is to implement the internals of the component, which are obviously dependent on the im-
plementation language you've chosen. For C++, continue directly on with Section 3.2, “Implementation
of the CXXDriver in C++”. For Fortran 90, please jump to Section 3.3, “Implementation of the
F90Driver in Fortran 90”.

3.2. Implementation of the CXXDriver in C++

1. The next step is to get Babel to generate the skeleton code that we will fill in with the component's
implementation. In the student-src/components directory, type make
.drivers.CXXDriver-c++. The output should look something like this:

Generating a c++ implementation for the drivers.CXXDriver component.
/san/shared/cca/tutorial/bin/babel -s c++ -R../xml_repository \

-R/san/shared/cca/tutorial/share/cca-spec-babel-0_7_0-babel-0.9.4/xml \
-g -u -E -l -m drivers.CXXDriver. --suppress-timestamp drivers.CXXDriver

Babel: Resolved symbol "drivers.CXXDriver"...
touch .drivers.CXXDriver-c++

and in the student-src/components/drivers/c++ directory, you should see the follow-
ing files:

drivers.CXXDriver.babel.make
drivers_CXXDriver_Impl.cc
drivers_CXXDriver_Impl.hh
glue

all of which were generated by Babel. (glue is actually a directory that contains a large number of
generated files that Babel needs to do its job, but which you never need to modify.) The source
code files that you will need to modify in order to implement the component are the so-called Im-

The Driver Component

19

pl files. For C++, both a source file (.cc) and the corresponding header file (.hh) are generated.

2. In your editor, take a look through both student-
src/components/drivers/c++/drivers_CXXDriver_Impl.cc and student-
src/components/drivers/c++/drivers_CXXDriver_Impl.hh to familiarize your-
self with their structure before you make any changes.

a. Near the top of drivers_CXXDriver_Impl.hh, you will see a group of include direct-
ives:

...
//
// Includes for all method dependencies.
//
#ifndef included_drivers_CXXDriver_hh
#include "drivers_CXXDriver.hh"
#endif
...

Babel generates include directives for header files that are necessary to resolve the types used
in the SIDL definition of the class you're implementing (in this case, in the student-
src/components/sidl/drivers.sidl file). It does not automatically generate in-
clude directives for interfaces you implement. You will have to add those and any other header
files your implementation requires as part of the implementation process.

When an automatically generated file is manually modified, there is always a danger that the
modifications will be overwritten the next time the file is generated. Babel solves this with a
concept called splicer blocks. These structured comments that appear to the compiler as regu-
lar comments, but are interpreted by Babel as having a special meaning. Babel will preserve
code within a splicer block when the file is regenerated. Code outside splicer blocks will be
overwritten. Most Babel-generated files contain numerous splicer blocks -- everywhere you
might need to add something to the generated skeleton. Here is an example:

...
// DO-NOT-DELETE splicer.begin(drivers.CXXDriver._includes)
// Put additional includes or other arbitrary code here...
// DO-NOT-DELETE splicer.end(drivers.CXXDriver._includes)
...

Note that each splicer block has a name that is unique within the file, and has explicit begin-
ning and end markers. In this case, the leading comment syntax is appropriate to C++, but of
course files generated for other languages will have different ways of denoting comments.

b. In the drivers_CXXDriver_Impl.cc, You will see that Babel has already generated the
signatures for all of the methods you need to implement, giving them appropriate C++-ized
names, and has provided splicer blocks ready for you to fill in. This includes both the go
method inherited from the gov.cca.ports.GoPort definition, and the setServices
method inherited from the gov.cca.Component definition.

3.2.1. The setServices Implementation

The Driver Component

20

1. We'll begin by implementing the setServices method in drivers_CXXDriver_Impl.cc.
Here is what the routine should look like (you'll need to type in the stuff marked up like this),
along with some comments about different sections.

...
/**
* Method: setServices[]
*/
void
drivers::CXXDriver_impl::setServices (
/*in*/ ::gov::cca::Services services)

throw (
::gov::cca::CCAException

){
// DO-NOT-DELETE splicer.begin(drivers.CXXDriver.setServices)
// insert implementation here

frameworkServices = services;

// Provide a Go port
gov::cca::ports::GoPort gp = self;

frameworkServices.addProvidesPort(gp,

"GoPort",
"gov.cca.ports.GoPort",
frameworkServices.createTypeMap());

// Use an IntegratorPort port
frameworkServices.registerUsesPort ("IntegratorPort",

"integrator.IntegratorPort",
frameworkServices.createTypeMap());

// DO-NOT-DELETE splicer.end(drivers.CXXDriver.setServices)
}
...

When the framework calls setServices, it passes in a gov.cca.Services object (in C++
gov::cca::Services) that we need to keep a copy of. Note that frameworkServices is not
declared here. We will add a declaration for it to the .hh file in the next step.
In order to register the ports that our component will provide with the framework, we use the
addProvidesPort method of the gov.cca.Services interface. You can find this in-
terface in the cca.sidl file (where you previously looked up gov.cca.Component and
gov.cca.ports.GoPort) in order to check its signature, which is:

...
void addProvidesPort(in gov.cca.Port inPort,

in string portName,
in string type,
in gov.cca.TypeMap properties)

throws gov.cca.CCAException ;
...

(Of course we're actually calling the C++ version of the interface.)

The first argument is the object that actually provides the port. The way we wrote the SIDL,
the drivers.CXXDriver class provides the port, and since we're writing a method within
this class, C++ allows the enclosing object to be referred to as self (cast to the appropriate

The Driver Component

21

type).

The second and third arguments are a local name for the port, which must be unique within
the component, and a type, which should be globally unique. If the actual types of the ports
don't match between user and provider, it will cause a failed cast or possibly a segmentation
fault. The string type here is a convenience to the user, giving a human-readable way to
identify the type of the port that can be presented in the framework's user interface. By con-
vention, the SIDL interface name for the port is used for the type.

The final argument is a gov.cca.TypeMap. This is a CCA-defined type that provides a
simple hash table that can be used to associate properties with a provides port. In practice, it is
rarely used, but must be present.
We must also tell the framework which ports we expect to use from other components. Look-
ing in cca.sidl, we find that the method's signature is:

...
void registerUsesPort(in string portName,

in string type,
in gov.cca.TypeMap properties)

throws gov.cca.CCAException ;
...

The first and second arguments are a local name for the port, following the same rules and
conventions as in the addProvidesPort invocation above. The final argument is, once
again, a gov.cca.TypeMap, again like addProvidesPort.

2. The header file also requires a couple of additions. First, let's take care of declaring framework-
Services as a private variable belonging to the drivers::CXXDriver class.

Edit student-src/components/drivers/c++/drivers_CXXDriver_Impl.hh and
add the following:

...
/**
* Symbol "drivers.CXXDriver" (version 1.0)
*/
class CXXDriver_impl
// DO-NOT-DELETE splicer.begin(drivers.CXXDriver._inherits)
// Put additional inheritance here...
// DO-NOT-DELETE splicer.end(drivers.CXXDriver._inherits)
{

private:
// Pointer back to IOR.
// Use this to dispatch back through IOR vtable.
CXXDriver self;

// DO-NOT-DELETE splicer.begin(drivers.CXXDriver._implementation)
// Put additional implementation details here...

::gov::cca::Services frameworkServices;

// DO-NOT-DELETE splicer.end(drivers.CXXDriver._implementation)
...

3. We also need to add the include directives for the header files for the classes we inherit from. (For
technical reasons, Babel does not insert these automatically when it generates the file.)

The Driver Component

22

...
// DO-NOT-DELETE splicer.begin(drivers.CXXDriver._includes)
// Put additional includes or other arbitrary code here...

#include "integrator_IntegratorPort.hh"
#include "gov_cca_ports_GoPort.hh"

// DO-NOT-DELETE splicer.end(drivers.CXXDriver._includes)
...

Note that in naming files, Babel translates periods (“.”) in the SIDL to underscores (“_”).

4. Now, although the component is not complete, it is a good idea to check that it compiles correctly
with the code you've added so far.

First, change directories to student-src/components and run make drivers. This will
install Makefile and MakeIncl.user files in student-
src/components/drivers/c++.

Then, change directories to student-src/components/drivers/c++ and run make. If
you get any compiler errors, you should fix them before going on.

3.2.2. The go Implementation

1. Once again, edit student-
src/components/drivers/c++/drivers_CXXDriver_Impl.cc and add the imple-
mentation of the go method:

...
/**
* Method: go[]
*/
int32_t
drivers::CXXDriver_impl::go ()
throw ()

{
// DO-NOT-DELETE splicer.begin(drivers.CXXDriver.go)
// insert implementation here

double value;

int count = 100000;
double lowerBound = 0.0, upperBound = 1.0;

::integrator::IntegratorPort integrator;

// get the port ...
integrator = frameworkServices.getPort("IntegratorPort");

if(integrator._is_nil()) {

fprintf(stdout, "drivers.CXXDriver not connected\n");
frameworkServices.releasePort("IntegratorPort");

The Driver Component

23

return -1;
}
// operate on the port
value = integrator.integrate (lowerBound, upperBound, count);

fprintf(stdout,"Value = %lf\n", value);
fflush(stdout);

// release the port.
frameworkServices.releasePort("IntegratorPort");

return 0;

// DO-NOT-DELETE splicer.end(drivers.CXXDriver.go)
}
...

Setup the parameters with which to call the integrator.
In this section we get a handle to the particular integrator.IntegratorPort that the
driver's uses port has been connected to. First, we have to declare a variable of the appropriate
type (::integrator::IntegratorPort is the C++ translation of the SIDL integrat-
or.IntegratorPort, defined in
student-src/ports/sidl/integrator.sidl). Then, we invoke the getPort on
our frameworkServices object. The argument to this method is the local name we used
in the registerUsesPort invocation.
This code checks that the getPort worked, and returned a valid port. If the getPort fails,
or if the driver's uses port has not been connected to an appropriate provider, then getPort
will return a nil port object. The _is_nil method is automatically available on all SIDL ob-
jects. Because the driver can't do anything without being properly connected to an integrator,
the response to getPort failing is to abort by returning a non-zero value.

Note

getPort returning nil need not be treated as a fatal error in all cases. For ex-
ample, a component may be designed so that certain ports are optional -- to be
used if present, but to be ignored if not. Another possibility is that the compon-
ent may be able to accomplish the same thing through several different ports, so
that only one of a given group needs to be connected.

Here we actually call the integrate method on the integrator port we just got a
handle for. The signature of the integrate method is defined in student-
src/ports/sidl/integrator.sidl.
Finally, once we're done using the port, we call releasePort.
It is considered impolite for a component to call exit because it will bring down the entire
application, and possibly crash the framework. Instead, components should simply return.

2. Congratulations, you have completed the implementation of the CXXDriver! To check your
work, run make in student-src/components/drivers/c++. If you get any compiler er-
rors, you should fix them before going on.

3. At this point, it is a good idea to go up to student-src and run make to insure that anything
else which might depend on the existence of the new drivers.CXXDriver component gets
built too.

The next step is to test your new driver component, in Section 3.5, “Using Your New Component”.

The Driver Component

24

3.3. Implementation of the F90Driver in For-
tran 90

Before we begin the implementation, it is important to understand that, regardless of language, both the
CCA and especially Babel/SIDL impose an object-oriented model on any of its supported languages, in-
cluding Fortran. Most importantly, this means that each Fortran component has state and methods. State
means that variables are associated with a particular instance component and that these state variables
(sometimes referred to as private data) can take on different values for different instances. A method is a
subroutine that is associated with the component. A short introduction to the way CCA/Babel deal with
imposing an object model on Fortran is given in Section 3.4, “SIDL and CCA Object Orientation in For-
tran” and can be read at your leisure. You should also read the Fortran 90 section of the Babel Users'
Guide [http://www.llnl.gov/CASC/components/docs/users_guide/users_guide.html].

There are other limitations of the Fortran 90 standard that Babel deals with by adhering to certain con-
ventions:

• Fortran doesn't offer the hierarchical structures for routine and type names in the way that most OO
languages do, so SIDL's hierarchical dot-separated notation is translated into a flat namespace using
underscores in Fortran. For example, gov.cca.Services is translated to gov_cca_Services. A
reference to that SIDL interface would be defined as a variable in this fashion:

type(gov_cca_Services_t) :: services

• Because of the requirement that all symbols in Fortran 90 be at most 32 characters, sometimes long
names common in OO programming styles need to be abbreviated. Babel keeps the most significant
portion of the name (the base name) and truncates the rest, adding a hash to make it unique if neces-
sary. For example, our own F90Driver component's setServices() subroutine declaration
looks like:

recursive subroutine F90Dri_setServices4khxt4z7ds_mi(self, services, &
exception)

1. The next step in implementing the driver is to get Babel to generate the skeleton code that we will
fill in with the component's implementation. In the student-src/components directory, type
make .drivers.F90Driver-f90. The output should look something like this:

Generating a f90 implementation for the drivers.F90Driver component.
/san/shared/cca/tutorial/bin/babel -s f90 -R../xml_repository \
-R/san/shared/cca/tutorial/share/cca-spec-babel-0_7_0-babel-0.9.4/xml \
-g -u -E -l -m drivers.F90Driver. --suppress-timestamp drivers.F90Driver
Babel: Resolved symbol "drivers.F90Driver"...
touch .drivers.F90Driver-f90

and in the student-src/components/drivers/f90 directory, you should see the follow-
ing files:

drivers.F90Driver.babel.make
drivers_F90Driver_Impl.F90
drivers_F90Driver_Mod.F90

The Driver Component

25

http://www.llnl.gov/CASC/components/docs/users_guide/users_guide.html
http://www.llnl.gov/CASC/components/docs/users_guide/users_guide.html

glue

all of which were generated by Babel. (glue is actually a directory that contains a large number of
generated files that Babel needs to do its job, but which you never need to modify.) The source
code files that you will need to modify in order to implement the component are the so-called Im-
pl files. For Fortran 90, both a source file (_Impl.F90) and the corresponding module file
(_Mod.F90) are generated.

2. In your editor, take a look through both student-
src/components/drivers/f90/drivers_F90Driver_Impl.F90 and student-
src/components/drivers/c++/drivers_F90Driver_Mod.F90 to familiarize your-
self with their structure before you make any changes.

a. When an automatically generated file is manually modified, there is always a danger that the
modifications will be overwritten the next time the file is generated. Babel solves this with a
concept called splicer blocks. These structured comments that appear to the compiler as regu-
lar comments, but are interpreted by Babel as having a special meaning. Babel will preserve
code within a splicer block when the file is regenerated. Code outside splicer blocks will be
overwritten. Most Babel-generated files contain numerous splicer blocks -- everywhere you
might need to add something to the generated skeleton. Here is an example:

...
! DO-NOT-DELETE splicer.begin(drivers.F90Driver.use)
! Insert use statements here...
! DO-NOT-DELETE splicer.end(drivers.F90Driver.use)
...

Note that each splicer block has a name that is unique within the file, and has explicit begin-
ning and end markers. In this case, the leading comment syntax is appropriate to Fortran 90,
but of course files generated for other languages will have different ways of denoting com-
ments.

b. In the drivers_F90Driver_Impl.F90, You will see that Babel has already generated
the signatures for all of the methods you need to implement, giving them appropriate names
that conform to the Fortran 90 standard (including being hashed to remain within the 32 char-
acter limit if necessary), however it should be fairly easy to match them up with corresponding
SIDL names. In this case, both the go method inherited from the
gov.cca.ports.GoPort definition, and the setServices method inherited from the
gov.cca.Component definition are there, along with several others associated with Babel.

3.3.1. The setServices Implementation

1. We'll begin by implementing the setServices method in
drivers_F90Driver_Impl.F90. Here is what the routine should look like (you'll need to
type in the stuff marked up like this), along with some comments about different sections.

...
!
! Method: setServices[]

The Driver Component

26

!

recursive subroutine F90Dri_setServices4khxt4z7ds_mi(self, services, &
exception)
use sidl_BaseInterface
use drivers_F90Driver
use gov_cca_Services
use gov_cca_CCAException
use drivers_F90Driver_impl
! DO-NOT-DELETE splicer.begin(drivers.F90Driver.setServices.use)
! Insert use statements here...

use gov_cca_TypeMap ! A CCA catch-all properties list (empty for us)
use gov_cca_Port ! needed to use a gov.cca.Port (we do)
use gov_cca_ports_GoPort ! need to export our implementation of GoPort

! DO-NOT-DELETE splicer.end(drivers.F90Driver.setServices.use)
implicit none
type(drivers_F90Driver_t) :: self ! in
type(gov_cca_Services_t) :: services ! in
type(sidl_BaseInterface_t) :: exception ! out

! DO-NOT-DELETE splicer.begin(drivers.F90Driver.setServices)
! Insert the implementation here...

type(gov_cca_TypeMap_t) :: myTypeMap

type(gov_cca_Port_t) :: myPort
type(SIDL_BaseInterface_t) :: excpt
type(drivers_F90Driver_wrap) :: dp

call drivers_F90Driver__get_data_m(self, dp)

! Set my reference to the services handle
dp%d_private_data%frameworkServices = services

call addRef(services)

! Create an empty TypeMap
call createTypeMap(dp%d_private_data%frameworkServices, &

myTypeMap, excpt)
call checkExceptionDriver(excpt, 'setServices createTypeMap call')

! Provide a GoPort
call cast(self, myPort)

call addProvidesPort(dp%d_private_data%frameworkServices, &

myPort, 'GoPort', 'gov.cca.GoPort', &
myTypeMap, excpt)

call checkExceptionDriver(excpt,'setServices addProvidesPort: GoPort')

! Register to use an integrator port
call registerUsesPort(dp%d_private_data%frameworkServices, &

'IntegratorPort', &
'integrator.Integrator', &
myTypeMap, excpt)

call checkExceptionDriver(excpt, &
'setServices registerUsesPort: IntegratorPort')

call deleteRef(myTypeMap)

! DO-NOT-DELETE splicer.end(drivers.F90Driver.setServices)

The Driver Component

27

end subroutine F90Dri_setServices4khxt4z7ds_mi
...

Declaration of variables that will be needed below. The types are defined in various modules
used above. The drivers_F90Driver_wrap type is a Babel idiom for the private data associated
with the particular instance of this component, in an object-oriented sense.
When the framework calls setServices, it passes in a gov.cca.Services object (in C++
gov::cca::Services) that we need to keep a copy of in the private data associated with this in-
stance of our component. Babel uses “reference counting” to track usage of objects in order to
know when it is safe to delete them. Because Fortran has no native mechanism for reference
counting, we must use Babel's addRef method to indicate that we're storing a reference to
the services object that the framework passed in to setServices
The services methods to register uses and provides ports requires a gov.cca.TypeMap (in
Fortran TypeMap), which we create here.

In SIDL, methods can throw exceptions. In languages like Fortran, which don't have native
support for exceptions (if you're not familiar with exceptions, it is sufficient to think of them
as error codes), they are translated into an additional subroutine argument (in this case
excpt) which then should be checked (“caught”). We'll add the checkException-
Driver method in Step 2.

When Babel creates myTypeMap, it will (internally) add a reference to it. Once we're done
using it, we can tell Babel that by calling Babel's deleteRef method, which you can see at
the end of the routine. When the reference count goes to zero, Babel will destroy the myTy-
peRef object and reclaim the memory associated with it.

Caution

Failure to follow proper reference counting procedures in Babel/Fortran (or oth-
er non-OO languages, such as C) code will lead to “memory leaks” in your ap-
plication. See the Babel Users' Guide
[http://www.llnl.gov/CASC/components/docs/users_guide/users_guide.html] for
more detailed information.

In order to register the ports that our component will provide with the framework, we use the
addProvidesPort method of the gov.cca.Services interface. You can find this in-
terface in the cca.sidl file (where you previously looked up gov.cca.Component and
gov.cca.ports.GoPort) in order to check its signature, which is:

...
void addProvidesPort(in gov.cca.Port inPort,

in string portName,
in string type,
in gov.cca.TypeMap properties)

throws gov.cca.CCAException ;
...

(Of course we're actually calling the Fortran 90 version of the interface.)

The first argument is the object that actually provides the port. The way we wrote the SIDL,
the drivers.F90Driver class provides the port, and since we're writing a method within
this class, we use Babel's cast method to cast our self pointer to type gov.cca.Port.

The second and third arguments are a local name for the port, which must be unique within
the component, and a type, which should be globally unique. If the actual types of the ports
don't match between user and provider, it will cause a failed cast or possibly a segmentation

The Driver Component

28

http://www.llnl.gov/CASC/components/docs/users_guide/users_guide.html

fault. The string type here is a convenience to the user, giving a human-readable way to
identify the type of the port that can be presented in the framework's user interface. By con-
vention, the SIDL interface name for the port is used for the type.

The final argument is a gov.cca.TypeMap. This is a CCA-defined type that provides a
simple hash table that can be used to associate properties with a provides port. In practice, it is
rarely used, but must be present.
We must also tell the framework which ports we expect to use from other components. Look-
ing in cca.sidl, we find that the method's signature is:

...
void registerUsesPort(in string portName,

in string type,
in gov.cca.TypeMap properties)

throws gov.cca.CCAException ;
...

The first and second arguments are a local name for the port, following the same rules and
conventions as in the addProvidesPort invocation above. The final argument is, once
again, a gov.cca.TypeMap, again like addProvidesPort.

2. The module file also requires a couple of additions. First, let's take care of declaring framework-
Services as part of the module's private data.

Edit student-src/components/drivers/f90/drivers_F90Driver_Mod.F90 and
add the following:

...
type drivers_F90Driver_priv
sequence
! DO-NOT-DELETE splicer.begin(drivers.F90Driver.private_data)

! Handle to framework Services object
type(gov_cca_Services_t) :: frameworkServices

! DO-NOT-DELETE splicer.end(drivers.F90Driver.private_data)
end type drivers_F90Driver_priv
...

3. We also need to add the use directives for the module for gov.cca.Services.

...
! DO-NOT-DELETE splicer.begin(drivers.F90Driver.use)
! Insert use statements here...

! CCA framework services module
use gov_cca_Services

! DO-NOT-DELETE splicer.end(drivers.F90Driver.use)
...

4. Now, although the component is not complete, it is a good idea to check that it compiles correctly
with the code you've added so far.

First, change directories to student-src/components and run make drivers. This will

The Driver Component

29

install Makefile and MakeIncl.user files in student-
src/components/drivers/f90.

Then, change directories to student-src/components/drivers/f90 and run make. If
you get any compiler errors, you should fix them before going on.

3.3.2. Implementing the Constructor and Destructor
Constructor and destructor are concepts from object-oriented programming. Specifically, they are the
routines that are called to create an instance of an object, and when it is being destroyed. When using
most OO languages in the CCA/Babel environment, the constructor and destructor are handled pretty
much automatically. In an non-OO language, like Fortran or C, we have to do a little more work. Spe-
cifically, we have to allocate and deallocate the data needed to maintain the private state of the compon-
ent instance.

1. Edit student-src/components/drivers/f90/drivers_F90Driver_Impl.F90
and find the constructor method, which Babel abbreviates ctor.

The constructor must allocate the space for the private data, initialize the private data as appropriate
(in this case, we set frameworkServices to null), and Babel has to be told about the private
data. In this component, the only private data we need to store is a pointer to the services object
passed into setServices.

...
!
! Class constructor called when the class is created.
!

recursive subroutine drivers_F90Driver__ctor_mi(self)
use drivers_F90Driver
use drivers_F90Driver_impl
! DO-NOT-DELETE splicer.begin(drivers.F90Driver._ctor.use)
! Insert use statements here...
! DO-NOT-DELETE splicer.end(drivers.F90Driver._ctor.use)
implicit none
type(drivers_F90Driver_t) :: self ! in

! DO-NOT-DELETE splicer.begin(drivers.F90Driver._ctor)
! Insert the implementation here...

! Access private data
type(drivers_F90Driver_wrap) :: dp
! Allocate memory and initialize
allocate(dp%d_private_data)
call set_null(dp%d_private_data%frameworkServices)
call drivers_F90Driver__set_data_m(self, dp)

! DO-NOT-DELETE splicer.end(drivers.F90Driver._ctor)
end subroutine drivers_F90Driver__ctor_mi
...

2. Find the destructor method, which Babel abbreviates dtor. The destructor's job is to undo what
the constructor did.

The Driver Component

30

...
!
! Class destructor called when the class is deleted.
!

recursive subroutine drivers_F90Driver__dtor_mi(self)
use drivers_F90Driver
use drivers_F90Driver_impl
! DO-NOT-DELETE splicer.begin(drivers.F90Driver._dtor.use)
! Insert use statements here...
! DO-NOT-DELETE splicer.end(drivers.F90Driver._dtor.use)
implicit none
type(drivers_F90Driver_t) :: self ! in

! DO-NOT-DELETE splicer.begin(drivers.F90Driver._dtor)
! Insert the implementation here...

! Access private data and deallocate storage
type(drivers_F90Driver_wrap) :: dp
call drivers_F90Driver__get_data_m(self, dp)
deallocate(dp%d_private_data)

! DO-NOT-DELETE splicer.end(drivers.F90Driver._dtor)
end subroutine drivers_F90Driver__dtor_mi
...

3. Now, although the component is not complete, it is a good idea to check that it compiles correctly
with the code you've added so far. Run make in
student-src/components/drivers/f90. If you get any compiler errors, you should fix
them before going on.

3.3.3. The go Implementation

1. Once again, edit student-
src/components/drivers/f90/drivers_F90Driver_Impl.F90 and add the imple-
mentation of the go method:

...
!
! Method: go[]
!

recursive subroutine drivers_F90Driver_go_mi(self, retval)
use drivers_F90Driver
use drivers_F90Driver_impl
! DO-NOT-DELETE splicer.begin(drivers.F90Driver.go.use)
! Insert use statements here...

use sidl_BaseInterface

use gov_cca_Services
use gov_cca_Port
use integrator_IntegratorPort

The Driver Component

31

! DO-NOT-DELETE splicer.end(drivers.F90Driver.go.use)
implicit none
type(drivers_F90Driver_t) :: self ! in
integer (selected_int_kind(9)) :: retval ! out

! DO-NOT-DELETE splicer.begin(drivers.F90Driver.go)
! Insert the implementation here...

type(gov_cca_Port_t) :: generalPort

type(SIDL_BaseInterface_t) :: excpt
type(integrator_IntegratorPort_t) :: integratorPort

! Private data reference
type(drivers_F90Driver_wrap) :: dp

! local variables for integration
real (selected_real_kind(15, 307)) :: lowBound

real (selected_real_kind(15, 307)) :: upBound
integer (selected_int_kind(9)) :: count
real (selected_real_kind(15, 307)) :: value

! Initialize local variables
count = 100000

lowBound = 0.0
upBound = 1.0

! Access private data
call drivers_F90Driver__get_data_m(self, dp)
retval = -1

! get the port ...
call getPort(dp%d_private_data%frameworkServices, &

'IntegratorPort', generalPort, excpt)
call checkExceptionDriver(excpt, &

'getPort(''IntegratorPort'')')
if(is_null(generalPort)) then

write(*,*) 'drivers.F90Driver not connected'
return

endif

! Get an IntegratorPort reference from the general port one
call cast(generalPort, integratorPort)

if (not_null(integratorPort)) then

value = -1.0 ! nonsense number to confirm it is set

! operate on the port
call integrate(integratorPort, lowBound, upBound, count, &

value)
write(*,*) 'Value = ', value

else ! integratorPort is null
write(*,*) 'DriverF90: incompatible IntegratorPort'

endif

! release the port
call releasePort(dp%d_private_data%frameworkServices, &

'IntegratorPort', excpt)
call checkExceptionDriver(excpt, 'releasePort(''IntegratorPort'')')

The Driver Component

32

retval = 0

return

! DO-NOT-DELETE splicer.end(drivers.F90Driver.go)
end subroutine drivers_F90Driver_go_mi
...

Declarations for modules we need to use in this routine.
Setup the variables and parameters with which to call the integrator.
These portions of the code are associated with getting a handle to the particular integrat-
or.IntegratorPort that the driver's uses port has been connected to.

First, we have to declare variables of the appropriate type to hold the port. Because of the way
OO programming works in CCA/Babel, we first get the port as a generic gov.cca.Port
(gov_cca_Port_t in Fortran 90) and then cast it to the specific port we need to use, integrat-
or.IntegratorPort (integrator_IntegratorPort_t in Fortran 90). Recall that integrat-
or.IntegratorPort is defined in student-
src/ports/sidl/integrator.sidl).

Then, we invoke the getPort on our frameworkServices object. The argument to this
method is the local name we used in the registerUsesPort invocation, and it returns a
gov.cca.Port (and an exception).

Finally, we use Babel's cast method to cast the generic port to the specific integrator port
that we need.
This code checks that the getPort worked, and returned a valid port. If the getPort fails,
or if the driver's uses port has not been connected to an appropriate provider, then getPort
will return a null port object. The is_null method is automatically available on the Fortran
90 binding of any SIDL object. Because the driver can't do anything without being properly
connected to an integrator, the response to getPort failing is to abort by returning a non-
zero value.

It is also possible that a valid gov.cca.Port would be returned, but it might not be the integrat-
or.IntegratorPort we expect. If this is the case, the cast will return a null value. The proper
action in this case is also to fail gracefully by returning a non-zero result.

Note

getPort returning nil need not be treated as a fatal error in all cases. For ex-
ample, a component may be designed so that certain ports are optional -- to be
used if present, but to be ignored if not. Another possibility is that the compon-
ent may be able to accomplish the same thing through several different ports, so
that only one of a given group needs to be connected.

Here we actually call the integrate method on the integrator port we just got a
handle for. The signature of the integrate method is defined in student-
src/ports/sidl/integrator.sidl. Notice that while the SIDL definition of in-
tegrate shows it as a function, returning a double precision result, in Fortran 90, Babel
translates this into a subroutine with the return value as an extra argument. This is because
Fortran does not support functions returning all types (arrays, for example).
Finally, once we're done using the port, we call releasePort.
It is considered impolite for a component to call exit because it will bring down the entire
application, and possibly crash the framework. Instead, components should simply return.

2. There's one other bit of code we have to provide before we can declare this component complete. In
numerous places, we've seen exceptions being returned, and we've been using a routine checkEx-

The Driver Component

33

ceptionDriver to deal with them. This is a method that we have to write.

Exceptions are a potentially powerful and sophisticated way of handling errors in software. But for
the purposes of this exercise, we're going to take a very simple approach. Our exception handler
routine simply test whether or not the exception is a null object, and if it is print a message and tell
Babel that as far as we're concerned it can delete the excpt object. Notice that this routine does
not exit or abort. As we've noted, it is not considered polite behavior for a component to exit, even
in the event of an exception.

In student-src/components/drivers/f90/drivers_F90Driver_Impl.F90 loc-
ate the splicer blocks for miscellaneous code, at the very end of the file, and enter the following:

...
! DO-NOT-DELETE splicer.begin(_miscellaneous_code_end)
! Insert extra code here...!
! Small routine (not part of the SIDL interface) for
! checking the exception and printing the message passed as
! and argument
!
subroutine checkExceptionDriver(excpt, msg)
use SIDL_BaseInterface
use gov_cca_CCAException
implicit none
type(sidl_BaseInterface_t), intent(inout) :: excpt
character (len=*) :: msg ! in
if (not_null(excpt)) then

write(*, *) 'drivers.F90Driver Exception: ', msg
call deleteRef(excpt)

end if
end subroutine checkExceptionDriver

! DO-NOT-DELETE splicer.end(_miscellaneous_code_end)
...

3. Congratulations, you have completed the implementation of the F90Driver! To check your
work, run make in student-src/components/drivers/f90. If you get any compiler er-
rors, you should fix them before going on.

4. At this point, it is a good idea to go up to student-src and run make to insure that anything
else which might depend on the existence of the new drivers.CXXDriver component gets
built too.

The next step is to test your new driver component, in Section 3.5, “Using Your New Component”.

3.4. SIDL and CCA Object Orientation in For-
tran

There will be a few artifacts of CCA's(and Babel's) insistence on an object model. Generally the object
oriented style of programming groups state data and subroutines (or methods) into "objects". Because
CCA requires an object model for its components, Fortran programmers will have to become a little fa-
miliar with how CCA/Babel implements this in the language. A broad exposition on object oriented con-
cepts is beyond the scope of this tutorial document, more and better information can be found elsewhere
[http://en.wikipedia.org/wiki/Object_oriented_programming].

The Driver Component

34

http://en.wikipedia.org/wiki/Object_oriented_programming

The first thing objects need is a constructor and destructor to initialize state data. For Fortran, the meth-
ods ending in _ctor and _dtor are the constructor and destructor for the component (see listing
above). This allows the programmer to create (in the constructor) and delete (in the destructor) state data
associated with the component. One thing that almost all components want to store is the
gov_cca_Services handle that is passed in through the setServices(). A complex component
may wish to store parameters associated with its function as well.

Looking at the cca specification cca.sidl, Babel maps each CCA SIDL type (e.g. gov.cca.Port)
to a Fortran type (e.g. type(gov_cca_Port_t)).

Because return values cannot accept all Babel types and because Fortran does not provide either an ob-
ject model or a mechanism for exceptions, these features are placed in the argument list:

• A handle that represents the component and holds the state (or private) data for the component is
prepended to the front of the argument list for every subroutine method: it is usually called self.

• The return value is appended to the end of the argument list.

• If there is an exception specified in the .sidl file, then the exception (of type
SIDL_BaseInterface_t) is appended after the return value.

As an example, if a user specifies a SIDL snippet such as:

file: ./cca-spec-babel/cca.sidl line:108
package gov {
package cca version 0.7.0 {
...

Port getPort(in string portName) throws CCAException;
...
} // end of package cca
} // end package gov

In Fortran translates into:

...
type(gov_cca_Port_t) :: port
type(SIDL_BaseInterface_t) :: excpt
type(gov_cca_Services) :: frameworkServices
...
port = getPort(frameworkServices, port, excpt)

3.5. Using Your New Component

1. Change directories to student-src/components/examples and edit task1_rc. This file
will assemble and run an application using the new driver component you've created. However it
includes lines for both versions of the driver component, and probably you've only implemented
one. So you will need to comment out all of the lines which refer to the driver component you did
not implement.

2. Run the script with ccafe-single --ccafe-rc task1_rc. It should run without errors
and give you a result like Value = 3.140347 (since we're using a Monte Carlo integration al-
gorithm, results will vary).

The Driver Component

35

3. Feel free to modify task3_rc to assemble applications with different components. The beginning
of the rc file loads the palette with all of the available components and creates an instance of each.
See Chapter 2, Assembling and Running a CCA Application for further information and ideas for
other “applications” you can construct.

The Driver Component

36

Chapter 4. Creating a Component from
an Existing Library
$Revision: 1.31 $
$Date: 2004/08/26 16:21:20 $

In this exercise, you will wrap an existing (“legacy”) software library as a CCA component (i.e.
“componentize” it). The CCA is designed to make it as easy as possible to componentize existing soft-
ware, and a significant fraction of CCA components are created in this way. While this specific example
is minimal, the techniques used to produce a component that uses an existing library with minimal or no
modifications to legacy code is applicable for large legacy codes.

The integrator components are Fortran90 wrappers over an existing legacy integrator library. For the
purposes of this exercise, the legacy library is located in the student-src/legacy/f90 directory.
The Integrator.f90 code implements a midpoint rule integration approach. Our goal is to create an
integrator component that uses the legacy implementation to compute the integral of a function.

4.1. The legacy Fortran integrator
Our Fortran legacy library (in student-src/legacy/f90) contains an integration algorithm,
which can be invoked as follows:

call integrate_mp(functionParams, lowBound, upBound, count)

where functionParams is a variable of type FunctionParams_t. This type is used to store various func-
tion-specific attributes, such as the constant coefficients. The definition of this type is in the Func-
tionModule module, in the LegacyFunctionModule.f90 file:

file: student-src/legacy/f90/LegacyFunctionModule.f90
module FunctionModule
implicit none

type FunctionParams_t
private
real, dimension(3) :: coef

end type FunctionParams_t

contains

subroutine init(params, coefficients)
! !INPUT PARAMETERS:
type(FunctionParams_t), intent(INOUT) :: params
real, dimension(:), intent(IN) :: coefficients

integer :: i

do i = 1 ,3
params%coef(i) = coefficients(i)

end do

end subroutine init

real function eval(params, x)

! !INPUT PARAMETERS:
type(FunctionParams_t), intent(IN) :: params

37

real, intent(IN) :: x

eval = 2 * x

end function eval

end module FunctionModule

The legacy integrator (in Integrator.f90) uses the midpoint integration algorithm to integrate an
arbitrary function that has an eval function and uses FunctionParams_t to store its state. The complete
code for the legacy integrator follows.

file: student-src/legacy/f90/Integrator.f90
module Integrator
use FunctionModule

implicit none

contains

real function integrate_mp(functionParams, lowBound, upBound, count)
implicit none

! !INPUT PARAMETERS:

type(FunctionParams_t),intent(IN) :: functionParams

real, intent(IN) :: lowBound
real, intent(IN) :: upBound
integer, intent(IN) :: count

! !LOCAL VARIABLES:
real :: sum, h, x, dcount, func_val
integer :: i

integrate_mp = -1

! Compute integral
sum = 0.0
h = (upBound - lowBound) / count

do i = 0, count
x = lowBound + h * (i + 0.5)
func_val = eval(functionParams, x)

sum = sum + func_val
end do

integrate_mp = sum * h

end function integrate_mp

end module Integrator

Notes on the Integrator.f90 file

The Integrator module uses the FunctionModule, which means that the integrator can
only evaluate functions defined in this FunctionModule, or other Fortran modules that "ex-
tend" it.
The functionParamsargument of the integrator is the only way function parameters can be
passed through to the function being evaluated.

Creating a Component from an Existing Lib-
rary

38

This evaluates the function given the parameters passed into the Integrator.

4.2. The FunctionModule wrapper.
To enable the legacy integrator to evaluate functions that are not defined in the same fashion as the
FunctionModule above (i.e., such that they define the eval method or equivalent interface that
takes a FunctionParams_t argument and a real argument) is to create another FunctionModule that
allows a FunctionPort to be used for the function evaluation.

file: student-src/legacy/f90/FunctionModuleWrapper.f90
module FunctionModule

! This module replaces the FunctionModule used by the legacy integrator.
! Thus, we need to makes sure that this module is first in the module
! search path when building the integrator component.

! We need to include the function port definitions
use function_FunctionPort_type

use function_FunctionPort

implicit none

type FunctionParams_t
sequence ! required for component version
type(function_FunctionPort_t) funcPort

end type FunctionParams_t

interface eval

! This is the one called by the legacy Integrator
module procedure evalFunction

end interface

contains

subroutine setFunctionPort(params, port)
type(FunctionParams_t), intent(OUT) :: params
type(function_FunctionPort_t), intent(IN) :: port

params%funcPort = port
end subroutine setFunctionPort

real function evalFunction(params, x)
use function_FunctionPort
! input parameters:
type(FunctionParams_t), intent(IN) :: params
real, intent(IN) :: x

! local variablesreal
real (selected_real_kind(15, 307)) :: xx
real (selected_real_kind(15, 307)) :: retval

! Compute value by calling the function evaluation in FunctionModule
xx = x
call evaluate(params%funcPort, xx, retval)

evalFunction = retval

end function evalFunction

end module FunctionModule

Creating a Component from an Existing Lib-
rary

39

Notes on the FunctionModuleWrapper.f90 file

The FunctionModuleWrapper module uses (includes) the FunctionPort_type and
FunctionPort modules (in student-src/ports/function/f90, whose definitions
were automatically generated by Babel from the SIDL definition of func-
tion.FunctionPort (student-src/ports/sidl/function.sidl).
The FunctionParams_t type that was originally defined in LegacyFunctionModule.f90.
The legacy FunctionModule contained the eval function; in our wrapper implementation, we
create an eval interface that contains the new evaluation function, evalFunction.
This is the call to the evaluate subroutine of the FunctionPort, using the parameters passed
to the evalFunction. Note that the params%funcPort is supposed to have already been set
by the caller by using the setFunctionPort subroutine defined in this module.

Note

In one of the first steps of this tutorial (see Building the tutorial source tree), the entire tu-
torial tree was built, including the sources in the student-src/legacy/f90 directory
and its subdirectories. Two distinct libraries were created, one containing only legacy
codes (lib/libLegacyIntegrator.a), and another one (lib/
libWrappedLegacyIntegrator.a) containing the FunctionModule definition
in FunctionModuleWrapper.f90 instead of the FunctionModule definition
definition contained in LegacyFunctionModule.f90. Also, the compiled modules
for each version (legacy and wrapped) are put in separate include directories: include
for the legacy code, and include_w for the wrapped version. While the simple applica-
tion example (in simpleApp/Main.f90) uses only the legacy codes, the include_w
directory and the lib/libWrappedLegacyIntegrator.a are used in the compila-
tion of the Midpoint integrator component that you will write in the steps that follow.

4.3. Implementing the integrators.Midpoint
component

The integrator.IntegratorPort definition

The file student-src/ports/sidl/integrator.sidl already contains the integrat-
or.IntegratorPort SIDL declaration:

package integrator version 1.0 {

interface IntegratorPort extends gov.cca.Port
{
double integrate(in double lowBound, in double upBound,

in int count);
}

}

The integrator.IntegratorPort SIDL interface extends the gov.cca.Port interface, which
does not have any methods. Thus, the only method in the integrator.IntegratorPort is in-
tegrate, which takes several arguments that determine the region of integration and the number of
points at which the function is evaluated.

4.4. SIDL definition of the Midpoint component

Creating a Component from an Existing Lib-
rary

40

1. We will write a SIDL-based component that implements the port defined in previous steps and calls
the integrate_mp method implemented in the legacy code described in Section 4.1, “The leg-
acy Fortran integrator” to integrate a function, using function components that implement the
function.FunctionPort port described in The integrator.IntegratorPort definition.

Edit the file, student-src/components/sidl/integrators.sidl to define the class
for the new integrator component, integrators.Midpoint:

package integrators version 1.0 {

// The following components implement all methods of the
// integrator.IntegratorPort and gov.cca.Component interfaces.
// Since they use the SIDL 'implements-all' keyword, the
// methods do not need to (but optionally can) be listed explicitly.

class Midpoint implements-all integrator.IntegratorPort,
gov.cca.Component

{
}

class MonteCarlo implements-all integrator.IntegratorPort,
gov.cca.Component
gov.cca.ComponentRelease

{
// integrator.IntegratorPort methods:
double integrate(in double lowBound, in double upBound,

in int count);

// gov.cca.Component methods:
void setServices(in gov.cca.Services services)

throws gov.cca.CCAException;

// gov.cca.ComponentRelease methods:
void releaseServices(in gov.cca.Services services)

throws gov.cca.CCAException;
}

}

Note that the Midpoint class, unlike the MonteCarlo class does not implement the
gov.cca.ComponentRelease interface, which is optional.

2. Edit the file student-src/components/MakeIncl.components to add a new compon-
ent description in the COMPONENTS variable, which contains the list of components in this dir-
ectory. Each value consists of the fully-qualified name of the component (including packages), to
which we append "-language", where language is one of c, c++, or f90. In this case, the name is
integrators.Midpoint, and the language is f90, so you need to add integrat-
ors.Midpoint-f90. The updated value of COMPONENTS should look like something like
this:

COMPONENTS = functions.PiFunction-c++ \
integrators.MonteCarlo-f90 randomgens.RandNumGenerator-c++ \
drivers.F90Driver-f90 drivers.CXXDriver-c++ \
integrators.Midpoint-f90

Note the backslash (“\”) that has to be added in order to extend the entry to the next line.

3. In the student-src/components directory, run make .repository. This will generate
the XML representation of the integrator.Midpoint SIDL class and store it in the stu-

Creating a Component from an Existing Lib-
rary

41

dent-src/xml_repository directory.

4. In the student-src/components directory, run make .integrators.Midpoint-f90.
This will generate Fortran 90 server code for the integrators.Midpoint component class.

4.5. Fortran 90 implementation of the Midpoint
integrator
4.5.1. The Midpoint module implementation

• After the Fortran 90 code has been generated by Babel, in student-
src/components/integrators/f90, edit the Fortran module definition to define data that
will be stored in each instance of this component:

file: student-src/components/integrators/f90/integrators_Midpoint_Mod.F90
#include"integrators_Midpoint_fAbbrev.h"
module integrators_Midpoint_impl

! DO-NOT-DELETE splicer.begin(integrators.Midpoint.use)
! Insert use statements here...

! CCA framework services module
use gov_cca_Services

! Use a "wrapper" module for the legacy FunctionModule module
use FunctionModule

! Use legacy Integrator module
use Integrator

! DO-NOT-DELETE splicer.end(integrators.Midpoint.use)

type integrators_Midpoint_priv
sequence
! DO-NOT-DELETE splicer.begin(integrators.Midpoint.private_data)

! Handle to framework Services object
type(gov_cca_Services_t) :: frameworkServices

! Function parameters (required by legacy integrator)
type(FunctionParams_t) :: funcParams

! DO-NOT-DELETE splicer.end(integrators.Midpoint.private_data)
end type integrators_Midpoint_priv

type integrators_Midpoint_wrap
sequence
type(integrators_Midpoint_priv), pointer :: d_private_data

end type integrators_Midpoint_wrap

end module integrators_Midpoint_impl

Creating a Component from an Existing Lib-
rary

42

Notes on the integrators_Midpoint_Mod.F90 file

The integrators_Midpoint module uses the FunctionModule, which means that the in-
tegrator can only evaluate functions defined in this FunctionModule, or other Fortran modules
that "extend" it.
This component stores a handle to the framework's Services object, equivalently to the way
the Driver component was implemented in Step 2.
The legacy Integrator module is included.
The integrators.Midpoint component, like the legacy integrator (see Integrator.f90)
requires that the function whose integral is to be computed provides its state via the Function-
Params_t type.

4.5.2. Defining the constructor and destructor

• In the same directory (student-src/components/integrators/f90), edit the integ-
rators_Midpoint_Impl.F90 and insert the code between splicer blocks of the integrat-
ors_Midpoint__ctor_mi, integrators_Midpoint__dtor_mi, and setServices
subroutines:

file: student-src/components/integrators/f90/integrators_Midpoint_Impl.F90

...

!
! Class constructor called when the class is created.
!

recursive subroutine integrators_Midpoint__ctor_mi(self)
use integrators_Midpoint
use integrators_Midpoint_impl
! DO-NOT-DELETE splicer.begin(integrators.Midpoint._ctor.use)
! Insert use statements here...
! DO-NOT-DELETE splicer.end(integrators.Midpoint._ctor.use)
implicit none
type(integrators_Midpoint_t) :: self ! in

! DO-NOT-DELETE splicer.begin(integrators.Midpoint._ctor)
! Insert the implementation here...

! Access private data
type(integrators_Midpoint_wrap) :: dp
! Allocate memory and initialize
allocate(dp%d_private_data)
call set_null(dp%d_private_data%frameworkServices)
call integrators_Midpoint__set_data_m(self, dp)

! DO-NOT-DELETE splicer.end(integrators.Midpoint._ctor)
end subroutine integrators_Midpoint__ctor_mi

!
! Class destructor called when the class is deleted.
!

Creating a Component from an Existing Lib-
rary

43

recursive subroutine integrators_Midpoint__dtor_mi(self)
use integrators_Midpoint
use integrators_Midpoint_impl
! DO-NOT-DELETE splicer.begin(integrators.Midpoint._dtor.use)
! Insert use statements here...
! DO-NOT-DELETE splicer.end(integrators.Midpoint._dtor.use)
implicit none
type(integrators_Midpoint_t) :: self ! in

! DO-NOT-DELETE splicer.begin(integrators.Midpoint._dtor)
! Insert the implementation here...

! Access private data and deallocate storage
type(integrators_Midpoint_wrap) :: dp
call integrators_Midpoint__get_data_m(self, dp)

! Decrement reference count for framework services handle
if (not_null(dp%d_private_data%frameworkServices)) then

call deleteRef(dp%d_private_data%frameworkServices)
end if

deallocate(dp%d_private_data)

! DO-NOT-DELETE splicer.end(integrators.Midpoint._dtor)
end subroutine integrators_Midpoint__dtor_mi

4.5.3. The setServices implementation

• In this step we continue to edit the student-
src/components/integrators/f90/integrators_Midpoint_Impl.F90 file,
adding the implementation of the setServices subroutine, which is part of the
gov.cca.Component. Note that in order to accommodate identifier length restriction in Fortran
(31 characters), the name of the subroutine was automatically shortened by Babel. The unmangled
name is always visible in the comment preceding the subroutine in the Fortran generated code.

...
recursive subroutine Midpoi_setServices6_m9htaw4m_mi(self, services, &
exception)
use sidl_BaseInterface
use integrators_Midpoint
use gov_cca_Services
use gov_cca_CCAException
use integrators_Midpoint_impl
! DO-NOT-DELETE splicer.begin(integrators.Midpoint.setServices.use)
! Insert use statements here...

use gov_cca_TypeMap
use gov_cca_Port
use SIDL_BaseInterface

! DO-NOT-DELETE splicer.end(integrators.Midpoint.setServices.use)
implicit none
type(integrators_Midpoint_t) :: self ! in
type(gov_cca_Services_t) :: services ! in
type(sidl_BaseInterface_t) :: exception ! out

Creating a Component from an Existing Lib-
rary

44

! DO-NOT-DELETE splicer.begin(integrators.Midpoint.setServices)
! Insert the implementation here...

type(gov_cca_TypeMap_t) :: myTypeMap
type(gov_cca_Port_t) :: integratorPort
type(SIDL_BaseInterface_t) :: excpt
! Access private data
type(integrators_Midpoint_wrap) :: dp
call integrators_Midpoint__get_data_m(self, dp)

! Set my reference to the services handle
dp%d_private_data%frameworkServices = services

call addRef(services)

! Create a TypeMap with my properties
call createTypeMap(dp%d_private_data%frameworkServices, myTypeMap, excpt)
call checkExceptionMid(excpt, 'setServices createTypeMap call')

call cast(self, integratorPort)

! Register my provides port
call addProvidesPort(dp%d_private_data%frameworkServices, integratorPort, &

'IntegratorPort', 'integrator.IntegratorPort', &
myTypeMap, excpt)

call checkExceptionMid(excpt, 'setServices addProvidesPort: IntegratorPort')

! The ports I use
call registerUsesPort(dp%d_private_data%frameworkServices, &

'FunctionPort', 'function.FunctionPort', &
myTypeMap, excpt)

call checkExceptionMid(excpt, 'setServices registerUsesPort: FunctionPort')

call deleteRef(myTypeMap)

! DO-NOT-DELETE splicer.end(integrators.Midpoint.setServices)
end subroutine Midpoi_setServices6_m9htaw4m_mi

4.5.4. The integrate implementation

1. Continuing your edits in the integrators_Midpoint_Impl.F90 file, fill in the implementa-
tion of the integrator.IntegratorPort interface component, inserting the call to the leg-
acy integrator in the integrate method.

file: student-src/components/integrators/f90/integrators_Midpoint_Impl.F90
recursive subroutine Midpoint_integrateekg4n6wqha_mi(self, lowBound, upBound, &
count, retval)
use integrators_Midpoint
use integrators_Midpoint_impl
! DO-NOT-DELETE splicer.begin(integrators.Midpoint.integrate.use)
! Insert use statements here...

use function_FunctionPort
use randomgen_RandomGeneratorPort
use gov_cca_Services

Creating a Component from an Existing Lib-
rary

45

use gov_cca_Port
use sidl_BaseInterface

use Integrator ! Legacy integrator module
use FunctionModule ! Legacy function module wrapper

! DO-NOT-DELETE splicer.end(integrators.Midpoint.integrate.use)
implicit none
type(integrators_Midpoint_t) :: self ! in
real (selected_real_kind(15, 307)) :: lowBound ! in
real (selected_real_kind(15, 307)) :: upBound ! in
integer (selected_int_kind(9)) :: count ! in
real (selected_real_kind(15, 307)) :: retval ! out

! DO-NOT-DELETE splicer.begin(integrators.Midpoint.integrate)
! Insert the implementation here...

type(gov_cca_Port_t) :: generalPort
type(function_FunctionPort_t) :: functionPort
type(randomgen_RandomGeneratorPort_t) :: randomPort
type(SIDL_BaseInterface_t) :: excpt

! Legacy types and wrappers:
type(FunctionParams_t) :: funParams

! Private data reference
type(integrators_Midpoint_wrap) :: dp

! Copies of base type arguments to the integrate method
real :: lbnd, ubnd
integer :: cnt

real (selected_real_kind(15, 307)) :: sum, width, x, func
integer (selected_int_kind(9)) :: i

! Access private data
call integrators_Midpoint__get_data_m(self, dp)
retval = -1

if (not_null(dp%d_private_data%frameworkServices)) then

! Obtain a handle to a FunctionPort
call getPort(dp%d_private_data%frameworkServices, &

'FunctionPort', generalPort, excpt)

if (is_null(excpt)) then

call cast(generalPort, functionPort)
if (not_null(functionPort)) then

! Set the function port in the FunctionModule wrapper
call setFunctionPort(funParams, functionPort)

! Invoke legacy integrator algorithm to compute integral
lbnd = lowBound
ubnd = upBound
cnt = count
retval = integrate_mp(funParams, lbnd, ubnd, cnt)

else ! functionPort is null
write(*,*) 'Exception: Midpoint: incompatible FunctionPort'

endif

Creating a Component from an Existing Lib-
rary

46

! Free ports
call releasePort(dp%d_private_data%frameworkServices, &

'FunctionPort', excpt)
call checkExceptionMid(excpt, 'releasePort(''FunctionPort'')')

else ! excpt is not null

call checkExceptionMid(excpt, 'getPort(''FunctionPort'')')

endif
else ! frameworkServices is null

write(*,*) 'Error: Midpoint: integrate called before setServices'
endif

! DO-NOT-DELETE splicer.end(integrators.Midpoint.integrate)
end subroutine Midpoint_integrateekg4n6wqha_mi

2. Finally, in the integrators_Midpoint_Impl.F90 file, find the very last splicer block
(labeled _miscellaneous_code_end) and add the following helper subroutine:

file: student-src/components/integrators/f90/integrators_Midpoint_Impl.F90
!
! Small routine (not part of the SIDL interface) for
! checking the exception and printing the message passed as
! and argument
!
subroutine checkExceptionMid(excpt, msg)
use SIDL_BaseInterface
use gov_cca_CCAException
implicit none
type(sidl_BaseInterface_t), intent(inout) :: excpt
character (len=*) :: msg ! in
if (not_null(excpt)) then

write(*, *) 'integrators.Midpoint Exception: ', msg
call deleteRef(excpt)

end if
end subroutine checkExceptionMid

4.6. Building the Fortran 90 implementation of
the integrators.Midpoint component.

1. In the student-src/components/integrators/f90 directory, edit the user-defined set-
tings in MakeIncl.user file to specify the include paths and library location of the legacy integ-
rator library.

file: student-src/components/integrators/f90/MakeIncl.user
Include path directives, including paths to Fortran modules
INCLUDES = \
$(CCASPEC_BABEL_F90MFLAG)$(COMPONENT_TOP_DIR)/../legacy/f90/include_w

Library paths and names
LIBS = \

Creating a Component from an Existing Lib-
rary

47

-L$(COMPONENT_TOP_DIR)/../legacy/f90/lib -lWrappedLegacyIntegrator

Note that the INCLUDES variable is used by the Fortran compiler to locate compiled module in-
formation; since the flag used to specify the search path for modules is not the same in all com-
pilers, we use the variable CCASPEC_BABEL_F90MFLAG, which was set during the configuration
and installation of Babel and CCA tools. The COMPONENT_TOP_DIRvariable is set automatically
when the component's Makefile is generated from the student-
src/components/Makefile_template.server makefile template.

Also note that the library specified in the definition of the LIBS variable is not the original legacy
library, which contained the original definition of FunctionModule and FunctionParams_t. The
only difference between the legacy library and libWrappedLegacyIntegrator.a is that the
original FunctionModule has been replaced with a new definition of FunctionModule in
FunctionModuleWrapper.f90 as described in Section 4.2, “The FunctionModule wrapper.”.

2. In student-src/components/integrators/f90, run make. This will build the dynamic
component libraries and generate the *.cca files needed to load these libraries and instantiate the
components in the Ccaffeine framework. After a successful build, you should be able to see the
libintegratorsMidpoint-f90.so and libintegratorsMidpoint-f90.so.cca
files in the student-src/components/lib directory.

Note

In this step, the makefile automatically generated the .cca file needed by the Ccaf-
feine and Babel runtime systems to identify and locate babel components. This file
can also be generated manually by executing the following command in the directory
student-src/components/lib:

$CCA/bin/genSCLCCA.sh cca \
`pwd`/libintegratorsMidpoint-f90.so integrators.Midpoint \
integratorsMidpoint dynamic private now > integrators.Midpoint.cca

4.7. Using your new integrators.Midpoint
component

To see the new Midpoint integrator component in action, in student-src/components, run

ccafe-single --ccafe-rc examples/task2_rc

Feel free to modify task2_rc to assemble applications with different components. The beginning of
the rc file loads the palette with all of the available components and creates an instance of each. See
Chapter 2, Assembling and Running a CCA Application for further information and ideas for other
“applications” you can construct.

The output should look something like this:

(3587) CmdLineClientMain.cxx: MPI_Init not called in ccafe-single mode.
(3587) CmdLineClientMain.cxx: Try running with ccafe-single --ccafe-mpi yes , or
(3587) CmdLineClientMain.cxx: try setenv CCAFE_USE_MPI 1 to force MPI_Init.
(3587) my rank: -1, my pid: 3587
my rank: -1, my pid: 3587

Creating a Component from an Existing Lib-
rary

48

my rank: -1, my pid: 3587
CCAFFEINE configured with babel.
my rank: -1, my pid: 3587
Type: One Processor Interactive

cca>
CmdContextCCAMPI::initRC: Found task2_rc.

cca># There are allegedly 8 classes in the component path

cca>
cca>Loaded drivers.CXXDriver NOW GLOBAL .

cca>Loaded functions.PiFunction NOW GLOBAL .

cca>Loaded integrators.Midpoint NOW GLOBAL .

cca>
cca>driver of type drivers.CXXDriver
successfully instantiated

cca>pifunc of type functions.PiFunction
successfully instantiated

cca>midpoint of type integrators.Midpoint
successfully instantiated

cca>
cca>driver))))IntegratorPort---->IntegratorPort((((midpoint
connection made successfully

cca>midpoint))))FunctionPort---->FunctionPort((((pifunc
connection made successfully

cca>
cca>Value = 3.141553
##specific go command successful

cca>
cca>
bye!
exit

Creating a Component from an Existing Lib-
rary

49

Chapter 5. Creating a New Component
from Scratch
$Revision: 1.13 $
$Date: 2004/08/26 15:17:54 $

In this exercise, you will put together what you've learned in the previous tasks to create a complete
component from scratch. We will add to the list of function components by creating one that returns
the cube of the argument. The new component class will be named functions.CubeFunction,
and it will implement the function.FunctionPort interface, just as the other function compon-
ents do. The following procedures will guide you through writing the component in C++, though very
little would change for if you wanted to implement it in another Babel-supported language.

5.1. SIDL Component Class Specification

In this step, we will define the function.CubeFunction SIDL class and build its xml repository
representation

1. Edit the file student-src/components/sidl/functions.sidl, and add the definition
of the class CubeFunction to the package functions

package functions version 1.0 {

class LinearFunction implements function.FunctionPort,
gov.cca.Component

{
// function.FunctionPort methods:
double evaluate(in double x);

// gov.cca.Component methods:
void setServices(in gov.cca.Services servicesHandle) throws gov.cca.CCAException;

}

... some definitions skipped ...

class PiFunction implements-all function.FunctionPort,
gov.cca.Component

{
}
class CubeFunction implements-all function.FunctionPort,

gov.cca.Component
{
}

}

2. Edit the file student-src/components/MakeIncl.components to add a new compon-
ent description in the COMPONENTS variable, which contains the list of components in this dir-
ectory. Each value consists of the fully-qualified name of the component (including packages), to
which we append "-language", where language is one of c, c++, or f90. In this case, the name is
functions.CubeFunction, and the language is c++. The updated value of COMPONENTS should
look like this:

50

COMPONENTS = functions.PiFunction-c++ \
integrators.MonteCarlo-f90 randomgens.RandNumGenerator-c++ \
drivers.CXXDriver-c++ integrators.Midpoint-f90 \
functions.CubeFunction-c++

Note the backslash (“\”) that has to be added in order to extend the entry to the next line.

3. In the student-src/components directory, run make .repository. This will re-
generate the XML representation of the SIDL component class definitions (including the newly ad-
ded class CubeFunction and store them in the student-src/xml_repository directory.

The output from this step should look something like this:

touch .sidl

Generate XML for SIDL packages containing component declarations
babel -t xml -R../xml_repository -R/san/shared/cca/tutorial/share/cca-spec-babel-0_7_0-babel-0.9.5/xml -o ../xml_repository sidl/drivers.sidl sidl/functions.sidl sidl/integrators.sidl sidl/randomgens.sidl
Babel: Parsing URL "file:/.automount/whale/root/san/r1a0l0/elwasifw/handson/components/sidl/drivers.sidl"...
Babel: Warning: Symbol exists in XML repository: drivers.F90Driver-v1.0
Babel: Warning: Symbol exists in XML repository: drivers.CXXDriver-v1.0
Babel: Parsing URL "file:/.automount/whale/root/san/r1a0l0/elwasifw/handson/components/sidl/functions.sidl"...
Babel: Warning: Symbol exists in XML repository: functions.LinearFunction-v1.0
Babel: Warning: Symbol exists in XML repository: functions.NonlinearFunction-v1.0
Babel: Warning: Symbol exists in XML repository: functions.PiFunction-v1.0
Babel: Parsing URL "file:/.automount/whale/root/san/r1a0l0/elwasifw/handson/components/sidl/integrators.sidl"...
Babel: Warning: Symbol exists in XML repository: integrators.MonteCarlo-v1.0
Babel: Warning: Symbol exists in XML repository: integrators.Midpoint-v1.0
Babel: Warning: Symbol exists in XML repository: integrators.ParallelMid-v1.0
Babel: Parsing URL "file:/.automount/whale/root/san/r1a0l0/elwasifw/handson/components/sidl/randomgens.sidl"...
Babel: Warning: Symbol exists in XML repository: randomgens.RandNumGenerator-v1.0
touch .repository

5.2. Generating Babel Server Code for the New
Component

• In the student-src/components directory run make
.functions.CubeFunction-c++ to generate the C++ server-side binding for the component
class functions.CubeFunction. The output from this step should look something like this:

Generate a C++ implementation for the CubeFunction component
babel -s c++ -R../xml_repository -R/home/elwasif/CCA/cca-spec-babel-cvs/share/cca-spec-babel-0_7_0-babel-0.9.3/xml \
-g -u -E -l -m "functions.CubeFunction." --suppress-timestamp functions.CubeFunction
Babel: Resolved symbol "functions.CubeFunction"...
touch .functions.CubeFunction

Upon completion of this step, the directory student-src/components/functions/c++
should contain two additional files, functions_CubeFunction_Impl.cc and func-
tions_CubeFunction_Impl.hh which will be edited to provide the implementation of the
newly defined component.

Creating a New Component from Scratch

51

5.3. Implementing the New Component

1. Edit the file functions_CubeFunction_Impl.hh in the directory student-
src/components/functions/c++. You will need to add the declaration for the
gov::cca::Services object to the private object state. This will be done inside the Babel
splicer block functions.CubeFunction._implementation. We will call this variable
myServices. Upon completion, this splicer block should look like this:

...
// DO-NOT-DELETE splicer.begin(functions.CubeFunction._implementation)
// Put additional implementation details here...
gov::cca::Services myServices;
// DO-NOT-DELETE splicer.end(functions.CubeFunction._implementation)

...

2. Edit the file functions_CubeFunction_Impl.cc in the directory student-
src/components/functions/c++ to provide the implementation details. First, you'll need
to edit the body of the setServices method (between the Babel splicer blocks func-
tions.CubeFunction.setServices). Upon completion, this part of the file should look
like this:

...
// DO-NOT-DELETE splicer.begin(functions.CubeFunction.setServices)
// insert implementation here

myServices = services;
gov::cca::TypeMap tm = services.createTypeMap();
if(tm._is_nil()) {

fprintf(stderr, "Error:: %s:%d: gov::cca::TypeMap is nil\n",
__FILE__, __LINE__);

exit(1);
}
gov::cca::Port p = self; // Babel required casting
if(p._is_nil()) {

fprintf(stderr, "Error:: %s:%d: Error casting self to gov::cca::Port \n",
__FILE__, __LINE__);

exit(1);
}

services.addProvidesPort(p,
"FunctionPort",
"function.FunctionPort", tm);

gov::cca::ComponentRelease cr = self; // Babel required casting
services.registerForRelease(cr);
return;

// DO-NOT-DELETE splicer.end(functions.CubeFunction.setServices)
...

3. Next you will need to edit the implementation for the method evaluate inside the Babel splicer
block functions.CubeFunction.evaluate. After adding the implementation for this
method, the body should look like this

...

Creating a New Component from Scratch

52

// DO-NOT-DELETE splicer.begin(functions.CubeFunction.evaluate)
// insert implementation here
return x*x*x;
// DO-NOT-DELETE splicer.end(functions.CubeFunction.evaluate)

...

4. To build the newly written component into a usable library, type make in the directory student-
src/components/functions/c++. This will compile, link, and install the new component
into a library that is installed in the directory student-src/components/lib.

Note

In this step, the makefile automatically generated the .cca file needed by the Ccaf-
feine and Babel runtime systems to identify and locate babel components. This file
can also be generated manually by executing the following command in the directory
student-src/components/lib:

$CCA/bin/genSCLCCA.sh cca \
`pwd`/libfunctionsCubeFunction-c++.so functions.CubeFunction \
cubeFunction dynamic private now > functions.CubeFunction.cca

5.4. Using Your New Component

1. Change directories to student-src/components/examples and edit task3_rc. This file
will assemble and run an application using all of the new components you've created. However it
includes lines for both versions of the driver component, and probably you've only implemented
one. So you will need to comment out all of the lines which refer to the driver component you did
not implement.

2. Run the script with ccafe-single --ccafe-rc task3_rc. It should run without errors
and give you a result of Value = 0.250010.

3. Feel free to modify task3_rc to assemble applications with different components. The beginning
of the rc file loads the palette with all of the available components and creates an instance of each.
See Chapter 2, Assembling and Running a CCA Application for further information and ideas for
other “applications” you can construct.

Creating a New Component from Scratch

53

Appendix A. Installing the CCA
Environment and Tutorial Source Code

$Revision: 1.4 $
$Date: 2004/08/26 16:11:29 $

There are two different tar balls that you will have to install to get the tutorial code to work on your own
machine:

• The CCA tool chain. This source tree contains all of the tools developed under the CCA and is
needed by the tutorial source to build and run components. You can download the source
[http://cca-forum.org/download/cca-tools/cca-tools-0.5.4_rc1.tar.gz] from the net.

• The tutorial source code. The source for this tutorial must be built against the CCA tool chain. You
should be careful to rebuild the tutorial code every time you change the build for the tool chain. You
can download the latest source [http://cca-forum.org/download/tutorial/tutorial-src-0.1.0_rc1.tar.gz]
from the net. You should be careful to get the latest versions of both (or just use the two url's above)
to make sure you have compatible versions.

A.1. Building the CCA Tool Chain
The build requirements vary from platform to platform, but here we will stick with x86 Linux. The re-
quirements for this environment are:

• gcc >= 3.2

• Java Software Development Kit >= 1.4

• Gnome XML C Parser (libxml2) -- most recent Linux distro's already have it, regardless of whether
Gnome is installed.

• GNU autobuild tools: anything recent.

• A connection to the internet.

Untar the cca-build tools tar ball someplace that is convenient to build. READ the README for up to
the minute information.

There are a panopoly of options to choose from here. First are the language choices: C,C++,F77 only,
F90/95, Python (version 2.2 or better must be present), Java (version 1.4 or better). Much of what dic-
tates the language support is the information given to the configure script. C,C++, and Java are pretty
much automatic, and if the appropriate version is present, Python will be automatic as well. Fortran
90/95 is a different story. Because there are no non-proprietary versions and because the Fortran 90/95
standards eschew language interoperability (even between different F90/95 compilers), special instruc-
tions will need to be given to the configure script. There is also a "failsafe" mode that can be used that
will hopefully give you the tools just enabled for C,C++, Java and, if present, Python. Just type:

$ cd ./cca-tools-XXXX
$./configure --with-localsrc

54

http://cca-forum.org/download/cca-tools/cca-tools-0.5.4_rc1.tar.gz
http://cca-forum.org/download/tutorial/tutorial-src-0.1.0_rc1.tar.gz

If you desire to configure Fortran90/95 support you must identify your compiler and the absolute path to
the compiler executable. This is done with two options to configure: --with-F90-vendor=VENDOR
(for the brand of compiler) and --with-F90=/full/path/to/compiler (for the absolute path). The possible
vendor options given to --with-F90-vendor= are:

• Absoft (Absoft)

• Alpha (Hp Compaq Fortran)

• Cray (Cray Fortran)

• IBMXL (IBM XL Fortran)

• Intel (Intel v8)

• Intel7 (Intel v7)

• Lahey (Lahey)

• NAG (NAG)

• MIPSpro (SGI MIPS Pro)

• SUNWspro (SUN Solaris)

An example using the Intel (version 8) compiler:

$ configure --with-F90-vendor=Intel --with-F90=/opt/intel_fc_80/bin/ifort

Generally the configure script will find MPI if it is installed in a reasonable place. Currently only MPIch
is supported automatically. LAM is supported with special options. If MPI is getting in the way use -
-with-mpi=no. If the configure script is finding the wrong MPI use --with-mpi=/wherever/mpich/is.

Now that the CCA tool chain is configured make sure that java,javac, etc. are in your path, and, if you
configured for it, make sure the Fortran90 compiler is in your path. Now type:

$ make

and everything should build. In the exceedingly rare case (:-)) that it doesn't, contact someone of author-
ity [mailto:tutorial-wg@cca-forum.org]. There is no need to type make install everything will in-
stall in ./cca-tools-XXXXX/local.

A.2. Building the Tutorial Source
One further thing to do to get the tutorial source to build is to place the absolute path of the tool chain in-
stall above. Then again just type cd ./cca-tutorial-src-XXXX and make and make check
to test the build.

Installing the CCA Environment and Tutorial
Source Code

55

mailto:tutorial-wg@cca-forum.org
mailto:tutorial-wg@cca-forum.org

	A Hands-On Guide to the Common Component Architecture
	Table of Contents
	Preface
	1. Help us Improve this Guide
	2. Typographic Conventions
	3. Acknowledgments

	Chapter 1. Introduction
	1.1. The CCA Software Environment
	1.2. The Execution Environment
	1.3. Preparing to do the Exercises

	Chapter 2. Assembling and Running a CCA Application
	2.1. A CCA Application in Detail
	2.2. Running Ccaffeine Using an rc File
	2.3. Using the GUI Front-End to Ccaffeine

	Chapter 3. Sewing CCA Components into an Application: the Driver Component
	3.1. The SIDL Definition of the Driver Component
	3.2. Implementation of the CXXDriver in C++
	3.2.1. The setServices Implementation
	3.2.2. The go Implementation

	3.3. Implementation of the F90Driver in Fortran 90
	3.3.1. The setServices Implementation
	3.3.2. Implementing the Constructor and Destructor
	3.3.3. The go Implementation

	3.4. SIDL and CCA Object Orientation in Fortran
	3.5. Using Your New Component

	Chapter 4. Creating a Component from an Existing Library
	4.1. The legacy Fortran integrator
	4.2. The FunctionModule wrapper.
	4.3. Implementing the integrators.Midpoint component
	4.4. SIDL definition of the Midpoint component
	4.5. Fortran 90 implementation of the Midpoint integrator
	4.5.1. The Midpoint module implementation
	4.5.2. Defining the constructor and destructor
	4.5.3. The setServices implementation
	4.5.4. The integrate implementation

	4.6. Building the Fortran 90 implementation of the integrators.Midpoint component.
	4.7. Using your new integrators.Midpoint component

	Chapter 5. Creating a New Component from Scratch
	5.1. SIDL Component Class Specification
	5.2. Generating Babel Server Code for the New Component
	5.3. Implementing the New Component
	5.4. Using Your New Component

	Appendix A. Installing the CCA Environment and Tutorial Source Code
	A.1. Building the CCA Tool Chain
	A.2. Building the Tutorial Source

