A Hands-On Guide to the Common
Component Architecture

The Common Component Architecture Forum Tutorial Working Group

A Hands-On Guide to the Common Component Architecture
by The Common Component Architecture Forum Tutorial Working Group

Published 2004-08-26 12:25:22-04:00 (time this instance was generated)
Copyright © 2004 The Common Component Architecture Forum

Table of Contents

1= = o= v
1. Help us Improve thiS GUITEcoouuiiiiiiiie e %

2. TypographiC CONVENTIONSceeiiiie ettt e e e et e et e e e eaanas %

G N o 11 = [0 = | £ v

IO 1 011 oo 1 1o [P PPR 1
1.1. The CCA Software ENVIFONMENTcoeuueiiiiiiieeiiii et eeens 1

1.2. The EXeCution ENVIFONMENTcoeuiiiiiieii e e e e e e e e e eees 1

1.3. Preparing to do the EXEICISESccuvuniiiiiieceei et 2

2. Assembling and Running @ CCA APPLICAHIONcoouniiiiiiiie e 6
2.1. A CCA Application iN Detailc.oiuieiiiiiii e 6

2.2. Running Ccaffeine Using anrCFilecooviviiiii e, 13

2.3. Using the GUI Front-End to Ccaffeingccovveiiiiiiiiiiien e 15

3. The DIiver COMPONENTcouuieeiiti ettt ettt e e e et e e e et e e eenans 16
3.1. The SIDL Definition of the Driver COMPONENtoevvvviiiiiiiieeeeiine e eeenen 16

3.2. Implementation of the CXXDriver iN CH+ ... 19
3.2.1. The setServices Implementationccoveviiiiiii i 20

3.2.2. The go IMPIemMENtationccceuuiiieieeiii e e e e e e aeas 23

3.3. Implementation of the FOODriver in Fortran 90ccoceviveviiiiiiiieeieeceeeeeeeee, 25
3.3.1. The setServices Implementationccooviiviiiiniiiiiin e, 26

3.3.2. Implementing the Constructor and DeStructorovvveeveineeieiinneeeennn. 30

3.3.3. The go IMPIeMENtaLIONc..iiueiiiieee e 31

3.4. SIDL and CCA Object Orientation in FOrtrancocoeviiiiieiiieiee e 34
3.5.Using Your NeW COMPONENEiiveeeiieeiiie e ee e e e eeae e et eeea e e e e e e e eeaneeeees 35

4. Creating a Component from an EXisting Libraryccoooviiiiiiiiiiiii e 37
4.1. Thelegacy FOrtran iNteOratoruviieueieeiii e 37

4.2. The FUNCLIONM OTUIE WIBPPEN. ...ttt 39

4.3. Implementing the integrators.Midpoint COmMpPoNENtcccivieiiiiiiiieieeeieeen 40

4.4. SIDL definition of the Midpoint componentccccovevieiiiiiiei e, 40

4.5. Fortran 90 implementation of the Midpoint integratorcocceveviiiiviiieeennnenn, 42
4.5.1. The Midpoint module implementationccooeeiiiiiii i 42

4.5.2. Defining the constructor and destructorovevieiiiieiiiiii e, 43

4.5.3. The setServices implementationoveiiiiiieiiiiii e 44

4.5.4. The integrate implementationco.oiiiiii it 45

4.6. Building the Fortran 90 implementation of the integrators.Midpoint component. 47

4.7. Using your new integrators.Midpoint COMPONENtc.vveevieieineriiieeeieeenneeenn 48

5. Creating a New Component from SCrafChcc.uvvieiiiiiiiiie e 50
5.1. SIDL Component Class SPeCifiCationvveveuuiiiiiiiiieeci e 50

5.2. Generating Babel Server Code for the New Componentcoeeeevvievieiineeennnn. 51

5.3. Implementing the New COMPONENLc.uiiiuniiiiieii e 52
5.4.Using Your New COMPONENTiiuiiiiiie e ee e e e e e e e e e e e e e ees 53

A. Installing the CCA Environment and Tutorial Source Codeccocvvveviiieviiiieiiiieiineenn, 54
A.L Buildingthe CCA TOOl Chainociviiiiiii e e 54

A.2. BUilding the TULOr @l SOUICEcocuuniiiiiiiieeei e 55

Preface

$Revision: 1.8$
$Date: 2004/08/26 12:14:03 $

The Common Component Architecture (CCA) is an environment for component-based software engin-
eering (CBSE) specifically designed to meet the needs of high-performance scientific computing. It has
been developed by members of the Common Component Architecture Forum
[http://www.cca-forum.org].

This document is intended to guide the reader through a series of increasingly complex tasks starting
from composing and running a simple scientific application using pre-installed CCA components and
tools, to writing (simple) components of your own. It was originaly designed and used to guide the
“hands-on” portion of the CCA tutorial, but we hope that it will eventually become complete enough
that it can be used for self-study aswell.

We assume that you've had an introduction to the terminology and concepts of CBSE and the CCA in
particular. If not, we recommend you peruse a recent version of the CCA tutorid

[http://lwww.cca-forum.org/tutorials/] presentations before undertaking to complete the tasks in this
Guide.

1. Help us Improve this Guide

If you find errorsin this document, or have trouble understanding any portion of it, please let us know so
that we can improve the next release. Email us at <t ut ori al -wg@ca- f or um or g> with your
comments and questions.

2. Typographic Conventions

e This font isusedfor file and directory names.

» Thisfont isused for commands.

e This font isusedforinput the user is expected to enter.

» This font is used for “replaceable” text or variables. Replaceable text is text that describes
something you're supposed to type, like af i | enamne, in which the word “filename” is a placehold-
er for the actual filename.

 This font isusedfor for the names of interfaces (i.e. CCA “ports”).

* URLSs [http://www.cca-forum.org/] are presented in square brackets after the name of the resource
they describein the print version of the book.

» Sometime we must break linesin computer output or program listings to fit the line widths available.
In these cases, the break will be marked by a*“\ ” character. In real computer output, you a long con-
tinuous line rather than a broken one. For program listings, unless otherwise indicated, you can join
up the broken lines. In shell commands, you can use the “\ ” and break the input over multiple lines.

3. Acknowledgments

There are quite a few people active in the Tutorial Working Group who have contributed to the general
development of the CCA tutorial and this Guide in particular:

http://www.cca-forum.org
http://www.cca-forum.org/tutorials/
http://www.cca-forum.org/

Preface

People Rob Armstrong, David Bernholdt (chair), Randy Bramley, Lori Freitag Diachin,
Wael Elwasif, Madhusudhan Govindargju, Ragib Hasan, Dan Katz, Jim Kohl, Gary
Kumfert, Lois Curfman Mclnnes, Boyana Norris, Craig Rasmussen, Jaideep Ray,
Sameer Shende, Torsten Wilde, ShujiaZhou

Ingtitutions Argonne National Laboratory, Binghamton University - State University of New
York, Indiana University, Jet Propulsion Laboratory, Los Alamos National Laborat-
ory, Lawrence Livermore National Laboratory, NASA/Goddard, University of
Illinois, Oak Ridge National Laboratory, Sandia National Laboratories, University
of Oregon

Computer facilities for the hands-on exercise in this tutorial have been provided by the Computer Sci-
ence Department and University Information Technology Services of Indiana University, supported in
part by NSF Grants CDA-9601632 and EIA-0202048.

Finally, we must acknowledge the efforts of the numerous additional people who have worked very hard
to make the Common Component Architecture what it is today. Without them, we wouldn't have any-
thing to present tutorials about!

Vi

Chapter 1. Introduction

$Revision: 1.18 $
$Date: 2004/08/26 15:32:40 $

In this Guide, we will take you step by step through a series of hands-on tasks with CCA componentsin
the CCA software environment. We've intentionally chosen a very simple example from a scientific
viewpoint, numerical integration in one dimension, so that we can focus on the issues of the component
environment. It may look like overkill to have broken down such a simple task into multiple compon-
ents, but once you have a basic understanding of how to use and create components, you should be able
to extend the concepts to components that are scientifically interesting to you and far more complex.

In this integration example, which you've probably already seen mentioned in the tutoria presentations,
we have:

» driver components, which are used like the mai n routine in a traditional program to orchestrate the
overall calculation;

» anumber of integrator components implementing different integration algorithms; and

» aselection of function components that can be integrated.

The exercises are laid out as follows:

* In Chapter 2, Assembling and Running a CCA Application, you will use pre-built components to as-
semble and run severa different numerical integration applications.

* In Chapter 3, Sewing CCA Components into an Application: the Driver Component, you will con-
struct your own driver component.

* In Chapter 4, Creating a Component from an Existing Library, you will wrap up an existing For-
tran90 library as an integrator component.

* In Chapter 5, Creating a New Component from Scratch, you will create a new function component
from scratch.

1.1. The CCA Software Environment

The CCA is, at its heart, just a specification. There are numerous realizations of the CCA as a software
environment. In this Guide, we use the following tools to provide that software environment:

Ccaffeine A CCA framework which emphasizes local and parallel high-performance computing,
and currently the predominate CCA framework in real applications. For more informa-
tion, see http://www.cca-forum.org/ccafe/.

Babel A tool for language interoperability. It allows components written in different languages
to be connected together. The Scientific Interface Definition Language (SIDL) is associ-
ated with Babel. For more information, see ht-
tp://www.l1nl.gov/CA SC/components/babel .html.

Many of the commands you will type are specific to the fact that you're using these tools as your CCA

software environment. But the components you will use and create are independent of the particular
tools being used.

1.2. The Execution Environment

The instructions in this guide assume you will be working on the Thor cluster at the Indiana University
Computer Science Department. Thor runs Red Hat Linux 8.0. The tutorial instructors will provide you

http://www.cca-forum.org/ccafe/
http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/components/babel.html

Introduction

with information you need to get logged in to the system. The following information may help you nav-
igate around the system:

» Thissystem hasthe Intel Fortran Compiler 8.0 (ifort) installed for Fortran90/95 code.

* Your home directory will be something like
/ . aut onount / whal e/ root / san/ r 1a0l 0/ user nane, depending on the specific disk and
your username. In these exercises, you will be working primarily in your home directory tree, but
you'll need to reference some files outside of it as well. If you see a relative filename in this Guide
(i.e. one that does not begin with a*“/ ") you should read it relative to your home directory. So that
student - src/ Makefil e would refer to
/ . aut onount / whal e/ r oot / san/ r 1a0l 0/ user nane/ st udent - src/ Makefil e

» A variety of files and tools have been installed for you to use in these exercises. The root of the in-
stalation is/ san/ shar ed/ cca/ t ut ori al , which once you complete the setup procedure be-
low, you will be able to refer to as $CCA. We will always use the notation $CCA/ f i | e to refer to
filesin this tree except in situations where the $CCA would not be properly expanded.

e The CCA software tools (Ccaffeine, Babel, and related things) are installed in $CCA/ bi n.

* $CCA/ shar e contains severa files that you will reference or use, including the source code tree
that you will start from to build your own components, and the SIDL files for the CCA specification.

* $CCA/ src contains a pre-built version of the entire set of components for these exercises. In
Chapter 2, Assembling and Running a CCA Application, you will use these components directly.
Y ou will aso find the complete source code, including for the components you will write in the sub-
sequent exercises. So if you're ever stuck, or unsure if you've done something correctly, you can look
at the corresponding filein this tree and compare it to your own.

1.3. Preparing to do the Exercises

1. Obtain your individua username, password, and assignment of which node on the Thor cluster you
will use from the tutorial staff.

2. Usean sshclient to login to the appropriate system.

a. If you're working on a Linux or other unix-based system, you will probably use a command
like ssh -1 usernane thorN. cs.indiana. edu. You will be prompted for your
password.

b. There are a variety of ssh clients for Windows. In PUTTY, for example, you would enter the
t hor N. cs. i ndi ana. edu in the Session->Host Name field of PUTTY Configuration win-
dow. Make sure the Protocol is set to SSH, as well. On the Connection page, set the Auto-lo-
gin username field to the username you were given. Finaly, return to the Session page, give
these settings aname, suchascca-t ut ori al inthe Saved Sessions field and click the Save
button. Thiswill allow you to quickly load these settings when you have to log back in later.

If you have trouble getting your ssh client to connect to the Thor cluster, please ask for assist-
ance.

Note

Introduction

3.

We have written this guide so that all exercises can be performed simply using the
command line tools, so it is not necessary for you to have an X 11 server on your local
system. If you do have an X11 server available, you may wish to try to use the GUI
front-end for Ccaffeine in some of these exercises, and you may prefer to use the
graphical version of your favorite text editor or other tools. However if the network
performance between here and Indianais poor, or systems on either end are too heav-
ily loaded, the X11 option may be too slow for your taste. For these reasons, and de-
pending on the defaults on your ssh client, you may need to enable or disable tunnel-
ing of the X11 protocol through the ssh session.

On unix/Linux clients, the command line switches - x and - X disable and enable X11
forwarding.

On PUTTY, there is a checkbox to Enable X11 forwarding on the Connection-
>SSH->Tunnels configuration page.

Since the CCA tools are not installed on this system in the “usua” locations (i.e. / usr/ bi n or/
usr/ | ocal / bi n), you must setup your login environment to the appropriate directories to your
PATHand LD_LI BRARY_PATH. To speed things along, we've created a short script that you can
just include in your login files.

Type echo $SHELL to determine which shell you're running. If it is a C-shell variant (i.e. /
bin/tcsh or /bin/csh) then perform Step 3.a. If it isa Bourne shell variant (i.e. /bin/bash or /bin/sh)
then perform Step 3.b.

a Edit~/. cshrc and at the end of thefile, add theline
source /san/shared/cca/tutorial/sharel/cca.cshrc.thor.
b. Edit~/. profil e andattheend of thefile, add the line

/ san/ shared/ cca/tutorial/share/cca.profile.thor.

. Warning

Note that you cannot wuse $CCA/share/cca.cshrc.thor (or
$CCA/ share/ cca. profile.thor) in this case because this is the file that
defines the $CCA environment variable !

Y ou may wish to take a moment to read through this file to understand what it is doing to your en-
vironment. Each section is commented.

In order for these changes to affect your environment, you need to log out and log back in again.
After you've done this, check that you're getting the new settings. If you type echo $CCA, you
should get / san/ shar ed/ cca/t ut ori al . If you typewhi ch ccaf e-si ngl e. you should
get / san/ shared/ cca/tutorial/bin/ccafe-single. If you don't get these results,
please ask for assistance.

In order to get a private copy of the tutorial source tree that you can work on, make sure you're in
your home directory and enter t ar xf $CCA/ shar e/ st udent - src. t ar. This should give
you adirectory tree named st udent - sr c. Thistreeis the same as the pre-built on in $CCA/ sr ¢
except that we have removed al of the files that you'll be creating and "unmodified" the ones you'll
be modifying as you work through the exercises.

3

Introduction

The layout of the tutorial source code tree was designed to make it easy to introduce new compon-
ents and ports and have everything built with make with minimal configuration. The treeislaid out
so that much of the information the build system needs comes directly from the file and directory
names. If you cd into st udent - sr ¢, you should see a number of subdirectories. Of primary in-
terest are:

st udent - src/ conponents The source code for the various components lives in this tree.
The general structure is
st udent - src/ conponent s/ conponent _nane/ i m
pl ement at i on_I| anguage. Exceptions are the st udent -
src/ conponent s/ si dl and st udent -
src/ conponent s/ exanpl es directories, which contain
the SIDL definitions for the components and example scripts,

respectively.

student-src/ | egacy This is where the legacy libraries that you will componentize in
Chapter 4, Creating a Component from an Existing Library
reside.

student-src/ports st udent - src/ ports/sidl containsthe SIDL files for the

ports (SIDL interfaces) needed for the tutorial. The code gener-
ated by Babel for these interfaces will be put into directories
like st udent - src/ ports/ Sl DL_package _nane/ | an-
guage and compiled into libraries. Both the user and provider
of aport need to link against the port's library.

The next step is to build the tree. Although it is incomplete with respect to the code you're going to
add in these exercises, everything that is there should build correctly.

Change directories to st udent - sr ¢ and type make. This command will take several minutes to
complete, and you may want to use this time to read ahead a bit. When it completes, you should see
this message:

HHHH R H R H A Fioni shed bui | di ng everyt hi ng ########H#RHH#RHH
#H#H####H You can run some sinple tests wth 'nake check' #######

If the build terminates with an error message instead, please ask for assistance.

Once the build is complete, you can type make check to perform abasic check that the compon-
ent have been built correctly. This is a convenience of the Makef i | e system we've put together
for the tutorial that tries to instantiate each component within the Ccaffeine framework (you'll un-
derstand this better after the next chapter). This provides a basic check that the software you've
built are “well-formed” CCA components. Y ou should see a message like this, along with a couple
of lines of output from make itself:

Testing conmponent instantiation.

==== Sinple tests passed, all built conponents were successfully \
i nstanti ated.

Testing conponent connection and execution.

Introduction

* k k%

**** Some run tests did NOT succeed, go comand failed (see \
exanpl es/ ex1 rc.log).

* % % %

Note that the test of component connection and execution is expected to fail at the moment, be-
cause it expects to have all of the components available, whereas at the moment, the ones you're
going to write in these hands-on exercises are missing. The main thing to look for at this moment
was that all components that are present could be instantiated (the first test).

Now you should be ready for the first exercise.

L

Note

If you move your st udent - sr ¢ tree to another location (for example, rearranging your
directory structure, or moving a copy of your thor directory tree to your home system to
continue these exercises on your own), you will need to do a make cl ean rebuild the
tree (starting with Building the tutorial source tree, above). Otherwise many of the gener-
ated files (r ¢ filesand the like) will contain the incorrect path.

Chapter 2. Assembling and Running a
CCA Application

$Revision: 1.17 $
$Date: 2004/08/26 15:59:31 $

In this exercise, you will work with pre-built components from the integrator example to compose a
CCA-based application and execute it. Specifically you will use a Monte Carlo integration algorithm on
the function 4/(1+x"2), which gives pi as the result.

The components available are:

Drivers: drivers. CXXDriver*,drivers. FOODri ver*

Integrators: i ntegrators. MonteCarl o,i ntegrators. M dpoi nt*
Functions: functions. Pi Functi on,functions. CubeFuncti on*
Random Number Generators: randongens. RandNuntGener at or (required by i nteg-

rators. Mont eCarl o)

Components marked with a“*” are ones that you will be creating in the subsequent exercises (you only
need to do one of the two driver components), but as we have mentioned, the pre-built tree include com-
pleted examples of all of the components.

Below are three different procedures for this exercise. In Section 2.1, “A CCA Application in Detail”,
you interact directly with Ccaffeine on the command line to do everything. Thisis the best place to start
to understand how to assemble and run a CCA application. In Section 2.2, “ Running Ccaffeine Using an
rc File”, you will see how the steps you performed manually in the first procedure can be captured in a
script that Ccaffeine reads. This is the more common scenario because it gives you an easy way to rep-
resent a complete CCA application that is easy to reproduce, or to adapt to other situations, without hav-
ing to re-do everything from scratch every time you want to run it. Thisis probably the approach you'll
want to use when testing your work in the subsequent exercises. Finally, in Section 2.3, “Using the GUI
Front-End to Ccaffeine”, we use a graphical front-end to Ccaffeine, which allows you to perform the
composition and execution of the application using a “visua programming” metaphor. This procedure
will only work if you have an X11 windowing system installation on your machine.

2.1. A CCA Application in Detail

In this section, you will interact directly with the Ccaffeine framework to assemble and run several dif-
ferent numerical integration applications from pre-built components.

We will present the procedure in the form of a dialog between you and the Ccaffeine framework. Things
you are supposed to type are presented | i ke t hi s and Ccaffeine's output will be presented | i ke
t hi s. Notethat Ccaffeine'sinput prompt is“cca>". Particular features of the output will sometimes be
marked and discussed in further detail below the output fragment.

Tip
The complete set of Ccaffeine commands for this procedure can be found in

$CCA/ src/ conponent s/ exanpl es/ t ask0_r c. You can use thisfile for reference,
or to cut and paste commands into Ccaffeine.

Assembling and Running a CCA Application

1. Start the Ccaffeine framework with the command ccaf e- si ngl e. ccafe-single is one of severa
ways to invoke the Ccaffeine framework, and is used for single-process (i.e. sequential) interactive
sessions; ccafe-batch is designed for use in non-interactive situations, including paralld jobs; and
ccafe-client is designed to interact with a front-end GUI rather than with a user at the command
lineinterface.

Here is what you'll see (note that some of the output lines have been folded for presentation here,
indicated by “\ "):

(16251) CndLi ned ientMain.cxx: MPI _Init not called in\ “
ccaf e-si ngl e node.
(16251) CndLi ned ientMain.cxx: Try running with ccafe-single \
--ccafe-npi yes , or
(16251) CndLi ned 1 ent Main.cxx: try setenv CCAFE USE MPI 1 to force MPl _Init.
(16251) ny rank: -1, ny pid: 16251
my rank: -1, ny pid: 16251
my rank: -1, ny pid: 16251
my rank: -1, ny pid: 16251Type: One Processor Interactive “

CCAFFEI NE configured w th babel E

cca>
CndCont ext CCAMPI : :initRC. No rc file found. Pallet nay be enpty.ﬂ

ﬂ Lines between these two markers give information about the status of MPI in the Ccaffeine
framework, including the processes rank if MPI is initialized. As the messages indicate,
ccafe-single is intended for single-process use and does not normally call MPI _| ni t, but if
you're running parallel and having problems with the MPI environment, this is the first place
to look for signs of trouble.

@ This message confirms that this Ccaffeine executable was configured and built to work with
Babel. This is a useful thing to check when you're using an unfamiliar installation of Ccaf-
feine, or the first time you Ccaffeine after building it yourself.

e !t is common to use an “r ¢” file with Ccaffeine to help assemble and run the application.
This is the place where Ccaffeine confirms that it loaded the r ¢ file you intended (or in this
case, it confirms that we didn't specify one). If thereis an r ¢ file, the Ccaffeine output from
the commands it contains will follow this message, so there may be a lot more text between
this message and the “cca>" prompt at which you can interact with Ccaffeine.

Note

We present Ccaffeine's output with “spew” disabled (the default). If Ccaffeineis con-
figured and built with the - - enabl e- spew option, you will see a lot of debugging
output from Ccaffeine itself in addition to what we show here.

2. Ccaffeine uses a “path” to determine where it should look for CCA components (specifically the
. cca files, which internally point to the actual libraries that are needed). When it starts up, Ccaf-
feine's path is empty, and it has no idea where to find components. Next you will set the path that
points to the pre-built components:

pat h
pat hBegi n
pat hEnd! enpty path.

cca>path set /san/shared/ccal/tutorial/src/conponents/lib
There are allegedly 8 classes in the conponent path

Assembling and Running a CCA Application

cca>path
pat hBegi n

pat hEl enent /san/shared/ccal/tutorial/src/conponents/lib

pat hEnd

Path-related commands in Ccaffeine include:

path append
path init

path prepend

path set

" Tip

Adds adirectory to the end of the current path.

Sets the path from the value of the $CCA_COMPONENT_PATH environment
variable.

Adds adirectory to the beginning of the current path.

Sets the path to the value provided.

Typing help at the Ccaffeine cca> prompt will provide a complete list of the com-
mands Ccaffeine's scripting language understands.

Ccaffeine also has the concept of a palette of components from which applications can be as-
sembled. The palette command will show you what is currently in the palette, and the repository
get-global cl ass_nane command is used to get the component of the specified class name from
the repository (path) and load it into the pal ette:

cca>pal ette

Component s avail abl e:

cca>repository get-global drivers.CXXDriver
Loaded drivers. CXXDri ver NON GLOBAL .

cca>repository get-global functions.Pi Function
Loaded functions. Pi Functi on NOW GLOBAL .

cca>repository get-global integrators. MonteCarlo
Loaded integrators. MonteCarl o NOW G.OBAL .

cca>repository get-gl obal randongens. RandNuntener at or
Loaded randongens. RandNuntener at or NOW GLOBAL .

cca>pal ette

Component s avail abl e:
drivers. CXXDri ver
functions. Pi Function

i ntegrators. MonteCarl o
randongens. RandNunCener at or

Next, you need to instantiate the components you're going to use. The instances command will list
al the component instances in Ccaffeine's work area, or arena. The command instantiate
cl ass_nane i nst ance_nane will create an instance of the specified class from the palette
with the specified instance name and call the new component instance'sset Ser vi ces method.

cca>i nstances

FRAVMEWORK of type Ccaffei ne- Support

Assembling and Running a CCA Application

cca>instantiate drivers. CXXDriver driversCXXDriver
driversCXXDriver of type drivers. CXXDri ver
successfully instantiated

cca>instantiate functions. Pi Function functionsPi Functi on
functionsPi Function of type functions. Pi Function
successfully instantiated

cca>instantiate integrators. MonteCarl o i ntegratorshbonteCarlo
i ntegratorsMnteCarl o of type integrators. MonteCarl o
successfully instantiated

cca>instanti ate randongens. RandNuntGener at or randongensRandNuntener at or
randongensRandNunmCGener at or of type randongens. RandNuntCener at or
successfully instantiated

cca>i nst ances

FRAMEWORK of type Ccaffei ne- Support

driversCXXDriver of type drivers.CXXDriver

functionsPi Function of type functions. Pi Function

i ntegratorsMnteCarl o of type integrators. MonteCarl o
randongensRandNunCGener at or of type randongens. RandNuntener at or

Note

L
When you instantiate a component, you can name it whatever you like as long as it is
unique with respect to al of the components that you've instantiated in your session
with the framework. It is possible to instantiate the a given component class multiple
times (with different names, of course).

Once the components you need are instantiated, you need to connect up their ports appropriately.
The display chain command will list the component instances in Ccaffeine's arena and any connec-
tions among their ports. To make a connection, you use the command connect
user_instance_name user_port_nanme provider_instance_nane pr o-

vi der _port _nane (note that some of the input lines have been folded with “\ ” to fit on the
page -- you'll have to rejoin them when you type in the commands because Ccaffeine doesn't under-
stand continuation lines):

cca>di spl ay chain
Component FRAMEWORK of type Ccaffei ne- Support “

Conponent driversCXXDriver of type drivers.CXXDriver

Conponent functionsPi Function of type functions. Pi Function

Conmponent integratorshonteCarlo of type integrators. MnteCarlo

Component randongensRandNunCener at or of type randongens. RandNuntener at or

cca>connect driversCXXDriver IntegratorPort integratorshbnteCarlo \

I nt egr at or Por t
driversCXXDriver))))IntegratorPort---->IntegratorPort((((integratorshbnteCarlo
connecti on made successfully

cca>connect integratorshMnteCarl o FunctionPort functionsPi Function \

Functi onPort
i ntegratorsMonteCarlo)))) FunctionPort---->FunctionPort ((((functionsPi Function
connecti on made successfully

cca>connect integratorshnteCarl o RandonmCGener at or Port \
randongensRandNumCGener at or RandomGener at or Por t

9

Assembling and Running a CCA Application

6.

i nt egratorshMnteCarl 0)))) RandonmGenerat orPort---->\
RandomGener at or Port ((((randongensRandNumGener at or
connecti on made successfully E

cca>di spl ay chain (3]

Conmponent FRAMEWORK of type Ccaffei ne- Support

Conponent driversCXXDriver of type drivers. CXXDri ver

is using IntegratorPort connected to Port: |IntegratorPort provided by \
component i ntegratorshbnteCarlo

Component functionsPi Function of type functions. Pi Function

Component integratorshbnteCarlo of type integrators. MonteCarlo

i s using FunctionPort connected to Port: FunctionPort provided by \
conmponent functi onsPi Function

i s using RandonmCeneratorPort connected to Port: RandonCeneratorPort \
provi ded by conmponent randongensRandNunGener at or

Component randongensRandNunCGener at or of type randongens. RandNuntener at or

ﬂ At this point, there are no connections, so the output of display chain looks very much like
that of instances -- just asimple listing of the component instances in the arena.

@ Characteristic of the output of a connect command is the ASCII “cartoon” illustrating the
connection, with the user on the left and the provider on the right.

E’ Now the output of display chain lists the connections associated with each component in-
stance. Note that the connection information is printed with the using component instance

only.
Note
L

Port names and port types are defined by the person who implements the component.
They have to be unique within the component, but not across an entire application. In
order to connect a uses port to a provides port, the types of the port must match, but
the names need not match.

. Ti

i P

In the Ccaffeine framework, you can find out what ports a particular component uses
and provides with the command display component i nst ance_nane:

cca>di spl ay conponent integratorshnteCarlo

I nstance nane: integratorshbnteCarlo
G ass nane: integrators.MnteCarlo

UsesPorts registered for integratorshbnteCarlo

0. Instance Nane: FunctionPort d ass Nanme: function. FunctionPort
1. Instance Nane: RandonCeneratorPort C ass Nane: \
r andongen. RandontGener at or Por t

Provi desPorts registered for integratorshnteCarlo

I nstance Nanme: IntegratorPort C ass Nane: integrator.|ntegratorPort

At this point, you have a fully-assembled application and are ready to run it!

10

Assembling and Running a CCA Application

While most CCA ports are defined by component developers, the CCA specification includes a
special port named GoPor t . The purpose of this port is have away of kicking off the execution of
a component. The command go i nst ance_nane go_port _nane instructs the framework to
invoke the specified go port:

cca>go driversCXXDriver CGoPort
Val ue = 3.141768
##speci fic go conmand successf ul

and you can see a (fairly inaccurate) value for pi computed by Monte Carlo integration of the func-
tion 4/(1+x"2).

At this stage, you have successfully composed and run a CCA application based on existing com-
ponents. In the remainder of this procedure, we'll see how it is possible to dynamically change the
application you've assembled by disconnecting components and connecting othersin their place. Or
you can jump straight to Step 11 to (gracefully) end this session with Ccaffeine and move on to oth-
er procedures in this chapter, or on to other tasks altogether.

At the moment, Ccaffeine's palette contains only the components we needed for the first applica
tion. Now, we'll add some more components to the pal ette and instantiate them in the arena:

cca>repository get-global integrators. M dpoint
Loaded integrators. M dpoint NONV GLOBAL .

cca>instantiate integrators. M dpoint integratorsM dpoint
i ntegratorsM dpoint of type integrators. M dpoint
successfully instantiated

cca>repository get-global functions. CubeFunction
Loaded functions. CubeFuncti on NOW GLOBAL .

cca>instantiate functions. CubeFuncti on functi onsCubeFuncti on
functionsCubeFunction of type functions. CubeFunction
successfully instantiated

Note

L
There is no harm in having components you don't use in the palette, or even having
instances of them in the arena.

In order to be able to swap out components for others, we first need to disconnect them. The dis-
connect command has the same syntax as the connect command, with both the uses and provides
end points of the connection being specified.

Let's begin by changing the Monte Carlo integrator for another. The integrator is connected to both
the driver and the function. (And also to the random number generator, but since we don't need it
for anything else, there isno harm in leaving that connection intact.)

cca>di sconnect driversCXXDriver |IntegratorPort integratorshMnteCarlo \

I nt egrat or Port
driversCXXDriver))))IntegratorPort-\ \-IntegratorPort((((integratorshonteCarlo
connection broken successfully

cca>di sconnect integratorshnteCarlo FunctionPort functionsPi Function \
Functi onPort
i ntegratorshMnteCarlo))))FunctionPort-\ \-FunctionPort((((functionsPiFunction

11

Assembling and Running a CCA Application

10.

connection broken successfully ﬂ

The disconnect command prints an ASCII cartoon of a broken connection, similar to that
printed by the connect command.

Once we connect up a new integrator (in this case, using the mid-point rule algorithm) to the driver
and function, we have anew “application” that's ready to run:

cca>connect driversCXXDriver |ntegratorPort integratorsM dpoint \

I nt egrat or Port
driversCXXDriver))))IntegratorPort---->IntegratorPort((((integratorsM dpoint
connection made successfully

cca>connect integratorsM dpoint FunctionPort functionsPi Function \

Functi onPort
i ntegratorsM dpoint))))FunctionPort---->FunctionPort((((functionsPi Function
connecti on made successfully

cca>di spl ay chain
Component FRAMEWORK of type Ccaffei ne- Support
Conmponent driversCXXDriver of type drivers. CXXDri ver
is using IntegratorPort connected to Port: IntegratorPort provided by \
conponent i ntegratorsM dpoi nt
Component functi onsCubeFuncti on of type functions. CubeFunction ﬂ

Conmponent functionsPi Functi on of type functions. Pi Function

Conponent integratorsM dpoint of type integrators.M dpoint
i s using FunctionPort connected to Port: FunctionPort provided by \
conmponent functi onsPi Functi on

Component integratorshbnteCarlo of type integrators. MonteCarlo “

i s using RandomCeneratorPort connected to Port: RandonCeneratorPort \
provi ded by conponent randongensRandNuntGener at or
Conmponent randongensRandNuntCener ator of type \ “

r andongens. RandNunmGener at or

cca>go driversCXXDriver CGoPort
Val ue = 3.141553
##specific go conmand successf ul

ﬂ Observe that there are a number of component instances in the arena that we have either never
used (f unct i onsCubeFunct i on) or which we have disconnected from the rest of the ap-
plication (i nt egr at or shont eCar | o and r andongensRandNunCGener at or).

Finally, we swap the pi function for an x*3 function and run a third application built from the same
set of components:

cca>di sconnect integratorsM dpoint FunctionPort functionsPi Function \

Functi onPort
i ntegratorsM dpoint))))FunctionPort-\ \-FunctionPort((((functionsPi Function
connection broken successfully

cca>connect integratorsM dpoint FunctionPort functionsCube FunctionPort
i ntegratorsM dpoint))))FunctionPort---->FunctionPort ((((functionsCubeFunction
connecti on made successfully

cca>di spl ay chain

Component FRAMEWORK of type Ccaffei ne- Support

Component driversCXXDriver of type drivers. CXXDri ver

is using IntegratorPort connected to Port: IntegratorPort provided by \

12

2.2.

Assembling and Running a CCA Application

conponent i ntegratorsM dpoi nt
Component functi onsCubeFuncti on of type functions. CubeFunction
Component functi onsPi Function of type functions. Pi Function
Conmponent i ntegratorsM dpoint of type integrators.M dpoint
is using FunctionPort connected to Port: FunctionPort provided by \
component functi onsCubeFuncti on
Component integratorshbnteCarlo of type integrators. MonteCarlo

i s using RandonmCeneratorPort connected to Port: RandonCeneratorPort \

provi ded by conmponent randongensRandNunGener at or

Component randongensRandNunCener at or of type randongens. RandNuntener at or

cca>go driversCXXDriver GoPort
Val ue = 0.250010
##speci fic go conmand successf ul

11. To exit Ccaffeine “politely” and allow it to cleanly shutdown and destroy al components, use the
quit command:

cca>quit

bye!
exit

Running Ccaffeine Using an r c File

In practice, most people don't use Ccaffeine interactively on a routine basis. Like many applications,
Ccaffeine can be run with a script, or “rc” file that tells it what to do. Any commands that can be
entered at the cca> prompt can be used ininr ¢ file, so it is possible to systematically capture the as-
sembly and execution of an application in areusable form. Ther ¢ aso makesit easy to create a new ap-
plication from an existing one by adapting the script.

In this section, you will explore the use of anr ¢ file that captures al of the commands performed in the
previous section. This is the basic approach you will want to use when testing your work in the sub-
seguent exercises.

1. For thisprocedure, it is best to work in your home directory. To save you a lot of additional typing,
we've created an r ¢ file with all of the commands from the previous section. Make alocal copy by
typingcp $CCA/ src/ conponent s/ exanpl es/taskO_rc . and openitinyour text edit-
or. Here are some of the important features to note in thisfile:

#! ccaf feine bootstrap file.

#o------- don't change anything ABOVE this line.------------- E
Step 2 @
pat h

path set /san/shared/cca/tutorial/src/conponents/lib
pat h

#Step3@

pal ette

13

Assembling and Running a CCA Application

repository get-global drivers.CXXDriver
repository get-global functions.Pi Function
repository get-global integrators.MnteCarlo
repository get-gl obal randongens. RandNuntener at or
pal ette

Step 4

nst ances

nstantiate drivers. CXXDriver driversCXXDri ver

nstantiate functions. Pi Function functi onsPi Function

nstantiate integrators. MonteCarl o integratorshnteCarlo

nstanti at e randongens. RandNuntGener at or r andongensRandNuntener at or
nst ances

Step 5

di spl ay chain
connect driversCXXDriver IntegratorPort integratorshMnteCarlo |ntegratorPort
connect integratorshMnteCarlo FunctionPort functionsPi Function FunctionPort
connect integratorshWnteCarl o RandonGeneratorPort \

randongensRandNunCGener at or RandomGener at or Por t
di splay chain
di spl ay conponent integratorshonteCarlo

Step 6

go driversCXXDriver GoPort

Step 7

repository get-global integrators.M dpoint
instantiate integrators. M dpoint integratorsM dpoint

repository get-global functions. CubeFunction
instantiate functions. CubeFuncti on functi onsCubeFuncti on

Step 8

di sconnect driversCXXDriver IntegratorPort integratorsivbonteCarlo \
| nt egr at or Port

di sconnect integratorshMnteCarlo FunctionPort functionsPi Function \
Functi onPort

Step 9

connect driversCXXDriver |IntegratorPort integratorsM dpoint |ntegratorPort
connect integratorsM dpoint FunctionPort functionsPi Function FunctionPort

di splay chain

go driversCXXDriver GoPort

Step 10

di sconnect integratorsM dpoint FunctionPort functionsPi Function FunctionPort
connect integratorsM dpoint FunctionPort functionsCube FunctionPort

di spl ay chain

go driversCXXDriver GoPort

Step 11

qui t E’

14

Assembling and Running a CCA Application

Ccaffeine requires this line exactly as written to recognize thisfile as an input script.
Ccaffeine interprets “#” as the beginning of a comment and ignores the remainder of the line.
(Note that we have marked only the first few commentsin thisfile.)

If your script does not contain a quit command, Ccaffeine will run the script and leave you at
the Ccaffeine prompt, “cca>", alowing you to interact with the framework manually. For
example, you can use ther c file just to setup the palette; or you can use it to setup the palette
and instantiate the components you need in the arena; or you can use it to assemble the entire
application, but type the go command yourself.

@ 9

Enter the command ccafe-single --ccafe-rc taskO rc >& taskOpl.out
(assuming you're using the csh or tcsh shells; if you're using the sh or bash shells, the command is
ccafe-single --ccafe-rc taskO_rc > taskO.out 2>&1)

Edit the t askO. out file and compare the results with those in the prior section. Everything
should be essentially the same.

Experiment with changing t askO_r ¢ and re-running Step 2. Take a careful ook at the output to
make sure each change worked as you expected.

Some suggestions for things to change:

» Rearrange some of the commands so that al of the repository get-global commands are at the
beginning of the file; you could also group al of the instantiations together. Done properly, this
should have no effect your ability to execute the applications.

« Since the original script assembles and runs three distinct applications, you might modify the
script so that it does only one by commenting out the lines that aren't needed.

e Make use of thedri vers. F90Dri ver, which has not been used at al so far. (This means
you will have to add repository get-global and instantiate commands for it.)

Tip

You can copy the original t askO_r ¢ to other filenames if you want to preserve the
different variations you try. If you're just eliminating lines (for example to run only a
single application), it may be convenient to just comment them out instead of actually
removing them.

. Warning

If you remove the quit command from the r c file, Ccaffeine will leave you in inter-
active mode rather than terminating and returning you to the shell prompt. In this
case, you should not capture Ccaffeine's output into afile, asinstructed in Step 2 be-
cause you won't be able to see the cca> prompt and it will appear that Ccaffeine has
hung (in reality it is just waiting for your input). If you make this mistake a Control-c
will interrupt Ccaffeine and return you to the shell prompt.

2.3. Using the GUI Front-End to Ccaffeine

Not yet documented.

15

Chapter 3. Sewing CCA Components

INto

an Application: the Driver

Component

$Revision: 1.31 $
$Date: 2004/08/26 15:17:54 $

In this exercise, you will create a new Driver component. This component is very simple, and basically
only uses other components (it also provides a GoPort). If you're working in an environment in which
components are already available that do most of what you need, it is often sufficient to create a com-
ponent, which we refer to generically as adriver, that orchestrates these existing components to perform
your computation.

Unlike other component models (e.g. Cactus [http:/citeseer.nj.nec.com/allen00cactus.html] or ESMF
[http://sdcd.gsfe.nasa.gov/ESS/esmf_tasc/]) CCA does not impose a built-in execution model. CCA al-
lows the user to determine how the components are to be used. The driver component, in essence, takes
the place of the main program in anormal application.

In this section we will walk through the construction of a driver component, either in Fortran (SIDL
namedri vers. FO0Dri ver) or C++ (SIDL namedri ver s. CXXDr i ver) Regardless of language,
our driver component will use an integrator.|ntegratorPort. It will also provide a
gov. cca. ports. GoPort that allows an outside entity (a user or script) to start execution of the
component. (These ports should be familiar from Chapter 2, Assembling and Running a CCA Applica-
tion.)

3.1. The SIDL Definition of the Driver Compon-

ent

The first step in creating a new component is to createits. si dl file. In SIDL, a component is a class
that implements several SIDL interfaces. All CCA components must implement the
gov. cca. Conponent interface, which is defined as part of the CCA specification (the CCA specific-
ation uses the gov. cca namespace). In addition, components must implement the interfaces corres-
ponding to any CCA ports they wish to provide. The CCA specification defines a few ports, such as
gov. cca. ports. GoPort, but mostly, ports are defined by the people who write components, or by
communities that get together to agree on a“ standard” interface.

In order to better understand what is required to implement a given interface, you need to find the SIDL

specification for it. First, welll look in the SIDL file for the CCA specification to see what the
gov. cca. Conponent interface looks like.

1. Edit $CCA/ shar e/ cca- spec-babel -0_7_0-babel - 0. 9. 4/ cca. si dl . First, notice the
package declarations at the beginning of the file:

package gov {
package cca version 0.7.0 {

which declare the gov. cca namespace for everything in thefile.

2. Now, search for “interface Component”:

16

http://citeseer.nj.nec.com/allen00cactus.html
http://sdcd.gsfc.nasa.gov/ESS/esmf_tasc/

The Driver Component

/**
* Al conponents nust inplenent this interface.
*/
i nterface Conponent ({
... Comments elided ...
voi d set Services(in Services services) throws CCAException;

Which tells us that our driver will have to implement a set Ser vi ces. This is the key method
that allows a piece of code to become a CCA component. The component's set Ser vi ces meth-
od is invoked by the CCA framework when the component is instantiated, and advertises to the
framework the ports the component will provide and use.

Since the port this component provides is also part of the CCA specification, this is the place to
look for the definition of the GoPor t . Search for “interface GoPort”:

package ports {
/**
* Go, conponent, go!
*/
interface GoPort extends Port {
... Comments elided ...
int go();

First, notice that there is an additional package declaration here, making the full name of this inter-
facegov. cca. ports. GoPort . Thisdefinition tells us that our driver component must also im-
plement ago method.

Now you have enough information to write the SIDL declaration for your driver component. At this
point, you should choose whether you want to implement your driver component in C++ or Fortran
90. (Once you get one done, you can implement the other too, if you wish.)

Edit thefile st udent - src/ conponent s/ si dl / dri vers. si dl and typein one of the two
following SIDL declarations, according to your choice of language:

a
package drivers version 1.0 {
cl ass F90Dri ver inplenments gov.cca. ports. GoPort,
gov. cca. Conponent
int go();
voi d set Services(in gov.cca. Services services)
t hrows gov. cca. CCAExcepti on;
}
}
b.

package drivers version 1.0 {

17

The Driver Component

class CXXDriver inplenments gov.cca. ports. GoPort,
gov. cca. Conponent

int go();
voi d set Services(in gov.cca. Services services)
t hrows gov. cca. CCAExcepti on;

First, notice that the two declarations are identical except for the name, and in reality, you could
choose anything you wanted for the name. The only reason we put an indication of the implementa-
tion language into the class name of this component was pedagogical: to avoid a name collision if
you want to eventually implement both versions, and identify what distinguishes them. Normally,
you might want different implementations of a component if they do things differently (i.e. use dif-
ferent algorithms), or in the case of a driver, solve different problems. Under normal circumstances,
there is no reason to have more than one implementation of a component that does precisely the
same thing.

Second, notice that the class definition references both gov. cca. ports. GoPort and
gov. cca. Conponent , and declares all of the methods that we saw in those interface definitions,
with precisely the same signatures.

Now you need to modify the Makef i | e system so that it is aware of the new dri vers. si dl
file and the component you're adding.

Edit st udent - src/ conponent/ Makel ncl . conmponent s and make the following addi-
tions:

SIDL files containing conponent declarations

For exanpl e:

SIDL_FILES = sidl/drivers.sidl

SIDL_FILES = sidl/functions.sidl sidl/integrators.sidl sidl/randongens.sidl \
sidl/drivers. sidl

The COVPONENTS list contains the fully-qualified names of the conponent

classes, augmented with -LANGUAGE, where LANGUAGE is the | anguage

in which the conponent is inplenmented, e.g., c, c++, f90.

For exanpl e:

COMPONENTS = drivers. FOODri ver-f90 drivers. CXXDriver-c++

COMPONENTS = functions. Pi Function-c++ \
i ntegrators. MonteCarl o-f90 randongens. RandNuntGener at or - c++ \
drivers. CXXDri ver-c++

Of course if youve chose to create the Fortran 90 driver, you should add
drivers. F90Dri ver - f 90 to the definition of COMPONENTS instead. In both cases, notice the
backslash (“\ ") used to continue definition on to the next line. make will accept long lines, but the
files are easier to read if they're nicely formatted.

Inthe st udent - sr ¢/ conponent s directory, type make . reposit ory to make Babel pro-
cessthe. si dl filesand update the XML repository. The output should look something like this:
touch .sidl

Cenerating XML for SIDL packages contai ni ng conponent decl arations
/ san/ shared/ cca/tutorial/bin/babel -t xm -R ./xm _repository \

18

The Driver Component

-R/'san/shared/ ccal/tutorial / share/ cca-spec-babel -0_7_0-babel -0.9. 4/ xnm \
-0 ../xm repository sidl/functions.sidl sidl/integrators.sidl \
si dl /randongens. sidl sidl/drivers.sidl
Babel : Parsing URL "file:/.autonount/whal e/ root/san/r1a0l 0/ ber nhol d/\
student - src/ conponents/sidl/functions.sidl"...
Babel : Warning: Synbol exists in XM repository: \
functions. Li near Function-v1. 0
Babel : Warning: Synbol exists in XM repository: \
functions. Nonl i near Function-v1.0
Babel : Warning: Synbol exists in XML repository: \
functions. Pi Function-v1.0
Babel : Parsing URL "file:/.autonmount/whal e/ root/san/r1a0l 0/ ber nhol d/\
student-src/conponents/sidl/integrators.sidl"...
Babel : Warning: Synbol exists in XM. repository: \
i ntegrators. MonteCarl o-v1.0
Babel : Parsing URL "file:/.autonount/whal e/ root/san/r1a0l 0/ ber nhol d/\
student - src/ conponent s/ si dl / randongens. sidl". ..
Babel : Warning: Synbol exists in XM repository: \
randongens. RandNunmGener at or-v1. 0
Babel : Parsing URL "file:/.autonount/whal e/ root/san/r1a0l 0/ ber nhol d/\
student-src/conponents/sidl/drivers.sidl"...
touch .repository

The next step is to implement the internals of the component, which are obviously dependent on the im-
plementation language you've chosen. For C++, continue directly on with Section 3.2, “Implementation
of the CXXDriver in C++". For Fortran 90, please jump to Section 3.3, “Implementation of the
F90Driver in Fortran 90”.

3.2. Implementation of the CXXDr i ver in C++

1. Thenext step isto get Babel to generate the skeleton code that we will fill in with the component's
implementation. In the student-src/conmponents directory, type rmake
.drivers. CXXDri ver - c++. The output should look something like this:

Cenerating a c++ inplementation for the drivers. CXXDriver conponent.
/ san/ shared/ cca/tutorial/bin/babel -s c++ -R ./xm _repository \
-R/'san/shared/ ccal/tutorial /share/ cca-spec-babel -0_7_0-babel -0.9. 4/ xn \
-g -u -E -l -mdrivers.CXXDriver. --suppress-tinestanp drivers. CXXDriver
Babel : Resol ved synbol "drivers.CXXDriver"...
touch .drivers. CXXDri ver-c++

and in the st udent - src/ conponent s/ dri ver s/ c++ directory, you should see the follow-
ing files:

drivers. CXXDri ver. babel . make
drivers_CXXDriver_lnpl.cc
drivers_CXXDriver_Inpl.hh

gl ue

al of which were generated by Babel. (gl ue isactually a directory that contains alarge number of
generated files that Babel needs to do its job, but which you never need to modify.) The source
code files that you will need to modify in order to implement the component are the so-called | m

19

The Driver Component

p! files. For C++, both a sourcefile (. cc) and the corresponding header file (. hh) are generated.

2. In your editor, take a look through both st udent -
src/ conponents/drivers/c++/drivers _CXXDriver _Inpl.cc and student-
src/ conponent s/ drivers/c++/drivers_CXXDriver _I npl . hh to familiarize your-
self with their structure before you make any changes.

a. Near thetop of dri vers_CXXDri ver _I npl . hh, you will see a group of include direct-
ives:

n

/1 Includes for all nethod dependenci es.
I

#i fndef included _drivers_ CXXDriver_hh

#i nclude "drivers CXXDriver.hh"

#endi f

Babel generates include directives for header files that are necessary to resolve the types used
in the SIDL definition of the class you're implementing (in this case, in the st udent -
src/ conponent s/ sidl/drivers.sidl file). It does not automatically generate in-
clude directives for interfaces you implement. Y ou will have to add those and any other header
files your implementation requires as part of the implementation process.

When an automatically generated file is manually modified, there is always a danger that the
modifications will be overwritten the next time the file is generated. Babel solves this with a
concept called splicer blocks. These structured comments that appear to the compiler as regu-
lar comments, but are interpreted by Babel as having a special meaning. Babel will preserve
code within a splicer block when the file is regenerated. Code outside splicer blocks will be
overwritten. Most Babel-generated files contain numerous splicer blocks -- everywhere you
might need to add something to the generated skeleton. Here is an example:

/1 DO NOT- DELETE splicer.begin(drivers. CXXDriver. _incl udes)
/1 Put additional includes or other arbitrary code here...
/| DO NOT- DELETE splicer.end(drivers. CXXDriver. _includes)

Note that each splicer block has a name that is unique within the file, and has explicit begin-
ning and end markers. In this case, the leading comment syntax is appropriate to C++, but of
course files generated for other languages will have different ways of denoting comments.

b. Inthedrivers CXXDriver I npl. cc, Youwill seethat Babel has already generated the
signatures for all of the methods you need to implement, giving them appropriate C++-ized
names, and has provided splicer blocks ready for you to fill in. This includes both the go
method inherited from the gov. cca. ports. GoPort definition, and the set Ser vi ces
method inherited from the gov. cca. Conponent definition.

3.2.1. The set Ser vi ces Implementation

20

The Driver Component

Well begin by implementing the set Ser vi ces method indri vers_CXXDri ver _I mpl . cc.
Here is what the routine should look like (you'll need to type in the stuff marked up | i ke thi s),
along with some comments about different sections.

] **
* Method: setServices|[]
*/
voi d
drivers::CXXDriver _inpl::setServices (
/*in*/ ::gov::cca::Services services)
t hrow (
::gov::cca:: CCAException
) {
/1 DO NOT- DELETE splicer. begin(drivers. CXXDri ver. set Servi ces)
/1 insert inplementation here

framewor kServi ces = servi ces; “

/1 Provide a Go port
gov::cca::ports::GoPort gp = self; @

f ranmewor kSer vi ces. addPr ovi desPort (gp,
"CGoPort",

"gov. cca. ports. GoPort",
f ramewor kSer vi ces. creat eTypeMap()) ;

/1 Use an IntegratorPort port
framewor kServi ces. regi sterUsesPort ("IntegratorPort",

"integrator.IntegratorPort",
f ranmewor kSer vi ces. creat eTypeMap()) ;

/| DO NOT- DELETE splicer.end(drivers. CXXDri ver. set Servi ces)

ﬂ When the framework calls set Ser vi ces, it passes in a gov.cca.Services object (in C++
gov::cca:Services) that we need to keep a copy of. Note that f r amewor kSer vi ces is nhot
declared here. We will add a declaration for it to the . hh file in the next step.

@ In order to register the ports that our component will provide with the framework, we use the
addPr ovi desPort method of the gov. cca. Ser vi ces interface. You can find thisin-
terfaceinthe cca. si dl file (where you previously looked up gov. cca. Conponent and
gov. cca. ports. GoPort) inorder to check its signature, which is:

voi d addProvi desPort (i n gov.cca.Port inPort,
in string portNane,
in string type,
i n gov.cca. TypeMap properties)
t hrows gov. cca. CCAException ;

(Of course we're actualy calling the C++ version of the interface.)

The first argument is the object that actually provides the port. The way we wrote the SIDL,
thedri vers. CXXDri ver class provides the port, and since we're writing a method within
this class, C++ alows the enclosing object to be referred to as self (cast to the appropriate

21

The Driver Component

3.

type).

The second and third arguments are a local name for the port, which must be unique within
the component, and a type, which should be globally unique. If the actual types of the ports
don't match between user and provider, it will cause a failed cast or possibly a segmentation
fault. The string type here is a convenience to the user, giving a human-readable way to
identify the type of the port that can be presented in the framework’s user interface. By con-
vention, the SIDL interface name for the port is used for the type.

The final argument is a gov. cca. TypeMap. This is a CCA-defined type that provides a
simple hash table that can be used to associate properties with a provides port. In practice, it is
rarely used, but must be present.

We must also tell the framework which ports we expect to use from other components. L ook-
ingincca. si dl , wefind that the method's signatureiis:

voi d registerUsesPort(in string portName,
in string type,
i n gov.cca. TypeMap properties)
t hrows gov. cca. CCAException ;

The first and second arguments are a local name for the port, following the same rules and
conventions as in the addPr ovi desPor t invocation above. The final argument is, once
again, agov. cca. TypeMap, again likeaddPr ovi desPort .

The header file also requires a couple of additions. First, let's take care of declaring f r amewor k-
Ser vi ces asaprivate variable belonging to thedr i ver s: : CXXDr i ver class.

Edit st udent - src/ conponent s/ drivers/c++/drivers_CXXDriver_Inpl . hh and
add the following:

’ }**
* Synbol "drivers.CXXDriver" (version 1.0)
*/
cl ass CXXDri ver _i npl
/1 DO NOT- DELETE splicer.begin(drivers. CXXDriver. _inherits)
/1 Put additional 1nheritance here...
/| DO NOT- DELETE splicer.end(drivers. CXXDriver. _inherits)
{
private:

i

/1l Pointer back to | OR

/1l Use this to dispatch back through I OR vtable.
CXXDriver self;

/1 DO NOT- DELETE splicer. begin(drivers. CXXDri ver. _i npl enent ati on)
/1 Put additional 1nplenmentation details here...

::gov::cca:: Services franmeworkServices;

/| DO NOT- DELETE splicer.end(drivers. CXXDriver. _i npl enentati on)

We also need to add the include directives for the header files for the classes we inherit from. (For
technical reasons, Babel does not insert these automatically when it generates thefile.)

22

The Driver Component

/1 DO NOT- DELETE splicer.begin(drivers. CXXDri ver. _incl udes)
/1 Put additional 1ncludes or other arbitrary code here...

#include "integrator_IntegratorPort. hh"
#i ncl ude "gov_cca_ports_GoPort. hh"

/| DO NOT- DELETE splicer.end(drivers. CXXDriver. _incl udes)

Note that in naming files, Babel translates periods (“. ") in the SIDL to underscores (*_").

4. Now, athough the component is not complete, it is a good idea to check that it compiles correctly
with the code you've added so far.

First, change directories to st udent - sr ¢/ conponent s and run nake dri vers. This will
install Makefil e and Makel ncl . user files in st udent -
src/ conponent s/ drivers/ c++.

Then, change directories to st udent - src/ conponent s/ dri ver s/ c++ and run make. If
you get any compiler errors, you should fix them before going on.

3.2.2. The go Implementation

1. Once again, edit st udent -
src/ conponents/drivers/c++/drivers CXXDriver I npl.cc and add the imple-
mentation of the go method:

] **

* Method: go[]

*/

int32_t

drivers::CXXDriver _inpl::go ()
throw ()

{
/1 DO NOT- DELETE splicer. begi n(drivers. CXXDri ver. go)
/1 insert inplenentation here
doubl e val ue;

i nt count = 100000;
doubl e | ower Bound = 0.0, upperBound = 1.0;

c:integrator::lntegratorPort integrator; E

/1l get the port .
i ntegrator = frameworkServices.getPort ("l ntegratorPort"); E

if(integrator._is_nil()) { €)

fprintf(stdout, "drivers.CXXDriver not connected\n");
framewor kServi ces. rel easePort ("I ntegratorPort");

23

The Driver Component

return -1,
}
/'l operate on the port
value = integrator.integrate (|l owerBound, upperBound, count);

o

fprintf(stdout,"Value = %f\n", val ue);
fflush(stdout);

/1 rel ease the port.
framewor kServi ces. rel easePort ("I ntegratorPort"); E

return 0O; ﬂ

/1 DO NOT- DELETE splicer.end(drivers. CXXDriver. go)

In this section we get a handle to the particular i nt egr at or. | nt egr at or Por t that the
driver's uses port has been connected to. First, we have to declare a variable of the appropriate
type (:integrator::IntegratorPort is the C++ trandation of the SIDL i ntegrat -
or.lntegratorPort, defined in
student -src/ports/sidl/integrator.sidl). Then, weinvoke the get Port on
our f r amewor kSer vi ces object. The argument to this method is the local hame we used
inther egi st er UsesPor t invocation.

E’ This code checks that the get Por t worked, and returned a valid port. If the get Por t falls,
or if the driver's uses port has not been connected to an appropriate provider, then get Por t
will return anil port object. The i s_ni | method is automatically available on all SIDL ob-
jects. Because the driver can't do anything without being properly connected to an integrator,
the responseto get Por t failing isto abort by returning anon-zero value.

Note

g Setup the parameters with which to call the integrator.

¥

get Port returning nil need not be treated as a fatal error in al cases. For ex-
ample, a component may be designed so that certain ports are optional -- to be
used if present, but to be ignored if not. Another possibility is that the compon-
ent may be able to accomplish the same thing through several different ports, so
that only one of a given group needs to be connected.

ﬂ Here we actually call the i nt egr at e method on the i nt egr at or port we just got a
handle for. The signature of the integrate method is defined in student -
src/ports/sidl/integrator.sidl.

Finally, once we're done using the port, we call r el easePort .

8 It is considered impolite for a component to call exi t because it will bring down the entire

application, and possibly crash the framework. Instead, components should simply return.

2. Congratulations, you have completed the implementation of the CXXDri ver! To check your
work, run make in st udent - src/ conponent s/ dri ver s/ c++. If you get any compiler er-
rors, you should fix them before going on.

3. At this point, it is a good idea to go up to st udent - sr ¢ and run nmake to insure that anything

else which might depend on the existence of the new dri vers. CXXDri ver component gets
built too.

The next step isto test your new driver component, in Section 3.5, “Using Y our New Component”.

24

The Driver Component

3.3. Implementation of the FO0Dri ver in For-
tran 90

Before we begin the implementation, it is important to understand that, regardless of language, both the
CCA and especially Babel/SIDL impose an object-oriented model on any of its supported languages, in-
cluding Fortran. Most importantly, this means that each Fortran component has state and methods. State
means that variables are associated with a particular instance component and that these state variables
(sometimes referred to as private data) can take on different values for different instances. A method isa
subroutine that is associated with the component. A short introduction to the way CCA/Babel deal with
imposing an object model on Fortran is given in Section 3.4, “SIDL and CCA Object Orientation in For-
tran” and can be read at your leisure. You should also read the Fortran 90 section of the Babel Users
Guide [http://www.lInl.gov/CA SC/components/docs/users_guide/users guide.htmi].

There are other limitations of the Fortran 90 standard that Babel deals with by adhering to certain con-
ventions:

» Fortran doesn't offer the hierarchical structures for routine and type names in the way that most OO
languages do, so SIDL's hierarchical dot-separated notation is translated into a flat namespace using
underscores in Fortran. For example, gov. cca. Ser vi ces is translated to gov_cca Services. A
reference to that SIDL interface would be defined as a variable in this fashion:

type(gov_cca_Services_t) :: services

» Because of the requirement that all symbols in Fortran 90 be at most 32 characters, sometimes long
names common in OO programming styles need to be abbreviated. Babel keeps the most significant
portion of the name (the base name) and truncates the rest, adding a hash to make it unique if neces-
sary. For example, our own F90Dr i ver component's set Ser vi ces() subroutine declaration
looks like:

recursive subroutine F90Dri _set Servi cesdkhxt4z7ds_m (self, services, &
exception)

1. The next step in implementing the driver is to get Babel to generate the skeleton code that we will
fill in with the component's implementation. In the st udent - sr ¢/ conponent s directory, type
make .drivers. F90Dri ver-f 90. Theoutput should look something like this:

Cenerating a f90 inplenentation for the drivers. F90Dri ver conponent.
/ san/ shared/ cca/tutorial/bin/babel -s f90 -R ./xm _repository \
- R/ san/ shared/cca/tutorial /share/ cca-spec-babel -0_7_0-babel -0.9. 4/ xm \
-g -u -E -l -mdrivers. F90Driver. --suppress-tinmestanp drivers.F90Driver
Babel : Resol ved synbol "drivers. F90Driver". ..
touch .drivers. F90Driver-f90

and in the st udent - sr ¢/ conponent s/ dri ver s/ f 90 directory, you should see the follow-
ing files:

drivers. FO0Dri ver. babel . make
drivers_F90Driver | npl.F90
drivers_F90Dri ver Mod. F90

25

http://www.llnl.gov/CASC/components/docs/users_guide/users_guide.html
http://www.llnl.gov/CASC/components/docs/users_guide/users_guide.html

The Driver Component

gl ue

all of which were generated by Babel. (gl ue isactually a directory that contains alarge number of
generated files that Babel needs to do its job, but which you never need to modify.) The source
code files that you will need to modify in order to implement the component are the so-called | m

p! files. For Fortran 90, both a source file (_I npl . F90) and the corresponding module file
(_Mod. F90) are generated.

2. In your editor, take a look through both st udent -
src/ conponents/drivers/f90/drivers_F90Driver_Inpl.F90 and student-
src/ conponent s/ drivers/c++/drivers_F90Dri ver _Md. F90 to familiarize your-
self with their structure before you make any changes.

a. When an automatically generated file is manually modified, there is always a danger that the
maodifications will be overwritten the next time the file is generated. Babel solves this with a
concept called splicer blocks. These structured comments that appear to the compiler as regu-
lar comments, but are interpreted by Babel as having a special meaning. Babel will preserve
code within a splicer block when the file is regenerated. Code outside splicer blocks will be
overwritten. Most Babel-generated files contain numerous splicer blocks -- everywhere you
might need to add something to the generated skeleton. Here is an example:

| DO- NOT- DELETE splicer.begin(drivers. FO0Dri ver. use)
! Insert use statenents here...
! DO NOT- DELETE splicer.end(drivers. FO90Dri ver. use)

Note that each splicer block has a name that is unique within the file, and has explicit begin-
ning and end markers. In this case, the leading comment syntax is appropriate to Fortran 90,
but of course files generated for other languages will have different ways of denoting com-
ments.

b. Inthedrivers F90Driver | npl.F90, You will seethat Babel has already generated
the signatures for all of the methods you need to implement, giving them appropriate names
that conform to the Fortran 90 standard (including being hashed to remain within the 32 char-
acter limit if necessary), however it should be fairly easy to match them up with corresponding
SIDL names. In this case, both the go method inherited from the
gov. cca. ports. GoPort definition, and the set Ser vi ces method inherited from the
gov. cca. Conponent definition are there, along with several others associated with Babel.

3.3.1. The set Ser vi ces Implementation

1. well begin by implementing the set Servi ces method in
drivers_F90Driver _| npl. F90. Here is what the routine should look like (you'll need to
typeinthe stuff marked up | i ke t hi s), along with some comments about different sections.

=
I Method: setServices|[]

26

The Driver Component

recursive subroutine F90Dri _set Servi cesdkhxt4z7ds_m (self, services, &
exception)
use sidl _Baselnterface
use drivers_F90Dri ver
use gov_cca_Services
use gov_cca_CCAException
use drivers_F90Driver_i npl
I DO NOT- DELETE spli cer. begi n(drivers. FOODri ver. set Servi ces. use)
I Insert use statenents here...

use gov_cca_TypeMap ! A CCA catch-all properties list (enpty for us)
use gov_cca_Port ! needed to use a gov.cca.Port (we do)
use gov_cca_ports_GoPort ! need to export our inplenmentation of GoPort

I DO NOT- DELETE splicer.end(drivers. FO0Dri ver. set Servi ces. use)
inmplicit none

type(drivers F9ODriver t) :: self ! in
type(gov_cca_Services_t) :: services ! in

type(sidl _Baselnterface t) :: exception ! out

! DO NOT- DELETE splicer. begi n(drivers. FO0Dri ver. set Servi ces)
! Insert the inplenentation here...

type(gov_cca_TypeMap_t) ©1 nyTypeMap “
type(gov_cca_Port _t) : myPort
type(SIDL_Baselnterface t) :: excpt

type(drivers_F90Driver_wap) :: dp
call drivers_F90Driver__get data n(self, dp) @

I Set my reference to the services handl e
dp%l_privat e_dat a% r amewor kSer vi ces = servi ces E’

call addRef (services)

I Create an enpty TypeMap

call createTypeMap(dp%l private_data% r amewor kServi ces, & ﬂ
myTypeMap, excpt)

call checkExceptionDriver(excpt, 'setServices createTypeMap call')

I Provide a GoPort
call cast(self, myPort) E

call addProvi desPort (dp%l_privat e_dat a% r amewor kServi ces, & E

myPort, 'GoPort', 'gov.cca.GPort', &
nyTypeMap, excpt)
call checkExceptionDriver(excpt,'setServices addProvi desPort: GoPort')

| Register to use an integrator port
call registerUsesPort (dp%d private_dat a% r anewor kServi ces, & E
&

"IntegratorPort',
"integrator.|Integrator', &

nyTypeMap, excpt)
call checkExceptionDriver(excpt, &
'set Services registerUsesPort: IntegratorPort')

cal |l del et eRef (nyTypeMap)
I DO NOT- DELETE splicer.end(drivers. FO0Dri ver. set Servi ces)

27

The Driver Component

end subroutine F90Dri _set Servi ces4khxt 4z7ds_mi

(1]
(3]

Declaration of variables that will be needed below. The types are defined in various modules
used above. The drivers F90Driver_wrap type is a Babel idiom for the private data associated
with the particular instance of this component, in an object-oriented sense.

When the framework calls set Ser vi ces, it passes in a gov.cca.Services object (in C++
gov::cca:Services) that we need to keep a copy of in the private data associated with this in-
stance of our component. Babel uses “reference counting” to track usage of objectsin order to
know when it is safe to delete them. Because Fortran has no native mechanism for reference
counting, we must use Babel's addRef method to indicate that we're storing a reference to
theser vi ces object that the framework passed into set Ser vi ces

The ser vi ces methods to register uses and provides ports requires a gov.ccaTypeMap (in
Fortran TypeMap), which we create here.

In SIDL, methods can throw exceptions. In languages like Fortran, which don't have native
support for exceptions (if you're not familiar with exceptions, it is sufficient to think of them
as error codes), they are trandated into an additional subroutine argument (in this case
excpt) which then should be checked (“caught”). Well add the checkExcepti on-
Dri ver method in Step 2.

When Babel creates my TypeMap, it will (internally) add a reference to it. Once we're done
using it, we can tell Babel that by calling Babel's del et eRef method, which you can see at
the end of the routine. When the reference count goes to zero, Babel will destroy the ny Ty -

peRef object and reclaim the memory associated with it.

" Caution

Failure to follow proper reference counting procedures in Babel/Fortran (or oth-
er non-00 languages, such as C) code will lead to “memory leaks” in your ap-
plication. See the Babel Users Guide
[http://www.lInl.gov/CA SC/components/docs/users_guide/users guide.html] for
more detailed information.

In order to register the ports that our component will provide with the framework, we use the
addPr ovi desPort method of the gov. cca. Ser vi ces interface. You can find thisin-
terfaceinthe cca. si dl file (where you previously looked up gov. cca. Conponent and
gov. cca. ports. GoPort) inorder to check its signature, which is:

voi d addProvi desPort (in gov.cca.Port inPort,
in string portNane,
in string type,
i n gov.cca. TypeMap properties)
t hrows gov. cca. CCAException ;

(Of course we're actualy calling the Fortran 90 version of the interface.)

The first argument is the object that actually provides the port. The way we wrote the SIDL,
thedrivers. FOODri ver class provides the port, and since we're writing a method within
this class, we use Babel'scast method to cast our self pointer to type gov.ccaPort.

The second and third arguments are a local name for the port, which must be unique within
the component, and a type, which should be globally unique. If the actual types of the ports
don't match between user and provider, it will cause a failed cast or possibly a segmentation

28

http://www.llnl.gov/CASC/components/docs/users_guide/users_guide.html

The Driver Component

fault. The string type here is a convenience to the user, giving a human-readable way to
identify the type of the port that can be presented in the framework’s user interface. By con-
vention, the SIDL interface name for the port is used for the type.

The final argument is a gov. cca. TypeMap. This is a CCA-defined type that provides a
simple hash table that can be used to associate properties with a provides port. In practice, it is
rarely used, but must be present.

E We must also tell the framework which ports we expect to use from other components. L ook-
ingincca. si dl , wefind that the method's signatureiis:

voi d registerUsesPort(in string portName,
in string type,
i n gov.cca. TypeMap properties)
t hrows gov. cca. CCAException ;

The first and second arguments are a local name for the port, following the same rules and
conventions as in the addPr ovi desPor t invocation above. The final argument is, once
again, agov. cca. TypeMap, again likeaddPr ovi desPort .

The module file also requires a couple of additions. First, let's take care of declaring f r amewor k-
Ser vi ces as part of the modul€'s private data.

Edit st udent - src/ conponent s/ drivers/f90/drivers_F90Dri ver _Md. F90 and
add the following:

iybe drivers_F90Driver _priv
sequence
I DO NOT- DELETE splicer. begi n(drivers. FOODri ver. privat e_dat a)

I Handle to franmework Services object
type(gov_cca_Services_t) :: frameworkServices

I DO NOT- DELETE splicer.end(drivers. FO0Dri ver. private_data)
end type drivers_F90Driver_priv

We also need to add the use directives for the module for gov. cca. Ser vi ces.

| DO- NOT- DELETE splicer.begin(drivers. F90Dri ver. use)
I Insert use statenents here...

' CCA framework services nodul e
use gov_cca_Services

I DO NOT- DELETE splicer.end(drivers. F90Dri ver. use)

Now, although the component is not complete, it is a good idea to check that it compiles correctly
with the code you've added so far.

First, change directories to st udent - sr ¢/ conmponent s and run make dri vers. This will

29

The Driver Component

install Makefil e and Makel ncl . user files in st udent -

src/ conponent s/ dri vers/f90.

Then, change directories to st udent - src/ conponent s/ dri vers/f90 and run make. If

you get any compiler errors, you should fix them before going on.

3.3.2. Implementing the Constructor and Destructor

Constructor and destructor are concepts from object-oriented programming. Specifically, they are the
routines that are called to create an instance of an object, and when it is being destroyed. When using
most OO languages in the CCA/Babel environment, the constructor and destructor are handled pretty
much automatically. In an non-OO language, like Fortran or C, we have to do a little more work. Spe-
cifically, we have to alocate and deallocate the data needed to maintain the private state of the compon-

ent instance.

1. Edit

and find the constructor method, which Babel abbreviatesct or .

The constructor must allocate the space for the private data, initialize the private data as appropriate
(inthis case, we set f r amewor kSer vi ces to nul |), and Babel has to be told about the private
data. In this component, the only private data we need to storeis apointer to the ser vi ces object

passed into set Ser vi ces.

Cl ass constructor called when the class is created.

recursive subroutine drivers_F90Driver__ctor_mi(self)

use drivers_F90Dri ver

use drivers_F90Driver_i npl

I DO NOT- DELETE spli cer. begi n(drivers. FOODri ver. ctor. use)
I Insert use statenents here...

! DO NOT- DELETE splicer.end(drivers. FOODriver. ctor.use)
inmplicit none

type(drivers_F90Driver _t) :: self ! in

DO NOT- DELETE splicer. begi n(drivers. FOODri ver._ctor)
Insert the inplenentation here...

I Access private data
type(drivers_F90Driver_wap) :: dp

I Allocate menory and initialize

al | ocate(dp%d_private data)

call set_null (dp% _private_data% r anewor kSer vi ces)
call drivers_F90Driver__set _data n(self, dp)

DO NOT- DELETE splicer.end(drivers. F90Driver. _ctor)

end subroutine drivers_ F90Driver__ctor_m

2. Find the destructor method, which Babel abbreviates dt or . The destructor's job is to undo what

the constructor did.

30

st udent - src/ conponent s/ drivers/f90/drivers_F90Driver | npl.F90

The Driver Component

! Class destructor called when the class is del eted.
!

recursive subroutine drivers_F90Driver__dtor_m (self)
use drivers_F90Dri ver
use drivers_F90Driver i npl
! DO NOT- DELETE spl i cer. begi n(drivers. FO0Dri ver. _dtor. use)
I Insert use statements here.
I DO NOT- DELETE splicer. end(dri vers. FOODri ver. _dtor. use)
inmplicit none
type(drivers F9ODriver t) :: self ! in

I DO NOT- DELETE splicer. begi n(drivers. FO0Dri ver. dtor)
! Insert the inplenentation here...

I Access private data and deal | ocate storage
type(drivers_F90Driver_wap) :: dp

call drivers_F90Driver__get_data n(self dp)
deal | ocat e(dp%l_pri vat e_dat a)

I DO NOT- DELETE splicer.end(drivers. FOODri ver. _dtor)
end subroutine drivers _F90Driver__dtor_mi

3. Now, athough the component is not complete, it is a good idea to check that it compiles correctly
with the code you've added so far. Run make in
student - src/ conponent s/ dri ver s/ f90. If you get any compiler errors, you should fix
them before going on.

3.3.3. The go Implementation

1. Once again, edit st udent -
src/ conponent s/ drivers/f90/drivers_F90Driver _| npl. FO90 and add the imple-
mentation of the go method:

I Method: go[]
!

recursive subroutine drivers_F90Driver_go_m (self, retval)
use drivers_F90Dri ver
use drivers_F90Driver i npl
I DO- NOT- DELETE spl i cer. begi n(dr| vers. FO0Dri ver. go. use)
I Insert use statements here.

use sidl _Baselnterface ﬂ

use gov_cca_Services
use gov_cca_Port
use integrator_IntegratorPort

31

The Driver Component

DO NOT- DELETE splicer.end(drivers. F90Dri ver. go. use)

!

inmplicit none

type(drivers_F90Driver t) :: self I in

i nteger (selected_int_kind(9)) :: retval ! out

DO NOT- DELETE spl i cer. begi n(drivers. FOODri ver. go)
Insert the inplenentation here..

type(gov_cca Port t) :: general Port

type(SIDL_Baselnterface t) :: excpt
type(integrator_IntegratorPort_t) :: integratorPort E;

| Private data reference
type(drivers_F90Driver_wap) :: dp

! local variables for integration

real (selected real kind(15, 307)) :: |owBound
real (selected_real kind(15, 307)) :: upBound
i nteger (selected_int_kind(9)) :: count

real (selected_real kind(15, 307)) :: value

! Initialize |local variables
count = 100000

| owBound = 0.0
upBound = 1.0

I Access private data
call drivers_F90Driver__get_data n(self, dp)
retval = -1

I get the port ...
call getPort(dp%l_privat e_dat a% r amewor kServi ces, & E;

"IntegratorPort', general Port, excpt)
call checkExceptionDriver(excpt, &

‘getPort(''IntegratorPort'')")
if(is_null(generalPort)) then
wite(*,*) '"drivers.F90Driver not connected
return
endi f

I Get an IntegratorPort reference fromthe general port one
call cast(general Port, integratorPort) E;

if (not_null(integratorPort)) then
value = -1.0 ! nonsense nunber to confirmit is set

| operate on the port
call integrate(integratorPort, |owBound, upBound, count, & ia

val ue)
wite(*,*) '"Value ="', value
el se I integratorPort is nul

wite(*,*) 'DriverF90: inconpatible IntegratorPort
endi f

! rel ease the port
call releasePort(dp%d private_dat a% r anewor kServi ces, & ﬁ}

"IntegratorPort', excpt)

call checkExceptionDriver(excpt, 'releasePort(''IntegratorPort'')")

32

The Driver Component

|
en

:

o

retval = 0 ﬂ
return

DO NOT- DELETE splicer.end(drivers. F90Dri ver. go)
d subroutine drivers_F90Driver_go_mi

Declarations for modules we need to usein this routine.

Setup the variables and parameters with which to call the integrator.

These portions of the code are associated with getting a handle to the particular i nt egr at -
or. | ntegratorPort that the driver's uses port has been connected to.

First, we have to declare variables of the appropriate type to hold the port. Because of the way
OO programming works in CCA/Babel, we first get the port as a generic gov.cca.Port
(gov_cca Port_t in Fortran 90) and then cast it to the specific port we need to use, integrat-
or.IntegratorPort (integrator_IntegratorPort t in Fortran 90). Recall that i ntegrat -
or. I ntegratorPort is defined in st udent -
src/ports/sidl/integrator.sidl).

Then, we invoke the get Por t on our f r amewor kSer vi ces object. The argument to this
method is the local name we used in ther egi st er UsesPor t invocation, and it returns a
gov.cca.Port (and an exception).

Finally, we use Babel's cast method to cast the generic port to the specific integrator port
that we need.

This code checks that the get Por t worked, and returned avalid port. If the get Por t falls,
or if the driver's uses port has not been connected to an appropriate provider, then get Por t
will return anull port object. Thei s_nul | method is automatically available on the Fortran
90 binding of any SIDL object. Because the driver can't do anything without being properly
connected to an integrator, the response to get Port failing is to abort by returning a non-
zerovalue.

It is also possible that a valid gov.cca.Port would be returned, but it might not be the integrat-
or.IntegratorPort we expect. If thisis the case, the cast will return a null value. The proper
actioninthiscaseis also to fail gracefully by returning a non-zero result.

- Note
get Por t returning nil need not be treated as a fatal error in al cases. For ex-
ample, a component may be designed so that certain ports are optional -- to be
used if present, but to be ignored if not. Another possibility is that the compon-
ent may be able to accomplish the same thing through several different ports, so
that only one of a given group needs to be connected.

Here we actually call the i nt egr at e method on the i nt egr at or port we just got a
handle for. The signature of the integrate method is defined in student -
src/ports/sidl/integrator.sidl. Notice that while the SIDL definition of i n-
t egr at e shows it as a function, returning a double precision result, in Fortran 90, Babel
tranglates this into a subroutine with the return value as an extra argument. This is because
Fortran does not support functions returning al types (arrays, for example).

Finally, once we're done using the port, we call r el easePort .

It is considered impolite for a component to call exi t because it will bring down the entire
application, and possibly crash the framework. Instead, components should simply return.

There's one other bit of code we have to provide before we can declare this component complete. In
numerous places, we've seen exceptions being returned, and we've been using aroutine check Ex-

33

The Driver Component

ceptionDri ver todea with them. Thisis amethod that we have to write.

Exceptions are a potentially powerful and sophisticated way of handling errors in software. But for
the purposes of this exercise, we're going to take a very simple approach. Our exception handler
routine simply test whether or not the exception is anull object, and if it is print a message and tell
Babel that as far as we're concerned it can delete the excpt object. Notice that this routine does
not exit or abort. As we've noted, it is not considered polite behavior for a component to exit, even
in the event of an exception.

In student - src/ conponent s/ drivers/f90/drivers_F90Driver _| npl.F90 loc-
ate the splicer blocks for miscellaneous code, at the very end of the file, and enter the following:

I DO NOT- DELETE spli cer. begi n(_m scel | aneous_code_end)

I Insert extra code here...

! Small routine (not part of the SIDL interface) for

I checking the exception and printing the nessage passed as
I and argunent

|

subrouti ne checkExceptionDri ver (excpt, mnsg)
use SI DL Baselnterface
use gov_cca_CCAExcepti on
inmplicit none
type(sidl _Baselnterface t), intent(inout) :: excpt
character (len=*) :: nmsg ! in
if (not_null (excpt)) then
wite(*, *) "drivers.F90Driver Exception: ', nsg
cal |l del et eRef (excpt)
end if
end subroutine checkExceptionDriver

I DO NOT- DELETE splicer.end(_m scel | aneous_code_end)

Congratulations, you have completed the implementation of the FOODri ver! To check your
work, run make in st udent - src/ component s/ dri ver s/ f 90. If you get any compiler er-
rors, you should fix them before going on.

At this point, it is a good idea to go up to st udent - sr ¢ and run nmake to insure that anything
else which might depend on the existence of the new dri vers. CXXDri ver component gets
built too.

The next step is to test your new driver component, in Section 3.5, “Using Y our New Component”.

3.4. SIDL and CCA Object Orientation in For-

tran

There will be afew artifacts of CCA's(and Babel's) insistence on an object model. Generally the object
oriented style of programming groups state data and subroutines (or methods) into "objects’. Because
CCA requires an object model for its components, Fortran programmers will have to become a little fa-
miliar with how CCA/Babel implements thisin the language. A broad exposition on object oriented con-
cepts is beyond the scope of this tutorial document, more and better information can be found elsewhere
[http://en.wikipedia.org/wiki/Object_oriented_programming].

34

http://en.wikipedia.org/wiki/Object_oriented_programming

The Driver Component

The first thing objects need is a constructor and destructor to initialize state data. For Fortran, the meth-
ods ending in _ct or and _dt or are the constructor and destructor for the component (see listing
above). This allows the programmer to create (in the constructor) and delete (in the destructor) state data
associated with the component. One thing that almost al components want to store is the
gov_cca_Servi ces handle that is passed in through the set Ser vi ces() . A complex component
may wish to store parameters associated with its function as well.

Looking at the cca specification cca. si dl , Babel maps each CCA SIDL type (e.g. gov. cca. Port)
to a Fortran type (e.g. type(gov_cca Port_t)).

Because return values cannot accept all Babel types and because Fortran does not provide either an ob-
ject model or a mechanism for exceptions, these features are placed in the argument list:

* A handle that represents the component and holds the state (or private) data for the component is
prepended to the front of the argument list for every subroutine method: it is usually called sel f .

e Thereturn valueis appended to the end of the argument list.

 If there is an exception specified in the .sidl file, then the exception (of type
SIDL_Baselnterface t) is appended after the return value.

Asan example, if auser specifiesa SIDL snippet such as:

file: ./cca-spec-babel/cca.sidl |ine:108

package gov {

package cca version 0.7.0 {

o Port getPort(in string portName) throws CCAException

}')/ end of package cca
} /1 end package gov

In Fortran trandlates into:

iybe(gov_cca_Port_t) .. port
type(SI DL_Baselnterface t) :: excpt
type(gov_cca_Services) :: frameworkServices

bb'rt = get Port (frameworkServices, port, excpt)

3.5. Using Your New Component

1. Changedirectoriesto st udent - src/ conponent s/ exanpl es and editt ask1l _rc. Thisfile
will assemble and run an application using the new driver component you've created. However it
includes lines for both versions of the driver component, and probably you've only implemented
one. So you will need to comment out al of the lines which refer to the driver component you did
not implement.

2. Run the script with ccafe-single --ccafe-rc taskl_rc. It should run without errors
and give you aresult like Val ue = 3. 140347 (since we're using a Monte Carlo integration al-
gorithm, results will vary).

35

The Driver Component

Feel free to modify t ask3_r ¢ to assemble applications with different components. The beginning
of ther c file loads the palette with all of the available components and creates an instance of each.
See Chapter 2, Assembling and Running a CCA Application for further information and ideas for

other “applications’ you can construct.

36

Chapter 4. Creating a Component from
an Existing Library

$Revision: 1.31 $
$Date: 2004/08/26 16:21:20 $

In this exercise, you will wrap an existing (“legacy”) software library as a CCA component (i.e.
“componentize” it). The CCA is designed to make it as easy as possible to componentize existing soft-
ware, and a significant fraction of CCA components are created in this way. While this specific example
is minimal, the techniques used to produce a component that uses an existing library with minimal or no
modifications to legacy code is applicable for large legacy codes.

The integrator components are Fortran90 wrappers over an existing legacy integrator library. For the
purposes of this exercise, the legacy library is located in the st udent - src/ | egacy/ f 90 directory.
Thel nt egr at or . f 90 code implements a midpoint rule integration approach. Our goal isto create an
integrator component that uses the legacy implementation to compute the integral of afunction.

4.1. The legacy Fortran integrator

Our Fortran legacy library (in st udent -src/ 1 egacy/ f90) contains an integration algorithm,
which can be invoked as follows:

call integrate_np(functionParans, |owBound, upBound, count)

where functionParams is a variable of type FunctionParams t. This type is used to store various func-
tion-specific attributes, such as the constant coefficients. The definition of this type is in the Func-
t i onModul e module, inthe LegacyFunct i onModul e. f 90 file;

file: student-src/legacy/f90/LegacyFuncti onMddul e.f90
nodul e Functi onMbdul e
inmplicit none

type FunctionParans_t

private

real, dimension(3) :: coef
end type FunctionParans_t

cont ai ns
subroutine init(parans, coefficients)

I 11 NPUT PARAMETERS:
type(FunctionParans_t), intent(lINOUT) :: parans
t(l

real, dinension(:), inten N) :: coefficients
integer :: i
doi =1,3
params%oef (i) = coefficients(i)
end do

end subroutine init
real function eval (parans, Xx)

I 11 NPUT PARAMETERS:
type(FunctionParans_t), intent(IN :: parans

37

Creating a Component from an Existing Lib-
rary

real, intent(IN) X
eval = 2 * x
end function eval

end nodul e Functi onModul e

The legacy integrator (in | nt egr at or . f 90) uses the midpoint integration algorithm to integrate an
arbitrary function that has an eval function and uses FunctionParams t to store its state. The complete
code for the legacy integrator follows.

file: student-src/legacy/f90/Integrator.f90
nodul e | ntegrator
use Functi onMdul e “

implicit none
cont ai ns

real function integrate_np(functionParans, |owBound, upBound, count)
inmplicit none

I 11 NPUT PARAMETERS:

type(FunctionParans_t),intent(IN) :: functionParans @
real, intent(IN) :: | owBound

real, intent(IN) :: upBound

i nteger, intent(IN) :: count

I 1 LOCAL VARI ABLES:

real :: sum h, x, dcount, func_val

i nteger :: i

integrate_np = -1

I Compute integral
sum= 0.0
h = (upBound - | owBound) / count

do i =0, count
X = lowBound + h * (i + 0.5)
func_val = eval (functionParans, x) !ﬂ
sum = sum + func_val

end do

integrate_np = sum* h
end function integrate np

end nodul e | ntegrator

Noteson thel nt egr at or. f 90 file

The | nt egr at or module uses the Funct i onModul e, which means that the integrator can
only evaluate functions defined in this Funct i onModul e, or other Fortran modules that "ex-
tend" it.

E The f unct i onPar ansargument of the integrator is the only way function parameters can be
passed through to the function being eval uated.

38

Creating a Component from an Existing Lib-
rary

E’ This evaluates the function given the parameters passed into the | nt egr at or .

4.2. The Funct i onModul e wrapper.

To enable the legacy integrator to evaluate functions that are not defined in the same fashion as the
Funct i onModul e above (i.e., such that they define the eval method or equivalent interface that
takes a FunctionParams t argument and a real argument) is to create another Funct i onMbdul e that
allowsaFuncti onPort to beused for the function evaluation.

file: student-src/legacy/f90/Functi onMbdul eW apper.f90
nodul e Functi onMbdul e

I This nodul e repl aces the Functi onModul e used by the | egacy integrator.
I Thus, we need to nakes sure that this nodule is first in the nodule
I search path when buil ding the integrator conponent.

I W& need to include the function port definitions
use function_FunctionPort type “

use function_FunctionPort
inmplicit none

type FunctionParans_t
sequence I required for component version
type(function_FunctionPort t) funcPort g

end type FunctionParans _t

i nterface eval

I This is the one called by the I egacy Integrator
nodul e procedure eval Function
end interface

cont ai ns
subrouti ne set FunctionPort (parans, port)
type(FunctionParans_t), intent (QUT) :: parans
type(function_FunctionPort_t), intent(IN) :: port

parans% uncPort = port
end subroutine setFuncti onPort

real function eval Function(parans, x)
use function_FunctionPort
I input paraneters:

type(FunctionParans_t), intent(IN) :: params
real, intent(IN) :: X

I I ocal variabl esreal

real (selected_real kind(15, 307)) :: xx
real (selected_real kind(15, 307)) :: retval

I Conpute value by calling the function evaluation in Functi onMdul e
XX = X
cal |l eval uate(paranms% uncPort, xx, retval) ﬂ

eval Function = retval
end function eval Functi on

end nodul e Functi onModul e

39

Creating a Component from an Existing Lib-
rary

Noteson the Funct i onMbdul eW apper . f 90 file

L1

The Functi onModul eW apper module uses (includes) the Functi onPort type and
Functi onPort modules (in student-src/ports/function/f90, whose definitions
were automatically generated by Babel from the SIDL definition of func-
tion. FunctionPort (student-src/ports/sidl/function.sidl).

The FunctionParams _t type that was originally defined in L egacyFunctionM odule.f90.

The legacy Funct i onMbdul e contained the eval function; in our wrapper implementation, we
create an eval interface that contains the new evaluation function, eval Functi on.

Thisisthe call to the eval uat e subroutine of the Funct i onPor t , using the parameters passed
totheeval Funct i on. Note that the par anms% uncPor t is supposed to have aready been set
by the caller by using the set Funct i onPor t subroutine defined in this module.

Note

In one of the first steps of this tutorial (see Building the tutorial source tree), the entire tu-
torial tree was built, including the sourcesin the st udent - src/ | egacy/ f 90 directory
and its subdirectories. Two distinct libraries were created, one containing only legacy
codes (i b/1ibLegacyl ntegrator. a), and another one (I'i b/

I i bW appedLegacyl nt egr at or . a) containing the Funct i onMbdul e definition
in Functi onModul eW apper. f 90 instead of the Functi onModul e definition
definition contained in LegacyFunct i onMbdul e. f 90. Also, the compiled modules
for each version (legacy and wrapped) are put in separate include directories: i ncl ude
for the legacy code, and i ncl ude_w for the wrapped version. While the smple applica
tion example (in si npl eApp/ Mai n. f 90) uses only the legacy codes, thei ncl ude_w
directory and thel i b/ | i bW appedLegacyl nt egr at or . a are used in the compila
tion of the Midpoint integrator component that you will write in the steps that follow.

4.3. Implementing the | nt egr at ors. M dpoi nt
component

Theintegrator.|ntegratorPort definition

The file student-src/ports/sidl/integrator.sidl aready contains the i nt egrat -

or.

I nt egr at or Port SIDL declaration:

package integrator version 1.0 {

}

interface IntegratorPort extends gov.cca. Port

doubl e integrate(in double | owBound, in doubl e upBound,
inint count);

Thei ntegrator. | ntegratorPort SIDL interface extendsthegov. cca. Port interface, which
does not have any methods. Thus, the only method in thei nt egrat or. I nt egrat or Port isi n-
t egr at e, which takes several arguments that determine the region of integration and the number of
points at which the function is evaluated.

4.4. Sl

DL definition of the Midpoint component

40

Creating a Component from an Existing Lib-
rary

We will write a SIDL-based component that implements the port defined in previous steps and calls
thei nt egr at e_np method implemented in the legacy code described in Section 4.1, “The leg-
acy Fortran integrator” to integrate a function, using function components that implement the
function. Functi onPort port described in The integrator.IntegratorPort definition.

Edit the file, st udent - src/ conponent s/ si dl /i ntegrators. sidl to define the class
for the new integrator component, i nt egr at or s. M dpoi nt :

package integrators version 1.0 {

/1 The follow ng conponents inplement all nethods of the

/1 integrator.|IntegratorPort and gov.cca. Conponent interfaces.

/1l Since they use the SIDL 'inplenents-all' keyword, the

/1 methods do not need to (but optionally can) be listed explicitly.

class Mdpoint inplenents-all integrator.|ntegratorPort,
gov. cca. Conponent

{

}

class MonteCarlo inplenents-all integrator.|ntegratorPort,
gov. cca. Conmponent
gov. cca. Conponent Rel ease

{

/1 integrator.|ntegratorPort nethods:
doubl e integrate(in double | owBound, in double upBound,
inint count);

/1 gov. cca. Conponent net hods:
voi d set Services(in gov.cca. Services services)
t hrows gov. cca. CCAExcepti on;

/'l gov. cca. Conponent Rel ease net hods:
voi d rel easeServices(in gov.cca. Servi ces services)
t hrows gov. cca. CCAExcepti on;

Note that the M dpoi nt class, unlike the MonteCarl o class does not implement the
gov. cca. Conmponent Rel ease interface, which is optional.

Edit the file st udent - src/ conponent s/ Makel ncl . conponent s to add a new compon-
ent description in the COMPONENTS variable, which contains the list of components in this dir-
ectory. Each value consists of the fully-qualified name of the component (including packages), to
which we append "-language”, where language is one of ¢, c++, or f90. In this case, the name is
i ntegrators. M dpoi nt, and the language is f90, so you need to add i nt egr at -
ors. M dpoi nt - f 90. The updated value of COMPONENTS should look like something like
this:

COMPONENTS = functions. Pi Function-c++ \
i ntegrators. MonteCarl o-f90 randongens. RandNuntener at or - c++ \
drivers. F90Driver-f90 drivers. CXXDriver-c++ \
i ntegrators. M dpoint-f90

Note the backslash (“\ ") that has to be added in order to extend the entry to the next line.

In the st udent - src/ conponent s directory, run make . repository. Thiswill generate
the XML representation of the i nt egrat or. M dpoi nt SIDL class and store it in the st u-

41

Creating a Component from an Existing Lib-
rary

dent - src/ xm _reposi tory directory.

4. Inthest udent-src/ conponent s directory, runnake .integrators. M dpoint-f90.
Thiswill generate Fortran 90 server code for thei nt egr at or s. M dpoi nt component class.

4.5. Fortran 90 implementation of the Midpoint
Integrator

4.5.1. The M dpoi nt module implementation

e After the Fortran 90 <code has been generated by Babel, in student-
src/ conponent s/ i nt egr at or s/ f 90, edit the Fortran module definition to define data that
will be stored in each instance of this component:

file: student-src/conmponents/integrators/f90/integrators_M dpoi nt_Md. FOO
#i ncl ude"i nt egrat ors_M dpoi nt _f Abbrev. h"
nodul e integrators_M dpoint _i npl

I DO NOT- DELETE splicer. begi n(i ntegrators. M dpoi nt. use)
! Insert use statenents here...

' CCA framework services nodul e
use gov_cca_Services

I Use a "wapper"” nodule for the | egacy Functi onModul e nodul e
use Functi onhModul e (1]

! Use | egacy Integrator nodule
use I ntegrator E

I DO NOT- DELETE splicer.end(integrators. M dpoint. use)

type integrators_M dpoint_priv
sequence
I DO NOT- DELETE spli cer. begi n(i ntegrators. M dpoint. private_data)

! Handl e to franmework Services object
type(gov_cca_Services_t) :: frameworkServices E’

I Function paranmeters (required by |egacy integrator)
type(FunctionParans_t) :: funcParans ﬂ

I DO NOT- DELETE splicer.end(integrators. M dpoint. private_data)
end type integrators_Mdpoint_priv

type integrators_M dpoint_wap

sequence

type(integrators_Mdpoint_priv), pointer :: d_private_data
end type integrators_M dpoint_wap

end nodul e integrators_M dpoi nt _i npl

42

Creating a Component from an Existing Lib-
rary

Noteson thei nt egrat ors_M dpoi nt _Mbd. F90 file

ﬂ Thei nt egrat ors_M dpoi nt module uses the FunctionModule, which means that the in-
tegrator can only evaluate functions defined in this FunctionModule, or other Fortran modules
that "extend" it.

E’ This component stores a handle to the framework's Services object, equivalently to the way
the Driver component was implemented in Step 2.

Thelegacy | nt egr at or module isincluded.

8 Thei ntegrators. M dpoi nt component, like the legacy integrator (see Integrator.f90)
requires that the function whose integral is to be computed provides its state via the Function-
Params _t type.

4.5.2. Defining the constructor and destructor

* Inthe same directory (st udent - sr ¢/ conponent s/ i nt egr at or s/ f 90), edit thei nt eg-
rators_M dpoi nt _| npl . F90 and insert the code between splicer blocks of thei nt egr at -
ors_Mdpoint__ctor_m, integrators_M dpoint__dtor_m, and set Servi ces
subroutines:

file: student-src/conmponents/integrators/f90/integrators_M dpoint_Inpl.F90

! Class constructor called when the class is created.
|

recursive subroutine integrators_Mdpoint__ctor_m (self)
use integrators_M dpoint
use integrators_M dpoint_inpl
I DO NOT- DELETE spli cer. begi n(integrators. M dpoint._ctor. use)
I Insert use statenents here. ..
I DO NOT- DELETE splicer.end(integrators. M dpoint._ctor. use)
inmplicit none
type(integrators_Mdpoint _t) :: self ! in

I DO NOT- DELETE spli cer. begi n(integrators. M dpoint. _ctor)
! Insert the inplenentation here...

I Access private data
type(integrators_Mdpoint_wap) :: dp

I Allocate nmenory and initialize

al | ocat e(dp%d_private_dat a)

call set_null (dp%_private_dat a% r anewor kSer vi ces)
call integrators_M dpoint__set_data_m(self, dp)

I DO NOT- DELETE splicer.end(integrators. M dpoint. _ctor)
end subroutine integrators Mdpoint_ctor_m

! Class destructor called when the class is del eted.
!

43

Creating a Component from an Existing Lib-
rary

recursive subroutine integrators_Mdpoint__dtor_m (self)
use integrators_M dpoint
use integrators_M dpoint_inpl
I DO NOT- DELETE spli cer. begin(integrators. M dpoint._dtor. use)
I Insert use statenents here. ..
I DO NOT- DELETE splicer.end(integrators. M dpoint._dtor. use)
inmplicit none
type(integrators_Mdpoint _t) :: self ! in

! DO NOT- DELETE splicer. begi n(integrators. M dpoint. _dtor)
! Insert the inplenentation here...

I Access private data and deal | ocate storage
type(integrators_M dpoint_wap) :: dp
call integrators_M dpoint__get_data n(self dp)

! Decrenent reference count for framework services handl e
if (not_null (dp%d_private_dat a% r amewor kServi ces)) then

call del eteRef (dp%d_pri vat e_dat a% r amewor kSer vi ces)
end if

deal | ocat e(dp%l_private_dat a)

!' DO NOT- DELETE splicer.end(integrators. M dpoint. _dtor)
end subroutine integrators Mdpoint__dtor_m

4.5.3. The set Servi ces implementation

e In this step we continue to edit the st udent -
src/ conponents/integrators/f90/integrators_M dpoint_|npl.F90 file,
adding the implementation of the set Services subroutine, which is part of the
gov. cca. Conponent . Notethat in order to accommodate identifier length restriction in Fortran
(31 characters), the name of the subroutine was automatically shortened by Babel. The unmangled
name is always visible in the comment preceding the subroutine in the Fortran generated code.

recursive subroutine M dpoi_setServices6_nbhtawdm ni (sel f, services,
exception)
use sidl _Baselnterface
use integrators_M dpoint
use gov_cca_Services
use gov_cca_CCAException
use integrators_M dpoint _i npl
I DO NOT- DELETE spl i cer. begi n(integrators. M dpoi nt. set Servi ces. use)
I Insert use statenents here. ..

use gov_cca_TypeMap
use gov_cca_Port
use SIDL_Basel nterface

I DO NOT- DELETE splicer.end(integrators. M dpoint. set Services. use)
inmplicit none

type(integrators_Mdpoint t) :: self ! in
type(gov_cca_Services_t) :: services ! in
type(sidl _Baselnterface t) :: exception ! out

44

Creating a Component from an Existing Lib-
rary

I DO NOT- DELETE spl i cer. begi n(i ntegrators. M dpoi nt. set Servi ces)
I Insert the inplenentation here...

type(gov_cca_TypeMap_t) ©1 nmyTypeMap
type(gov_cca_Port _t) :: integratorPort
type(SIDL_Baselnterface t) :: excpt

I Access private data
type(integrators_Mdpoint_wap) :: dp
call integrators_Mdpoint_get data n(self, dp)

I Set nmy reference to the services handl e
dp%l_privat e_dat a% r amewor kServi ces = servi ces

call addRef (services)

I Create a TypeMap with my properties
call createTypeMap(dp%l_private_dat a% r anewor kServi ces, nyTypeMap, excpt)
call checkExcepti onM d(excpt, 'setServices createTypeMap call')

call cast(self, integratorPort)

| Regi ster ny provides port

call addProvi desPort (dp%l_privat e_dat a% r anewor kServi ces, integratorPort, &
"IntegratorPort', 'integrator.IntegratorPort', &
myTypeMap, excpt)

call checkExceptionM d(excpt, 'setServices addProvidesPort: |ntegratorPort')

I The ports | use

call registerUsesPort (dp%l_private_dat a% r amewor kServi ces, &
"FunctionPort', 'function.FunctionPort', &
myTypeMap, excpt)

call checkExceptionM d(excpt, 'setServices registerUsesPort: FunctionPort')

cal |l del et eRef (nyTypeMap)

I DO NOT- DELETE splicer.end(integrators. M dpoint. set Servi ces)
end subroutine M dpoi_set Servi ces6_nBht awdm mi

4.5.4. The i nt egr at e implementation

1. Continuing your editsinthei nt egrat ors_M dpoi nt _I npl . F9O file, fill in the implementa-
tion of thei nt egrat or. | nt egr at or Por t interface component, inserting the call to the leg-
acy integrator inthei nt egr at e method.

file: student-src/conponents/integrators/f90/integrators_M dpoint_Inpl.F90
recursive subroutine M dpoint_integrateekg4dnéwgha_m (sel f, | owBound, upBound,
count, retval)
use integrators_M dpoint
use integrators_M dpoint _inpl
I DO NOT- DELETE spli cer. begi n(i ntegrators. M dpoint.integrate. use)
I Insert use statenents here...

use function_Functi onPort
use randongen_RandonCener at or Port
use gov_cca_Services

45

Creating a Component from an Existing Lib-

rary
use gov_cca_Port

use sidl _Baselnterface

use | ntegrator I Legacy integrator nodul e

use FunctionMdul e I Legacy function nodul e wapper

I DO NOT- DELETE splicer.end(integrators. M dpoint.integrate.use)
implicit none

type(integrators_Mdpoint t) :: self ! in

real (selected real kind(15, 307)) :: lowBound ! in
real (selected real kind(15, 307)) :: upBound ! in

i nteger (selected_int_kind(9)) :: count ! in

real (selected real kind(15, 307)) :: retval ! out

DO NOT- DELETE splicer. begi n(integrators. M dpoint.integrate)
Insert the inplenentation here..

type(gov_cca_Port _t) :: general Port
type(function_FunctionPort t) :: functionPort
type(randongen_RandomCeneratorPort _t) :: randonPort
type(SIDL_Baselnterface t) :: excpt

| Legacy types and wrappers:
type(FunctionParans_t) :: funParans

I Private data reference

type(integrators_M dpoint_wap) :: dp

I Copies of base type argunents to the integrate method
real :: Ibnd, ubnd

integer :: cnt

real (selected real kind(15, 307)) :: sum wdth, x, func
i nteger (selected_int_kind(9)) :: i

I Access private data

call integrators_Mdpoint_get data n(self, dp)

retval = -1

if (not_null (dp%d_private_dat a% r amewor kServi ces)) then
I Cbtain a handle to a FunctionPort
call getPort(dp%l_privat e_dat a% r amewor kServi ces, &

"FunctionPort’', general Port, excpt)

if (is_null(excpt)) then

call cast(general Port, functionPort)
if (not_null(functionPort)) then

I Set the function port in the Functi onMbdul e w apper
call setFunctionPort (funParans, functionPort)

I Invoke | egacy integrator algorithmto conpute integra

| bnd = | owBound

ubnd = upBound

cnt = count

retval = integrate_np(funParans, |bnd, ubnd, cnt)
el se I functionPort is nul

wite(*,*) 'Exception: Mdpoint: inconpatible FunctionPort
endi f

46

Creating a Component from an Existing Lib-
rary

! Free ports

call releasePort (dp%d_private_dat a% r anewor kSer vi ces, &
"FunctionPort’, excpt)

call checkExceptionM d(excpt, 'releasePort(''FunctionPort'')")

else | excpt is not null

call checkExceptionM d(excpt, 'getPort(''FunctionPort'')")

endi f
el se I frameworkServices is null

wite(*,*) "Error: Mdpoint: integrate called before setServices'
endi f

I DO NOT- DELETE splicer.end(integrators. M dpoint.integrate)
end subroutine M dpoint_integrat eekgdnéwgha_mi

2. Findly, in the i ntegrators_M dpoi nt _I npl . F90 file, find the very last splicer block
(labeled _mi scel | aneous_code_end) and add the following helper subroutine:

ile: student-src/conponents/integrators/f90/integrators_M dpoint_Inpl.F90

f
I
I Small routine (not part of the SIDL interface) for
I checking the exception and printing the nessage passed as
I and argunent
I
subrouti ne checkExcepti onM d(excpt, nsQ)
use SIDL Baselnterface
use gov_cca_CCAExcepti on
inmplicit none
type(sidl _Baselnterface t), intent(inout) :: excpt
character (len=*) :: nmsg ! in
if (not_null (excpt)) then
wite(*, *) 'integrators. M dpoint Exception: ', nsg
call del et eRef (excpt)
end if
end subroutine checkExceptionMd

4.6. Building the Fortran 90 implementation of
thei ntegrat ors. M dpoi nt component.

1. Inthestudent-src/conponents/integrators/f90 directory, edit the user-defined set-
tingsin Makel ncl . user fileto specify the include paths and library location of the legacy integ-

rator library.

file: student-src/conponents/integrators/f9o0/ Makel ncl . user

Include path directives, including paths to Fortran nodul es
I

NCLUDES = \
$(CCASPEC_BABEL_F90MFLAG) $(COVPONENT _TOP_DIR) /. . /| egacy/ f 90/ i ncl ude_w

Library paths and nanes
LIBS =\

47

Creating a Component from an Existing Lib-
rary

-LS(COVPONENT_TOP_DIR)/../l egacy/f90/1ib -1 WappedLegacyl nt egr at or

Note that the | NCLUDES variable is used by the Fortran compiler to locate compiled module in-
formation; since the flag used to specify the search path for modules is not the same in al com-
pilers, we use the variable CCASPEC_BABEL_F90MFLAG, which was set during the configuration
and installation of Babel and CCA tools. The COMPONENT_TOP_DI Rvariable is set automatically
when the component's Makefile is generated from the student-
src/ conponent s/ Makefil e_t enpl at e. ser ver makefile template.

Also note that the library specified in the definition of the LI BS variable is not the original legacy
library, which contained the original definition of Funct i oniMbdul e and FunctionParams_t. The
only difference between the legacy library and | i bW appedLegacyl nt egr at or . a isthat the
origina Funct i onMbdul e has been replaced with a new definition of Functi onModul e in
Functi onMbdul eW apper . f 90 as described in Section 4.2, “ The FunctionM odul e wrapper.”.

Inst udent - src/ conponent s/ i nt egrat or s/ f 90, run make. Thiswill build the dynamic
component libraries and generate the * . cca files needed to load these libraries and instantiate the
components in the Ccaffeine framework. After a successful build, you should be able to see the
| i bi ntegratorsM dpoint-f90.so0o and |ibintegratorsM dpoint-f90.so.cca
filesinthest udent - src/ conponent s/ | i b directory.

- Note

In this step, the makefile automatically generated the . cca file needed by the Ccaf-
feine and Babel runtime systems to identify and locate babel components. This file
can also be generated manually by executing the following command in the directory
student - src/ conponent s/ lib:

$CCA/ bi n/ genSCLCCA. sh cca \

“pwd’ /i bi ntegratorsM dpoint-f90.so integrators. Mdpoint \
i nt egratorsM dpoi nt dynanic private now > integrators. M dpoint.cca

4.7. Using your new I ntegrators. M dpoi nt

component

To see the new Midpoint integrator component in action, in student-src/components, run

ccafe-single --ccafe-rc exanples/task2_rc

Feel free to modify t ask2_r ¢ to assemble applications with different components. The beginning of
the r c file loads the palette with all of the available components and creates an instance of each. See
Chapter 2, Assembling and Running a CCA Application for further information and ideas for other
“applications’ you can construct.

The output should look something like this:

(3587) CndLinedientMain.cxx: MPlI _Init not called in ccafe-single node.
(3587) CmdLi ned ientMin.cxx: Try running with ccafe-single --ccafe-nmpi yes , or
(3587) OmdLi nedientMiin.cxx: try setenv CCAFE_ USE MPI 1 to force MPI _Init.

(3587) ny rank:

-1, ny pid: 3587

ny rank: -1, my pid: 3587

48

Creating a Component from an Existing Lib-
rary

ny rank: -1, my pid: 3587
CCAFFEI NE configured w th babel
ny rank: -1, my pid: 3587
Type: One Processor Interactive

cca>
CndCont ext CCAMPI : : i ni t RC: Found task2 rc.

cca># There are allegedly 8 classes in the conmponent path

cca>
cca>Loaded drivers.CXXDriver NON GLOBAL .

cca>Loaded functions. Pi Functi on NOW GLOBAL .
cca>Loaded integrators. M dpoi nt NON GLOBAL .

cca>
cca>driver of type drivers.CXXDriver
successfully instantiated

cca>pi func of type functions. Pi Function
successfully instantiated

cca>m dpoi nt of type integrators. M dpoint
successfully instantiated

cca>
cca>driver))))IntegratorPort---->lIntegratorPort((((m dpoint
connection made successfully

cca>m dpoint)))) FunctionPort---->FunctionPort ((((pifunc
connection made successfully

cca>
cca>Val ue = 3. 141553
##speci fic go conmand successf ul

cca>
cca>
bye!
exit

49

Chapter 5. Creating a New Component
from Scratch

$Revision: 1.13 $
$Date: 2004/08/26 15:17:54 $

In this exercise, you will put together what you've learned in the previous tasks to create a complete
component from scratch. We will add to the list of f unct i on components by creating one that returns
the cube of the argument. The new component class will be named f unct i ons. CubeFuncti on,
and it will implement the f uncti on. Funct i onPort interface, just as the other function compon-
ents do. The following procedures will guide you through writing the component in C++, though very
little would change for if you wanted to implement it in another Babel-supported language.

5.1. SIDL Component Class Specification

In this step, we will define the f uncti on. CubeFuncti on SIDL class and build its xml repository
representation

1. Edit the file st udent - sr ¢/ conponent s/ si dl / functi ons. si dl , and add the definition
of the class CubeFunct i on to the packagef unct i ons

package functions version 1.0 {

cl ass LinearFunction inplenents function. Functi onPort,
gov. cca. Conponent
{

// function. FunctionPort nethods:
doubl e eval uate(in double x);

/'l gov. cca. Conponent net hods:
voi d set Services(in gov.cca. Servi ces servicesHandl e) throws gov. cca. CCAEXcCEe

sone definitions skipped ...

class Pi Function inplenents-all function. FunctionPort,
gov. cca. Conponent
{

cl ass CubeFunction inplenments-all function. FunctionPort,
gov. cca. Conponent
{

}

2. Edit the file st udent - sr ¢/ conponent s/ Makel ncl . conponent s to add a nhew compon-
ent description in the COMPONENTS variable, which contains the list of components in this dir-
ectory. Each value consists of the fully-qualified name of the component (including packages), to
which we append "-language”, where language is one of ¢, c++, or f90. In this case, the name is
functions.CubeFunction, and the language is c++. The updated value of COMPONENTS should
look like this:

50

Creating a New Component from Scratch

COVPONENTS = functions. Pi Function-c++ \
i ntegrators. MonteCarl o-f90 randongens. RandNumGener at or - c++ \
drivers. CXXDriver-c++ integrators. M dpoint-f90 \
functions. CubeFuncti on-c++

Note the backslash (“\ ") that has to be added in order to extend the entry to the next line.

3. In the student-src/conponents directory, run make .repository. This will re-
generate the XML representation of the SIDL component class definitions (including the newly ad-
ded class CubeFunct i on and storethem in the st udent - src/ xml _r eposi t or y directory.

The output from this step should ook something like this:

touch . sidl

Cenerate XML for SIDL packages contai ni ng conponent decl arations

babel -t xm -R ./xm repository -R san/shared/cca/tutorial/share/cca-spec-babe
Babel : Parsing URL "file:/.autonmount/whal e/ root/san/r1a0l 0/ el wasi f w handson/ cor
Babel : Warning: Synmbol exists in XM repository: drivers. F90Driver-v1.0

Babel : WArning: Synbol exists in XM. repository: drivers.CXXDriver-vl1.0

Babel : Parsing URL "file:/.autonount/whal e/ root/san/r1a0l 0/ el wasi f w handson/ cor
Babel : Warning: Synbol exists in XM repository: functions.LinearFunction-v1.0
Babel : Warning: Synbol exists in XM repository: functions. NonlinearFunction-vl
Babel : Warning: Synbol exists in XM. repository: functions.Pi Function-v1.0
Babel : Parsing URL "file:/.autonount/whal e/ root/san/r1a0l 0/ el wasi f w handson/ cor
Babel : WaArning: Synbol exists in XM. repository: integrators.MnteCarlo-v1.0
Babel : Warning: Synbol exists in XM repository: integrators. M dpoint-v1.0
Babel : Warning: Synbol exists in XML repository: integrators.ParallelMd-v1.0
Babel : Parsing URL "file:/.autonmount/whal e/ root/san/r1a0l 0/ el wasi f w handson/ cor
Babel : WArning: Synbol exists in XM repository: randongens. RandNunCener at or - v1
touch .repository

5.2. Generating Babel Server Code for the New
Component

e In the st udent - src/ conponent s directory run make
. functi ons. CubeFunct i on- c++ to generate the C++ server-side binding for the component
classf uncti ons. CubeFunct i on. The output from this step should look something like this:

Cenerate a C++ inplenmentation for the CubeFunction conponent

babel -s c++ -R ./xm _repository -R hone/ el wasi f/ CCA/ cca- spec-babel -cvs/ share/c
-g -u -E -1 -m"functions. CubeFunction." --suppress-tinestanp functions. CubeFur
Babel : Resol ved synbol "functions. CubeFunction”. ..

touch .functions. CubeFunction

Upon completion of this step, the directory st udent - src/ conponent s/ functi ons/ c++
should contain two additional files, functi ons_CubeFunction_Inpl.cc and func-
ti ons_CubeFuncti on_I npl . hh which will be edited to provide the implementation of the
newly defined component.

51

Creating a New Component from Scratch

5.3. Implementing the New Component

1. Edit the file functions_CubeFunction_Inpl.hh in the directory student -
src/ conponent s/ functions/c++. You will need to add the declaration for the
gov: : cca: : Servi ces object tothe pri vat e object state. This will be done inside the Babel
splicer block f uncti ons. CubeFuncti on. _i npl enent ati on. We will cal this variable
my Ser vi ces. Upon completion, this splicer block should look like this:

/1 DO NOT- DELETE splicer. begi n(functi ons. CubeFuncti on. _i npl enent ati on)
/1 Put additional Inplenentation details here...

gov: :cca:: Services nmySer vi ces;

/1 DO NOT- DELETE splicer.end(functions. CubeFuncti on. _i npl enent ati on)

2. Edit the file functions_CubeFunction_Inpl.cc in the directory student-
src/ conponent s/ functi ons/ c++ to provide the implementation details. First, you'll need
to edit the body of the set Servi ces method (between the Babel splicer blocks f unc-
tions. CubeFuncti on. set Servi ces). Upon completion, this part of the file should look
likethis:

"]/ DO NOT- DELETE splicer. begi n(functi ons. CubeFuncti on. set Servi ces)
/1 insert inplenentation here

myServi ces = services;
gov::cca:: TypeMap tm = services. creat eTypeMap();
if(tm_is_nil())
fprintf(stderr, "Error:: 9%:%l: gov::cca::TypeMap is nil\n",
__FILE_, __LINE_);
exit(1);
}
gov::cca::Port p = self; /1 Babel required casting
if(p. _is_nil()) {
fprintf(stderr, "Error:: 9%:%l: Error casting self to gov::cca::Port \n"
__FILE _, __LINE);
exit(1);

servi ces. addPr ovi desPort (p,
"FunctionPort",
"function. FunctionPort", tm;

gov::cca:: Component Rel ease cr = self; // Babel required casting
services. regi sterForRel ease(cr);
return,;

/1 DO NOT- DELETE splicer.end(functions. CubeFuncti on. set Servi ces)

3. Next you will need to edit the implementation for the method eval uat e inside the Babel splicer
block functi ons. CubeFuncti on. eval uat e. After adding the implementation for this
method, the body should look like this

52

Creating a New Component from Scratch

/1 DO NOT- DELETE splicer. begi n(functions. CubeFuncti on. eval uat e)
/1 insert inplenmentation here

return x*x*x;

/ DO NOT- DELETE splicer. end(functions. CubeFuncti on. eval uat e)

/

4. To build the newly written component into a usable library, type make in the directory st udent -
src/ conponent s/ functi ons/ c++. This will compile, link, and install the new component
into alibrary that isinstalled in the directory st udent - src/ conponent s/ | i b.

Note

In this step, the makefile automatically generated the . cca file needed by the Ccaf-
feine and Babel runtime systems to identify and locate babel components. This file
can also be generated manually by executing the following command in the directory
student - src/ conponent s/ 1ib:

o=

$CCA/ bi n/ genSCLCCA. sh cca \
“pwd’/ I'i bf uncti onsCubeFunction-c++.so functions. CubeFunction \
cubeFunction dynanic private now > functions. CubeFuncti on. cca

5.4. Using Your New Component

1. Changedirectoriesto st udent - src/ conponent s/ exanpl es and editt ask3_rc. Thisfile
will assemble and run an application using al of the new components you've created. However it
includes lines for both versions of the driver component, and probably you've only implemented
one. So you will need to comment out al of the lines which refer to the driver component you did
not implement.

2. Run the script with ccaf e-single --ccafe-rc task3_rc. It should run without errors
and giveyou aresult of Val ue = 0. 250010.

3. Fed freeto modify t ask3_r c to assemble applications with different components. The beginning
of ther c file loads the palette with all of the available components and creates an instance of each.
See Chapter 2, Assembling and Running a CCA Application for further information and ideas for
other “applications’ you can construct.

53

Appendix A. Installing the CCA
Environment and Tutorial Source Code

A.l.

$Revision: 1.4 $
$Date: 2004/08/26 16:11:29 $

There are two different tar balls that you will have to install to get the tutorial code to work on your own
machine:

» The CCA tool chain. This source tree contains all of the tools developed under the CCA and is
needed by the tutorial source to build and run components. You can download the source
[http://cca-forum.org/download/cca-tool s/ccartools-0.5.4 _rcl.tar.gz] from the net.

* Thetutorial source code. The source for this tutorial must be built against the CCA tool chain. You
should be careful to rebuild the tutorial code every time you change the build for the tool chain. You
can download the latest source [http://cca-forum.org/download/tutorial/tutorial-src-0.1.0_rcl.tar.gz]
from the net. Y ou should be careful to get the latest versions of both (or just use the two url's above)
to make sure you have compatible versions.

Building the CCA Tool Chain

The build requirements vary from platform to platform, but here we will stick with x86 Linux. The re-
quirements for this environment are:

* gcc>=32
o Java Software Development Kit >= 1.4

* Gnome XML C Parser (libxml2) -- most recent Linux distro's already have it, regardless of whether
Gnomeisinstalled.

e GNU autobuild tools: anything recent.

* A connection to the internet.

Untar the cca-build tools tar ball someplace that is convenient to build. READ the README for up to
the minute information.

There are a panopoly of options to choose from here. First are the language choices. C,C++,F77 only,
F90/95, Python (version 2.2 or better must be present), Java (version 1.4 or better). Much of what dic-
tates the language support is the information given to the configure script. C,C++, and Java are pretty
much automatic, and if the appropriate version is present, Python will be automatic as well. Fortran
90/95 is a different story. Because there are no non-proprietary versions and because the Fortran 90/95
standards eschew language interoperability (even between different F90/95 compilers), special instruc-
tions will need to be given to the configure script. There is also a "failsafe" mode that can be used that
will hopefully give you the tools just enabled for C,C++, Java and, if present, Python. Just type:

$ cd ./cca-tool s- XXXX
$./configure --with-1localsrc

http://cca-forum.org/download/cca-tools/cca-tools-0.5.4_rc1.tar.gz
http://cca-forum.org/download/tutorial/tutorial-src-0.1.0_rc1.tar.gz

A.2.

Installing the CCA Environment and Tutorial
Source Code

If you desire to configure Fortran90/95 support you must identify your compiler and the absolute path to
the compiler executable. This is done with two options to configure: --with-F90-vendor=VENDOR
(for the brand of compiler) and --with-F90=/full/path/to/compiler (for the absolute path). The possible
vendor options given to --with-F90-vendor = are:

» Absoft (Absoft)

* Alpha(Hp Compaq Fortran)

e Cray (Cray Fortran)

« IBMXL (IBM XL Fortran)

e Intel (Intel v8)

o Intd7 (Intel v7)

* Lahey (Lahey)

« NAG (NAG)

e MIPSpro (SGI MIPS Pro)

* SUNWSspro (SUN Solaris)

An example using the Intel (version 8) compiler:

$ configure --with-F90-vendor=Intel --w th-F90=/opt/intel _fc_80/bin/ifort

Generally the configure script will find MPI if it isinstalled in a reasonable place. Currently only MPIch
is supported automatically. LAM is supported with special options. If MPI is getting in the way use -
-with-mpi=no. If the configure script is finding the wrong MPI use --with-mpi=/wherever/mpichfis.

Now that the CCA tool chain is configured make sure that java,javac, etc. are in your path, and, if you
configured for it, make sure the Fortran90 compiler isin your path. Now type:

$ nmake

and everything should build. In the exceedingly rare case (:-)) that it doesn't, contact someone of author-
ity [mailto:tutorial-wg@cca-forum.org]. There is no need to type nmake i nstal | everything will in-
gtal in. / cca-t ool s- XXXXX/ | ocal .

Building the Tutorial Source

One further thing to do to get the tutorial source to build isto place the absolute path of the tool chain in-
stall above. Then again just typecd ./ cca-tutori al - src- XXXX and nake and make check
to test the build.

55

mailto:tutorial-wg@cca-forum.org
mailto:tutorial-wg@cca-forum.org

	A Hands-On Guide to the Common Component Architecture
	Table of Contents
	Preface
	1. Help us Improve this Guide
	2. Typographic Conventions
	3. Acknowledgments

	Chapter 1. Introduction
	1.1. The CCA Software Environment
	1.2. The Execution Environment
	1.3. Preparing to do the Exercises

	Chapter 2. Assembling and Running a CCA Application
	2.1. A CCA Application in Detail
	2.2. Running Ccaffeine Using an rc File
	2.3. Using the GUI Front-End to Ccaffeine

	Chapter 3. Sewing CCA Components into an Application: the Driver Component
	3.1. The SIDL Definition of the Driver Component
	3.2. Implementation of the CXXDriver in C++
	3.2.1. The setServices Implementation
	3.2.2. The go Implementation

	3.3. Implementation of the F90Driver in Fortran 90
	3.3.1. The setServices Implementation
	3.3.2. Implementing the Constructor and Destructor
	3.3.3. The go Implementation

	3.4. SIDL and CCA Object Orientation in Fortran
	3.5. Using Your New Component

	Chapter 4. Creating a Component from an Existing Library
	4.1. The legacy Fortran integrator
	4.2. The FunctionModule wrapper.
	4.3. Implementing the integrators.Midpoint component
	4.4. SIDL definition of the Midpoint component
	4.5. Fortran 90 implementation of the Midpoint integrator
	4.5.1. The Midpoint module implementation
	4.5.2. Defining the constructor and destructor
	4.5.3. The setServices implementation
	4.5.4. The integrate implementation

	4.6. Building the Fortran 90 implementation of the integrators.Midpoint component.
	4.7. Using your new integrators.Midpoint component

	Chapter 5. Creating a New Component from Scratch
	5.1. SIDL Component Class Specification
	5.2. Generating Babel Server Code for the New Component
	5.3. Implementing the New Component
	5.4. Using Your New Component

	Appendix A. Installing the CCA Environment and Tutorial Source Code
	A.1. Building the CCA Tool Chain
	A.2. Building the Tutorial Source

