A Hands-On Guide to the Common
Component Architecture

The Common Component Architecture Forum Tutorial Working Group

A Hands-On Guide to the Common Component Architecture
by The Common Component Architecture Forum Tutorial Working Group

Published 2006-08-23 21:22:55-04:00 (time this instance was generated)
Copyright © 2006 The Common Component Architecture Forum

Licensing Information

This document is distributed under the Creative Commons Attribution 2.5 License. See Appendix E, License (Creative Commons
Attribution 2.5) or http://creativecommons.org/licenses/by/2.5/legal code for the compl ete license agreement.

In summary, you are free:

« to copy, distribute, display, and perform the work
* to make derivative works
* tomake commercia use of the work

Under the following conditions:

¢ Attribution. You must attribute the work in the manner specified by the author or licensor.
« For any reuse or distribution, you must make clear to others the license terms of thiswork.
« Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Requested Attribution. CCA Forum Tutorial Working Group, A Hands-On Guide to the Common Component Architecture, ver-
sion 0.4.1_rc1, 2006, http://www.cca-forum.org/tutorials/.

Or in BibTeX format:

@mnual {hog-cca: 0.4.1_rcl,
title = {A Hands-On CGuide to the Commopn Conponent Architecture},
author = {The Common Conponent Architecture Forum Tutori al

Wor ki ng Group},

edition = {0.4.1_rc1},
year = 2006,
note = {http://ww. cca-forumorg/tutorials/}

http://creativecommons.org/licenses/by/2.5/legalcode
http://www.cca-forum.org/tutorials/

Table of Contents

1= = o Vi
1. Help us ImprovethiSGUIAEcooouuiiiiiiiiecii e Vi
2. Finding the Latest Version of the CCA Hands-On EXErcisescocvvevveeiinevennennn. Vi
3. TypographiC CONMVENLIONSceuiiei e e e e e e e e e e e e eanes Vi
4. File and Directory Naming COnNVENLiONSccuuieiiiiiiiieeciieeci e e e eei e eaneeeees Vii
5. ACKNOWIEAGMENESeiiitiie e e e e e e e e e ees Vii
O 1 g oo [1 o o 1
1.1. The CCA Software ENVIFONMENTcouuiiiiiiiiieiii e 1
1.2.Whereto GO frOM HEI®oeeiie e 2
2. Assembling and Running a CCA APPlICaLIONvivniiiiiice e 4
2.1. A CCA Application iN DEalcccuiviiiiiiiii e e e 5
2.2. Running Ccaffeine Usinganr € Filecoiveiiiiiii e 12
2.3. Using the GUI Front-End to Ccaffeingoooeieiiiiiiiiiiiieiiii e 15
2.3.1. Running Ccaffeinewiththe GUIccooiiiiiiii e, 15
2.3.2. Assembling and Running an Application Using the GUIc..c.... 17
2.3.3. Notes on More Advanced Usage of the GUIccoeiiiiiiiiiiiiineen, 24
3. The Driver COMPONENTciueeiie it et et e e e e e e e e e e e e e e e e et e e et e e e e eaneeannns 25
3.1. The SIDL Definition of the Driver COMPONENtcvevvveiiiieieiieeeiieeeieeeieeeenn 25
3.2. Implementation of the CXXDr i ver iNCH+ ..o 29
3.2.1. Theset Servi ces Implementationcccoeeriiieiiiiieiiiiineeeeieeeenenn 30
3.22. The go IMplementationoeieuiiiiiiii e 33
3.3. Implementation of the FO0Dr i ver inFortran 90cccciveiiieiiiiiiieeeeeea, 34
3.3.1. Theset Servi ces Implementationc.cceveviiiiiiiiieiiiee e, 36
3.3.2. Implementing the Constructor and Destructorccoevvvviviviierinneennnn. 39
3.3.3. The go IMpPIEmMENtalionoviiiuiiiiiiiii e 41
3.4. SIDL and CCA Object Orientation in FOrtranccooevveeiiiiiiiiiiiineeieiineeeenenn 44
3.5.Using Your NeW COMPONENTcouuneiieeiteeei et e e e e e e ean e eees 45
4. Creating a Component from an Existing Libraryccoooiiiiiiiiiie e, 46
4.1. Thelegacy FOrtran inteQratorcc.uiveinieeiieei e e e e e e e e e e e e eees 46
4.2. The Funct i onModul € WIapPEr. ..ovvvniiiiiee e e e e 48
4.3. Thei ntegrat or. | ntegrat or Port Definitionccccooeviiiiiiiiiiinniiinnnnnn. 49
4.4. SIDL definition of the Midpoint COMPONENEcoeuviiieiiiiieeiiie e 49
4.5. Fortran 90 implementation of the Midpoint integratorc.coceeveiiiiieviieenneen. 51
45.1. The M dpoi nt moduleimplementationcccccoveiiieiiiiiiiiieceeceee, 51
4.5.2. Defining the constructor and destructorccoeveiveiiiieviin e 52
45.3. Theset Servi ces implementationc.cccvvviiiiii i 53
454. Thei nt egrat e implementationccoooeeuiiiiiiiinnci e, 54
4.6. Building the Fortran 90 implementation of thei nt egr at or s. M dpoi nt compon-
< 0| PP TP 56
4.7. Using your new i nt egrat ors. M dpoi nt componentccoevieiiieennn. 57
5. Creating a New Component from SCrafChcc.uveviiiiiiiiiiii e 59
5.1. SIDL Component Class SPeCifiCationcccuuvviuiiieiieeiiieiin e e ee e e e 59
5.2. Generating Babel Server Code for the New Componentcoovvvevviiiveeiinneeennnn. 60
5.3. Implementing the New COmMPONENToiiiiiiieiiiie e 61
5.4.Using Your NeW COMPONENTciuuiiieeiieeei e et e e e e e et a e e ean e aeees 62
6. Using TAU to Monitor the Performance of Componentsccoeeeveeieiiieiiiciiecieecieen, 63
6.1. Creating the Proxy COmMPONENtcouuiiiiiiieiieeie e e e e e e e e e e e e 63
6.2. USiNg the ProXy QENEIratorvveueeeieeei e e e e e e e e e e eees 65
6.3. Using the new proxy COMPONENTccuuuiiiiiiieeeiii et e e eeeans 65
7. Understanding arrays and COMPONENE SLAEEvvveveurieiiiiiieeeeii e 67
4% 1 110 o (8o (o] o KPR 67
7.2. The CDri ver COMPONENTcoouiiiiiie e e e e e e e e e e ees 68
7.2.1. USING SIDL RBW ATTAYS ..uucvviieiiiieeiieeeee e e e se e e e e e et e e et e e et e e eeannas 68

A Hands-On Guide to the CCA

7.2.2.UsiNg SIDL NOrMM@l AITAYS .vuueeiiieii e e e e e e e e 69

7.3. Linear Array Operations COMPONENESuuvveunieeiieeiieeieereeee e eee e eanaeeees 70

7.3.1. The CAr r ay Op COMPONENLvuniieiiieeeeiii ettt enens 70

7.3.2. The F77Ar r ayOp COMPONENTceevviiieiiiiieeeeeie et 71

7.3.3. The FOOAr r ayOp COMPONENEeeuniienieeii e e e e et e e e e eeenes 73

7.4. Assignment: NonLi near Op Component and DIriVercccovvveviiiiiiiiiineennnen, 74

8. Understanding objects and passing MOAESoeveuiiiiiiiiiiiieii e e e e e 77

8.1 TheUNIt HBrary ...coveieii e e e e e e 77

8.2. Exercises debugging the unitS librarycooooeeiiiiiiiiii e, 78

A. Remote Access for the CCA ENVIFONMENTcoouuiiiiiiiiieiei e e e 83

AL ComMMANAIINE ACCESS ...ceuneeteeet ettt e e e e e et a et e e e e eenaas 83

A.2. Graphical ACCESSUSING XL ...oiiiiiiiiiiii et 83

AL2.L OPENSSH ..o 83

y N . U | I PSP 83

A.3. Tunneling other Connectionsthrough SSH ..o, 84

A.3.L Tunneling With OPEnSSHccooiiiiiiiii e 84

A.3.2. Tunneling With PUTTY ..o 85

B. Building the CCA Tools and TAU, and Setting Up Y our Environmentcc..cceee. 86

B.1. TRHE CCA TOOIS ...ueiiiiiiee ettt ettt e e et e e e et e e e e et e e e eateneeeees 86

B.1.1. SysStem REQUITEMENESccvueeeeeieieeeieee e e et e e e e e e e e e e e e e e ean e eeees 86

B.1.2. Downloading and Building the CCA ToolsPackage...........ccccoovveieiinnenes 87

B.2. The CcaffeiNg@ GUIiiiiiii e e 88

B.2.1. System REQUITEIMENLSuiitieii e e e e ea e eees 88

B.2.2. Downloading and Setting Upthe GUIcciiiiiiiiiiiicee e 88

B.3. Downloading and InStalling TAUooiiiiiiiei e 88

B.4. Setting Up Your Login ENVIFONMENTuviiiiiiiiiiiii e eees e e e eeae e 89

C. Building the Tutorial and Student Code TrEEScveuvuriiiiiiie e 91

D. The Tutorial BUild SYSIEMuuiiiiiie e 93
E. License (Creative Commons AttribUtion 2.5)couuiiiiiiiiiiie e

Preface

$Revision: 1.17 $
$Date: 2005/09/22 21:39:58 $

The Common Component Architecture (CCA) is an environment for component-based software engin-
eering (CBSE) specifically designed to meet the needs of high-performance scientific computing. It has
been developed by members of the Common Component Architecture Forum
[http://www.cca-forum.org].

This document is intended to guide the reader through a series of increasingly complex tasks starting
from composing and running a simple scientific application using pre-installed CCA components and
tools, to writing (simple) components of your own. It was originaly designed and used to guide the
“hands-on” portion of the CCA tutorial, but we hope that it will be useful for self-study aswell.

We assume that you've had an introduction to the terminology and concepts of CBSE and the CCA in

particular. If not, we recommend you peruse a recent version of the CCA tutorial presentations
[http://www.cca-forum.org/tutorials/] before undertaking to complete the tasksin this Guide.

1. Help us Improve this Guide

If you find errorsin this document, or have trouble understanding any portion of it, please let us know so
that we can improve the next release. Email us at <t ut ori al -wg@-ca- f or um or g> with your
comments and questions.

2. Finding the Latest Version of the CCA
Hands-On Exercises

The hands-on exercises and this Guide are evolving and improving. We will maintain links to the cur-
rent releases of this Guide, the tutorid code, and accompanying tools at ht-
tp://www.cca-forum.org/tutorial s/#sources. If you want older versions or intermediate "release candid-
ates’, follow the links there to the parent download directoriesto see the full list of availablefiles.

3. Typographic Conventions

 This font isusedfor file and directory names.

» Thisfont isused for commands.

 This font isusedforinput the user is expected to enter.

e This font is used for “replaceable” text or variables. Replaceable text is text that describes
something you're supposed to type, likeaf i | enane, in which the word “filename” is a placehold-
er for the actual filename.

e The following fonts are used to denote various programming constructs: cl ass names (CCA
“components’), i nt erface nanes (CCA “ports’), and net hod nanes. Also vari abl e
names and envi ronnment vari abl es are marked up with special fonts.

* URLs [http://www.cca-forum.org/] are presented in square brackets after the name of the resource
they describein the print version of this Guide.

» Sometime we must break linesin computer output or program listings to fit the line widths available.

Vi

http://www.cca-forum.org
http://www.cca-forum.org/tutorials/
http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/

Preface

In these cases, the break will be marked by a“\ " character. In real computer output, you see a long
continuous line rather than a broken one. For program listings, unless otherwise indicated, you can
join up the broken lines. In shell commands, you can use the “\ ” and break the input over multiple

lines.

4. File and Directory Naming Conventions

Throughout this Guide, we refer to various files and directories, the precise location of which depends
on how and where things were built and installed. All such references will be based on afew key direct-
ory locations, which will be determined when you build and install the software (Appendix B, Building
the CCA Tools and TAU, and Setting Up Your Environment and Appendix C, Building the Tutorial and
Sudent Code Trees). Wherever appropriate, we will write these as environment variables, so that the
text in the Guide can simply be pasted into your shell session (assuming your login environment is setup
as suggested in Section B.4, “ Setting Up Y our Login Environment”).

. Warning

Note that tools such as the Ccaffeine framework do not expand environment variables. In
these cases, you'll need to type in the complete path, substituting the placeholder (i.e. “TU-
TORI AL_SRC") with the actua path.

If you're participating in an organized tutorial, you will be given information separately about the partic-
ular paths corresponding to these locations.

CCA_TOOLS_ROOT
($CCA_TOOLS_ROOT)

TAU_ROOT ($TAU_ROOT)
TAU_CMPT_ROOT
($TAU_CMPT_ROOT)
TUTORI AL_SRC
($TUTORI AL_SRC)

STUDENT_SRC
($STUDENT_SRC)

Theinstallation location of the CCA tools. (See Section B.1, “The
CCA Tools’.)

The installation location of the TAU Portable Profiling package.
(See Section B.3, “Downloading and Installing TAU”.)

The installation location of the TAU performance component.
(See Section B.3, “Downloading and Installing TAU".)

The location that thet ut ori al - src-version. tar. gz file
was unpacked and built. (See Appendix C, Building the Tutorial
and Student Code Trees.)

The location that the st udent - src-version.tar. gz file
was unpacked and built. (See Appendix C, Building the Tutorial
and Student Code Trees.)

5. Acknowledgments

There are quite a few people active in the Tutorial Working Group who have contributed to the general
development of the CCA tutorial and this Guide in particular:

People Benjamin A. Allan, Rob Armstrong, David E. Bernholdt (chair), Randy Bramley,
Tamara L. Dahlgren, Lori Freitag Diachin, Wael Elwasif, Tom Epperly, Madhusud-
han Govindargju, Ragib Hasan, Dan Katz, Jm Kohl, Gary Kumfert, Lois Curfman
Mclnnes, Alan Morris, Boyana Norris, Craig Rasmussen, Jaideep Ray, Sameer
Shende, Torsten Wilde, Shujia Zhou

Vii

Preface

Ingtitutions Argonne National Laboratory, Binghamton University - State University of New
York, Indiana University, Jet Propulsion Laboratory, Los Alamos National Laborat-
ory, Lawrence Livermore National Laboratory, NASA/Goddard, University of
Illinois, Oak Ridge National Laboratory, Sandia National Laboratories, University
of Oregon

Computer facilities for the hands-on exercises in this tutorial have been provided by the Computer Sci-
ence Department and University Information Technology Services of Indiana University, supported in
part by NSF Grants CDA-9601632 and EIA-0202048.

Finally, we must acknowledge the efforts of the numerous additional people who have worked very hard
to make the Common Component Architecture what it is today. Without them, we wouldn't have any-
thing to present tutorials about!

viii

Chapter 1. Introduction

$Revision: 1.24 $
$Date: 2005/09/22 21:39:58 $

In this Guide, we will take you step by step through a series of hands-on tasks with CCA componentsin
the CCA software environment. The initial set of exercises are based on an example that's intentionally
chosen to be very simple from a scientific viewpoint, numerical integration in one dimension, so that we
can focus on the issues of the component environment. It may look like overkill to have broken down
such asimple task into multiple components, but once you have a basic understanding of how to use and
create components, you should be able to extend the concepts to components that are scientifically inter-
esting to you and far more complex.

Starting with Chapter 6, Using TAU to Monitor the Performance of Components we have some more ad-
vanced examples, including a demonstration of the proxy component concept using the TAU perform-
ance monitoring toolkit, an illustration of using arraysin SIDL, and a discussion of some of the detailed
mechanics of argument passing in SIDL.

The exercises are laid out as follows:

* In Chapter 2, Assembling and Running a CCA Application, you will use pre-built components to as-
semble and run several different numerical integration applications.

* In Chapter 3, Sewing CCA Components into an Application: the Driver Component, you will con-
struct your own driver component. (Languages: C++ or F90)

e In Chapter 4, Creating a Component from an Existing Library, you will wrap up an existing For-
tran90 library as an integrator component. (Language: F90)

* In Chapter 5, Creating a New Component from Scratch, you will create a new function component
from scratch. (Languages. C++, C)

* In Chapter 6, Using TAU to Monitor the Performance of Components, you will use the TAU per-
formance observation tool [http://www.cs.uoregon.edu/research/paracomp/tau/tautools/] to automat-
ically instrument a component interface and monitor the performance of the application.

* In Chapter 7, Understanding arrays and component state, you will see examples of how to work
with arrays in a multi-language environment, including writing your own component. (Languages.
F77, F90, C)

* In Chapter 8, Understanding objects and passing modes, you will debug a simple unit conversion
library, illustrating use of objects and argument passing modesin SIDL. (Languages: Python, C++)

You are strongly advised to at least read and understand Chapter 2, Assembling and Running a CCA Ap-
plication before going on to later exercises. Chapter 3, Sewing CCA Components into an Application:
the Driver Component through Chapter 6, Using TAU to Monitor the Performance of Components build
on each other, though after completing Chapter 3, Sewing CCA Components into an Application: the
Driver Component, you will have a sufficient set of components to assemble a working integrator ap-
plication. Chapter 7, Understanding arrays and component state and Chapter 8, Understanding objects
and passing modes are independent of the earlier exercises and can be done separately.

In Chapter 2, Assembling and Running a CCA Application, you'll be working with a complete version of
the tutorial code tree. Then in Chapter 3, Sewing CCA Components into an Application: the Driver Com-
ponent and the subsequent exercises, you'll start from your own copy of a separate stripped-down
“student” version of the tutorial code tree and build up to the complete set of components as you work
through the exercises. In this way, the separate complete tutorial code tree can always serve as a refer-
ence if you run into problems. Of course if you're working through this Guide as part of an organized tu-
torial, there should be instructors around who can help you. And if you're working on your own, you can
email usfor help at <t ut ori al -wg@-ca- f or um or g>.

1.1. The CCA Software Environment

http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

Introduction

The CCA is, at its heart, just a specification. There are several realizations of the CCA as a software en-
vironment. In this Guide, we use the following tools to provide that software environment, which are
currently the most widely used for high-performance (as opposed to distributed) computing using the

CCA:

Ccaffeine A CCA framework which emphasizes local and paralel high-performance computing,
and currently the predominate CCA framework in real applications. For more informa-
tion, see http://www.cca-forum.org/ccafe/.

Babel A tool for language interoperability. It allows components written in different languages
to be connected together. The Scientific Interface Definition Language (SIDL) is associ-
ated with Babel. For more information, see ht-

tp://www.lInl.gov/CA SC/components/babel .html. Babel uses Chasm for Fortran 90 ar-
ray support. For more information, see http://chasm-interop.sourceforge.net
[http://chasm-interop.sourceforge.net;].

Many of the commands you will type are specific to the fact that you're using these tools as your CCA
software environment. But the components you will use and create are independent of the particular
tools being used.

1.2. Where to Go from Here

Before starting the exercises, you'll need to do alittle bit of work to set things up. Depending on whether
you're working through the Guide on your own or participating in an organized tutorial, this may include
getting logged in to a remote system, preparing the CCA environment, and building the tutorial code
needed for Chapter 2, Assembling and Running a CCA Application.

1. Getting Connected

a. Organized Tutorial Participant

If you're participating in an organized tutorial, you'll probably be using a remote system that's
aready setup with nearly al of the software you need. You'll be given details for your ac-
count, your machine assignment, etc. by the tutorial instructors. That info, together with the
notes in Appendix A, Remote Access for the CCA Environment should give you sufficient in-
formation to get logged in to the remote machine. If you have any problems, ask the tutorial
instructors.

b. Sdf-Study User

If you're working through the Guide on your own, you may choose to work locally or re-
motely, depending on the resources you have available. If you're working remotely, you may
want to refer to the notes on using the CCA tools remotely in Appendix A, Remote Access for
the CCA Environment.

2. Preparingthe CCA Environment

a. Organized Tutorial Participant

In this case, the CCA tools (Ccaffeine and Babel) will aready have been built in a common
area. You will have to do is insure that your login environment is properly setup to access
those tools. This generally involves adding some directories to your PATH and setting some

http://www.cca-forum.org/ccafe/
http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/components/babel.html
http://chasm-interop.sourceforge.net;

Introduction

other environment variables. Instructions will be included with your account information.
Some general notes can be found in Section B.4, “Setting Up Your Login Environment”. If
you wish to use the Ccaffeine GUI, you will also need to download it and set it up on your loc-
a system. Instructions can be found in Section B.2, “The Ccaffeine GUI”.

b. Sdf-Study User

In this case, you will need to download and install the CCA tools (Ccaffeine and Babel) and
configure your login environment to use them. Instructions can be found in Appendix B,
Building the CCA Tools and TAU, and Setting Up Your Environment. If you wish to use the
Ccaffeine GUI and you are working on a remote machine, you will need to download the GUI
and set it up on your local system. Instructions can be found in Section B.2, “The Ccaffeine
GUI".

3. Buildingthe Tutorial Code

a. Organized Tutorial Participant

Once again, the tutorial code will aready have been built in a central location. (Though later
on, you'll have to build your own copy of the student code tree, so you don't completely escape
the work.)

b. Sdf-Study User

You'l aso need to download and build the tutorial code tree, and later the student code tree.
Instructions can be found in Appendix C, Building the Tutorial and Sudent Code Trees.

Once you've setup everything as outlined above, you should be ready to proceed to Chapter 2, Assem-
bling and Running a CCA Application.

Chapter 2. Assembling and Running a
CCA Application

$Revision: 1.44 $
$Date: 2006/08/24 00:50:08 $

In this exercise, you will work with pre-built components from the integrator example to compose sever-
al CCA-based applications and execute them. The integrator application is a simple example, designed
to illustrate the basics of creating, building, and running component-based applications without scientific
complexities amore realistic application would also present. The purpose of this application is to numer-
ically integrate a one-dimensional function. Severa different integrators and functions are available, in
the form of components. A “driver” component orchestrates the calculation, and for the Monte Carlo in-
tegrator, a random number generator is also required. The specific components available are:

Drivers: drivers. CXXDri ver *, drivers. F90Dri ver *,
drivers. PYDri ver

Integrators: i ntegrators. MonteCarl o, i ntegrators. M dpoi nt*,
i ntegrators. Trapezoi d,i ntegrators. Si npson

Functions: functions. Pi Functi on (4/(1+x?), which integrates to pi),
functions. CubeFuncti on* (x3, which integrates to 0.25),
functions. Li near Functi on (x, which integrates to 0.5)

Random Number Generators: randongens. RandNuntGener at or (required by i nteg-
rators. MonteCarl o)

Components marked with a“*” are ones that you will be creating in the subsequent exercises (you only
need to do one of the two driver components), but as we have mentioned, the pre-builtt ut ori al - src
tree includes completed examples of all of the components.

There are three different procedures for this exercise. In Section 2.1, “A CCA Application in Detail”,
you interact directly with Ccaffeine on the command line to do everything. Thisis the best place to start
to understand how to assemble and run a CCA application. In Section 2.2, “ Running Ccaffeine Using an
r c File”, you will see how the steps you performed manually in the first procedure can be captured in a
script that Ccaffeine reads. This is the more common scenario because it gives you an easy way to rep-
resent a complete CCA application that is easy to reproduce, or to adapt to other situations, without hav-
ing to re-do everything from scratch every time you want to run it. Thisis probably the approach you'll
want to use when testing your work in the subsequent exercises. Finally, in Section 2.3, “Using the GUI
Front-End to Ccaffeine”, we use a graphical front-end to Ccaffeine, which allows you to perform the
composition and execution of the application using a*“visual programming” metaphor.

In the interests of time, it is not necessary for you to actually do all three procedures before moving on
to the later chapters, but you should certainly read and understand this chapter before moving on. In
particular, you will find that Section 2.1, “A CCA Application in Detail” has the most detailed explana-
tions of what is going on, but at the same time, it is the most tedious procedure to actually perform be-
cause it involves a lot of typing, and doesn't tolerate typing errors well. However the later sections and
subsequent chapters assume that you understand this material.

Note

CEF
Thisexerciseusesthet ut ori al - sr c code tree. If you are participating in an organized
tutorial, the tree will have been built for you in advance, and the location will be noted on
your account information handout. If you're working through this exercise on your own,
you'll need to build the code tree, following the instructions in Appendix C, Building the

4

Assembling and Running a CCA Application

Tutorial and Student Code Trees.

Tip

These exercises can involve a fair amount of typing. Y ou may find it convenient to use the
online HTML version of this Guide (at http://www.cca-forum.org/tutorial s/#sources to cut
and paste the necessary inputs. Note, however, that not everything can be cut-and-based
directly. Take particular care with lines that had to be broken for purposes of documenta-
tion, and for placeholder values such as“TUTORI AL_SRC".

2.1. A CCA Application in Detail

In this section, you will interact directly with the Ccaffeine framework to assemble and run several dif-
ferent numerical integration applications from pre-built components.

We will present the procedure in the form of a dialog between you and the Ccaffeine framework. Things
you are supposed to type are presented | i ke t hi s and Ccaffeine's output will be presented | i ke
t hi s. Notethat Ccaffeine'sinput prompt is“cca>". Particular features of the output will sometimes be
marked and discussed in further detail below the output fragment.

Tip
The complete set of Ccaffeine commands for this procedure can be found in

$TUTORI AL_SRC/ conponent s/ exanpl es/task0_rc. You can use this file for
reference, or to cut and paste commands into Ccaffeine.

1. Start the Ccaffeine framework with the command ccaf e- si ngl e. ccafe-single is one of severa
ways to invoke the Ccaffeine framework, and is used for single-process (i.e. sequential) interactive
sessions; ccafe-batch is designed for use in non-interactive situations, including parallél jobs; and
ccafe-client is designed to interact with a front-end GUI rather than with a user at the command
lineinterface.

Y ou should see something like this (note that some of the output lines have been folded for present-
ation here, indicated by “\ ”):

(16251) CndLi nedientMain.cxx: MPI _Init not called in\ ﬂ

ccaf e-si ngl e node.
(16251) CndLi ned ientMain.cxx: Try running with ccafe-single \
--ccafe-npi yes , or
(16251) CndLi ned i ent Main.cxx: try setenv CCAFE_USE_MPI 1 to force MPI_Init.
(16251) ny rank: -1, my pid: 16251
ny rank: -1, my pid: 16251
my rank: -1, ny pid: 16251
my rank: -1, ny pid: 16251Type: One Processor Interactive ﬂ

CCAFFEI NE configured w th babel @

cca>
CndCont ext CCAMPI : :initRC. No rc file found. Pallet nay be en‘pty.ﬂ

(1] Lines between these two markers give information about the status of MPI in the Ccaffeine

5

http://www.cca-forum.org/tutorials/#sources

Assembling and Running a CCA Application

2.

framework, including the processes rank if MPI is initiadlized. As the messages indicate,
ccafe-single is intended for single-process use and does not normally call MPI _I ni t, but if
you're running parallel and having problems with the MPI environment, this is the first place
to look for signs of trouble.

a This message confirms that this Ccaffeine executable was configured and built to work with
Babel. This is a useful thing to check when you're using an unfamiliar installation of Ccaf-
feine, or the first time you Ccaffeine after building it yourself.

E’ It is common to use an “r c” file with Ccaffeine to help assemble and run the application.
This is the place where Ccaffeine confirms that it loaded the r ¢ file you intended (or in this
case, it confirms that we didn't specify one). If thereis an r ¢ file, the Ccaffeine output from
the commands it contains will follow this message, so there may be a lot more text between
this message and the “cca>" prompt at which you can interact with Ccaffeine.

Note

We present Ccaffeine's output with “spew” disabled (the default). If Ccaffeineis con-
figured and built with the - - enabl e- spew option, you will see alot of debugging
output from Ccaffeine itself in addition to what we show here.

Ccaffeine uses a “path” to determine where it should look for CCA components (specificaly the
. cca files, which internally point to the actual libraries that comprise the component). When it
starts up, Ccaffeine's path is empty, and it has no idea where to find components. Next you will set
the path that points to the pre-built components:

pat h
pat hBegi n
pat hEnd! enpty path.

cca>path set TUTORI AL_SRC/ conponents/lib ﬂ

There are allegedly 19 classes in the conponent path
cca>path

pat hBegi n

pat hEl enent TUTORI AL_SRC/ conponents/lib
pat hEnd

Remember that when you see markup like “TUTORI AL_SRC’ you should replace it with the
appropriate directory location on the system you're using. If you're part of an organized tutori-
al, thiswill be on the handout you received.

Path-related commands in Ccaffeine include:

path append Adds adirectory to the end of the current path.
path init Sets the path from the value of the $CCA_COVPONENT_PATH environment
variable.

path prepend Adds adirectory to the beginning of the current path.

path set Sets the path to the value provided.

" Tip

Typing help at the Ccaffeine cca> prompt will provide a complete list of the com-

Assembling and Running a CCA Application

mands Ccaffeine's scripting language understands.

Ccaffeine also has the concept of a palette of components from which applications can be as-
sembled, which is based on the components (specifically, the . cca files) Ccaffeine finds in the
path you set. The palette command will show you what is currently in the palette, and the r eposit-
ory get-global cl ass_name command is used to get the component of the specified class name
from the repository (path) and load it into the palette. To begin with, we're going to load a set of
components that will allow usto build just one specific integration application; later, we'll add oth-
er components and show how you can “plug and play” to create a variety of distinct integration ap-
plications from the full pallette of available components.

cca>pal ette
Component s avail abl e:

cca>repository get-global drivers.CXXDriver
Loaded drivers. CXXDriver NOW GLOBAL .

cca>repository get-global functions.Pi Function
Loaded functions. Pi Functi on NOW GLOBAL .

cca>repository get-global integrators. MonteCarlo
Loaded integrators. MonteCarl o NOW G.OBAL .

cca>repository get-global randongens. RandNuntGener at or
Loaded randongens. RandNuntener at or NOW GLOBAL .

cca>pal ette

Component s avail abl e:
drivers. CXXDri ver
functions. Pi Function

i ntegrators. MonteCarl o
randongens. RandNumGener at or

Next, you need to instantiate the components you're going to use. The instances command will list
al the component instances in Ccaffeine's work area, or arena. The command instantiate
cl ass_nane component _i nst ance_nane will create an instance of the specified class
from the pal ette with the specified instance name and call the new component instance's set Ser -
vi ces method.

cca>i nst ances
FRAVMEWORK of type Ccaffei ne- Support

cca>instantiate drivers. CXXDriver driversCXXDriver
driversCXXDriver of type drivers. CXXDriver
successfully instantiated

cca>instantiate functions. Pi Function functionsPi Function
functionsPi Function of type functions. Pi Function
successfully instantiated

cca>instantiate integrators. MonteCarl o i ntegratorshnteCarlo
i ntegratorshnteCarlo of type integrators. MonteCarl o
successfully instantiated

cca>i nstanti ate randongens. RandNuntCener at or randongensRandNunmGener at or
randongensRandNunmCGener at or of type randongens. RandNuntener at or
successfully instantiated

Assembling and Running a CCA Application

cca>i nst ances

FRAVMEWORK of type Ccaffei ne- Support

driversCXXDriver of type drivers. CXXDri ver

functionsPi Functi on of type functions. Pi Functi on

i ntegratorsMnteCarl o of type integrators. MonteCarl o
randongensRandNunmCGener at or of type randongens. RandNuntener at or

- Note

When you instantiate a component, you can name it whatever you like aslong asit is
unique with respect to all of the components that you've instantiated in your session
with the framework. It is possible to instantiate the a given component class multiple
times (with different names, of course).

Once the components you need are instantiated, you need to connect up their ports appropriately.
The display chain command will list the component instances in Ccaffeine's arena and any con-
nections among their ports. To make a connection, you use the command connect
user_instance_nane user_port_name provider _instance_nane pr o-
vi der _port _nane (note that some of the input lines have been folded with “\ ” to fit on the
page -- you'll have to rejoin them when you type in the commands because Ccaffeine doesn't under-
stand continuation lines). In this case, we need to connect appropriate ports on the driver to the in-
tegrator, and the integrator to the function to be integrated. Since we're using the Monte Carlo
method in thisintegrator, the integrator also needs to be connected to arandom number generator.

cca>di spl ay chain
Component FRAMEWORK of type Ccaffei ne- Support ﬂ

Conmponent driversCXXDriver of type drivers. CXXDri ver

Conmponent functionsPi Function of type functions. Pi Function

Conponent integratorshnteCarlo of type integrators. MonteCarlo

Conponent randongensRandNuntenerator of type randongens. RandNuntener at or

cca>connect driversCXXDriver IntegratorPort integratorshonteCarlo \

I nt egr at or Port
driversCXXDriver))))IntegratorPort---->IntegratorPort((((integratorshnteCarlo
connection made successfully

cca>connect integratorsMnteCarl o FunctionPort functionsPi Function \

Functi onPort
i ntegratorshMonteCarl 0)))) Functi onPort---->FunctionPort ((((functionsPi Function
connecti on made successfully

cca>connect integratorshMnteCarl o RandonmCGener at or Port \
randongensRandNuntGener at or Randontener at or Por t

i nt egratorsMnteCarl 0)))) RandomGener at or Port - - - - >\

Randontzener at or Port ((((randongensRandNuntGener at or

connecti on made successfully E

cca>di spl ay chain E’

Component FRAMEWORK of type Ccaffei ne- Support

Conponent driversCXXDriver of type drivers.CXXDriver
is using IntegratorPort connected to Port: IntegratorPort provided by \
conponent integratorshonteCarlo

Conponent functionsPi Function of type functions. Pi Function

Conponent integratorshnteCarlo of type integrators. MonteCarlo
i s using FunctionPort connected to Port: FunctionPort provided by \
component functi onsPi Function
i s using RandonmGener at orPort connected to Port: RandomCGeneratorPort \

8

Assembling and Running a CCA Application

provi ded by conponent randongensRandNuntGener at or
Component randongensRandNunCGener at or of type randongens. RandNuntener at or

ﬂ At this point, there are no connections, so the output of display chain looks very much like
that of instances -- just asimple listing of the component instances in the arena.

a Characteristic of the output of a connect command is the ASCII “cartoon” illustrating the
connection, with the user on the left and the provider on the right.

E’ Now the output of display chain lists the connections associated with each component in-
stance. Note that the connection information is printed with the using component instance
only, not the provider.

Note
L EF

Port names and port types are defined by the person who implements the component.
They have to be unique within the component, but not across an entire application. In
order to connect a uses port to a provides port, the types of the port must match, but
the names need not match.

. Ti

i P

In the Ccaffeine framework, you can find out what ports a particular component uses
and provides with the command display component comnpon-
ent _i nstance_nane;

cca>di spl ay conponent integratorshnteCarlo

I nstance nane: integratorshbnteCarlo
O ass nane: integrators.MnteCarlo

UsesPorts registered for integratorshbnteCarlo

0. Instance Nane: FunctionPort d ass Nanme: function. FunctionPort
1. Instance Nane: RandonCeneratorPort C ass Nane: \
r andongen. RandontGener at or Por t

Provi desPorts registered for integratorshnteCarl o

I nstance Nane: IntegratorPort C ass Nanme: integrator.|ntegratorPort

At this point, you have a fully-assembled application and are ready to run it!

While most CCA ports are defined by component developers, the CCA specification includes a
special port of type GoPor t . The purpose of this port is to initiate the execution of a component.
The command go conponent _i nst ance_nane go_port _nane instructs the framework to
invoke the specified go port:

cca>go driversCXXDriver GoPort
Val ue = 3.141768
##speci fic go conmand successf ul

and you can see a (fairly inaccurate) value for pi computed by Monte Carlo integration of the func-
tion 4/(1+x?).

Assembling and Running a CCA Application

Note

The type, or class name of the port must be GoPor t , but the instance name of the
port can be something else. Both of these are determined by the software developer
who writes the code for the component. Y ou can use the display component com-
mand in Ccaffeine to check both the class names and instance names of ports a com-
ponent uses and provides.

At this stage, you have successfully composed and run a CCA application based on existing com-
ponents. In the remainder of this procedure, we'll see how it is possible to dynamically change the
application you've assembled by disconnecting components and connecting othersin their place. Or
you can jump straight to Step 11 to (gracefully) end this session with Ccaffeine and move on to oth-
er procedures in this chapter, or on to other tasks altogether.

At the moment, Ccaffeine's palette contains only the components we needed for the first applica
tion. Now, we'll add some more components to the palette and instantiate them in the arena:

cca>repository get-global integrators. M dpoint
Loaded integrators. M dpoint NONVN GLOBAL .

cca>instantiate integrators. M dpoint integratorsM dpoint
i ntegratorsM dpoint of type integrators. M dpoint
successfully instantiated

cca>repository get-global functions. CubeFunction
Loaded functions. CubeFuncti on NOW G.OBAL .

cca>instantiate functions. CubeFuncti on functi onsCubeFuncti on
functionsCubeFunction of type functions. CubeFunction
successfully instantiated

Note

L
There is no harm in having components you don't use in the palette, or even having
instances of them in the arena.

In order to be able to swap out components for others, we first need to disconnect them. The dis-
connect command has the same syntax as the connect command, with both the uses and provides
end points of the connection being specified.

Let's begin by changing the Monte Carlo integrator for another. The integrator is connected to both
the driver and the function. (And also to the random number generator, but since we don't need it
for anything else, there isno harm in leaving that connection intact.)

cca>di sconnect driversCXXDriver |IntegratorPort integratorshMnteCarlo \

I nt egr at or Port
driversCXXDriver))))IntegratorPort-\ \-IntegratorPort((((integratorshbonteCarlo
connection broken successfully

cca>di sconnect integratorshnteCarlo FunctionPort functionsPi Function \

Functi onPort
i ntegratorshMnteCarlo))))FunctionPort-\ \-FunctionPort((((functionsPiFunction
connection broken successfully

10

Assembling and Running a CCA Application

The disconnect command prints an ASCII cartoon of a broken connection, similar to that
printed by the connect command.

Note

Step 7 and Step 8 could have been donein either order.

9. Once we connect up a new integrator (in this case, using the mid-point rule algorithm) to the driver
and function, we have anew “application” that's ready to run:

cca>connect driversCXXDriver IntegratorPort integratorsM dpoint \

I nt egrat or Port
driversCXXDriver))))IntegratorPort---->IntegratorPort((((integratorsM dpoint
connecti on made successfully

cca>connect integratorsMdpoint FunctionPort functionsPi Function \

Functi onPort
i ntegratorsM dpoint))))FunctionPort---->FunctionPort((((functionsPi Function
connecti on made successfully

cca>di splay chain

Component FRAMEWORK of type Ccaffei ne- Support

Conponent driversCXXDriver of type drivers.CXXDriver
is using IntegratorPort connected to Port: |IntegratorPort provided by \
conmponent i ntegratorsM dpoi nt

Component functi onsCubeFuncti on of type functions. CubeFunction “

Component functi onsPi Function of type functions. Pi Function

Component i ntegratorsM dpoint of type integrators.M dpoint
i s using FunctionPort connected to Port: FunctionPort provided by \
conmponent functi onsPi Function

Component integratorshbnteCarlo of type integrators. MonteCarlo

i s using RandonmGeneratorPort connected to Port: RandonGeneratorPort \

provi ded by conmponent randongensRandNuntGener at or
Conmponent randongensRandNuntGener ator of type \ ﬂ

randongens. RandNumGener at or

cca>go driversCXXDriver CGoPort
Val ue = 3. 141553
##specific go conmand successf ul

ﬂ Observe that there are a number of component instances in the arena that we have either nev-
er used (f uncti onsCubeFunct i on) or which we have disconnected from the rest of the
application (i nt egr at or sMont eCar | o andr andongensRandNuntGener at or).

Note

The Monte Carlo algorithm is unique among the integrators we have implemented in
requiring a source of random numbers. As a consequence, the mid-point and other in-
tegrators do not have a uses port for a random number generator, and it is not neces-
sary, or even posshle in the CCA context, to connect a random number generator to
any of the integrators besides the Monte Carlo.

10. Finally, we swap the pi function for an x3 function and run a third application built from the same
set of components:

cca>di sconnect integratorsM dpoint FunctionPort functionsPi Function \

11

2.2.

Assembling and Running a CCA Application

Functi onPort
i ntegratorsM dpoint))))FunctionPort-\ \-FunctionPort((((functionsPi Function
connection broken successfully

cca>connect integratorsM dpoint FunctionPort functionsCube FunctionPort
i nt egratorsM dpoint))))FunctionPort---->FunctionPort ((((functionsCubeFunction
connection made successfully

cca>di splay chain

Component FRAMEWORK of type Ccaffei ne- Support

Conmponent driversCXXDriver of type drivers. CXXDri ver
is using IntegratorPort connected to Port: IntegratorPort provided by \
conponent i ntegratorsM dpoi nt

Component functi onsCubeFuncti on of type functions. CubeFunction

Component functi onsPi Function of type functions. Pi Function

Conmponent i ntegratorsM dpoint of type integrators.M dpoint
is using FunctionPort connected to Port: FunctionPort provided by \
component functi onsCubeFuncti on

Component integratorshbnteCarlo of type integrators. MonteCarlo
i s using RandonmCeneratorPort connected to Port: RandonCeneratorPort \
provi ded by conmponent randongensRandNunGener at or

Component randongensRandNunCGener at or of type randongens. RandNuntener at or

cca>go driversCXXDriver GoPort
Val ue = 0.250010
##speci fic go conmand successf ul

11. To exit Ccaffeine “politely” and allow it to cleanly shutdown and destroy al components, use the
quit command:

cca>quit

bye!
exit

Running Ccaffeine Using an r c File

In practice, most people don't use Ccaffeine interactively on a routine basis. Like many applications,
Ccaffeine can be run with a script, or “rc” file that tells it what to do. Any commands that can be
entered at the cca> prompt can be used in anr ¢ file, so it is possible to systematically capture the as-
sembly and execution of an application in areusable form. Ther ¢ aso makesit easy to create a new ap-
plication from an existing one by adapting the script.

In this section, you will explore the use of anr ¢ file that captures al of the commands performed in the
previous section. This is the basic approach you will want to use when testing your work in the sub-
seguent exercises.

1. For thisprocedure, it is best to work in your home directory. To save you alot of additional typing,
we've created an r ¢ file with all of the commands from the previous section. Make alocal copy by
typing cp $TUTORI AL_SRC/ conponent s/ exanpl es/task0_rc . and view the file.
Here are some of the important features to note in thisfile:

#! ccaf fei ne bootstrap file. “

12

Assembling and Running a CCA Application

#StepZE

pat h

path set TUTORI AL_SRC/ conponents/lib E’

pat h
Step 3 @

pal ette

repository
repository
repository
repository
repository
repository
repository
repository
repository
repository
repository
pal ette

Step 4

nst ances

get - gl obal
get - gl obal
get - gl obal
get - gl obal
get - gl obal
get - gl obal
get - gl obal
get - gl obal
get - gl obal
get - gl obal
get - gl obal

don't change anything ABOVE this |ine.

drivers. CXXDri ver
drivers. F90Dri ver
drivers. PYDri ver

functions. Li near Functi on
functions. CubeFuncti on
functions. Pi Function

i ntegrators. Trapezoid

i ntegrators. M dpoi nt

i ntegrators. MonteCarl o

i nt egrators. Si npson
randongens. RandNumGener at or

I nt egr at or Por t

i ntegratorshMnteCarlo

nst ances
Step 5
di splay chain
connect driversCXXDri ver
connect
connect

Randontener at or Por t

di splay chain
di spl ay conponent
Step 6

go driversCXXDriver GoPort

Step 7

repository

instantiate integrators.M dpoi nt

repository

Step 8

di sconnect driversCXXDri ver

di sconnect

Step 9

get - gl obal
get - gl obal

nstantiate drivers. CXXDriver driversCXXDri ver

nstantiate functions. Pi Function functi onsPi Function

nstantiate integrators. MonteCarl o integratorshnteCarlo

nstanti at e randongens. RandNuntGGener at or randongensRandNunGener at or

i ntegratorshMnteCarl o | ntegratorPort

i ntegratorshMonteCarl o FunctionPort functionsPi Function Functi onPort
i nt egrat orshMnt eCarl o RandonGener at or Por t

randongensRandNunCGener at or \

i ntegrators. M dpoi nt

i nt egrat orsM dpoi nt

functi ons. CubeFuncti on
instantiate functions. CubeFuncti on functi onsCubeFuncti on

I nt egr at or Port

i ntegratorshnteCarl o | ntegratorPort

i ntegratorsMnteCarl o FunctionPort functionsPi Functi on Functi onPort

13

Assembling and Running a CCA Application

connect driversCXXDriver IntegratorPort integratorsM dpoint |ntegratorPort
connect integratorsM dpoint FunctionPort functionsPi Function Functi onPort
di splay chain

go driversCXXDriver GoPort

Step 10

di sconnect integratorsM dpoint FunctionPort functionsPi Function FunctionPort
connect integratorsM dpoint FunctionPort functionsCube FunctionPort

di splay chain

go driversCXXDriver GoPort

Step 11

qui t ﬂ

Ccaffeine requires this line exactly as written to recognize thisfile as an input script.

g Ccaffeine interprets “#” as the beginning of a comment and ignores the remainder of the line.
(Note that we have marked only the first few commentsin thisfile.)

E’ In your copy of the r c file, this should be the fully-qualified path to the TUTORI AL_SRC
directory.

ﬂ If your script does not contain a quit command, Ccaffeine will run the script and leave you at
the Ccaffeine prompt, “cca>", alowing you to interact with the framework manually. For
example, you can usether ¢ file just to setup the palette; or you can useit to setup the palette
and instantiate the components you need in the arena; or you can use it to assembl e the entire
application, but type the go command yourself.

Enter the command ccafe-single --ccafe-rc taskO_rc >& taskOpl. out
(assuming you're using the csh or tcsh shells; if you're using the sh or bash shells, the command is
ccafe-single --ccafe-rc taskO rc > task0.out 2>&1)

View thet askO. out file and compare the results with those in the previous section. Everything
should be essentially the same.

Experiment with changing t askO_r ¢ and re-running Step 2. Take a careful look at the output to
make sure each change worked as you expected.

Some suggestions for things to change:

* Rearrange some of the commands so that all of the repository get-global commands are at the
beginning of the file; you could also group al of the instantiations together. Done properly, this
should have no effect your ability to execute the applications.

« Since the origina script assembles and runs three distinct applications, you might modify the
script so that it does only one by commenting out the lines that aren't needed.

e Make use of thedri vers. FO0Dri ver which has not been used at al so far. (This means
you will have to add repository get-global and instantiate commands for it.)

Tip

Y ou can copy the original t askO_r c to other filenames if you want to preserve the
different variations you try. If you're just eliminating lines (for example to run only a
single application), it may be convenient to just comment them out (with “#”) instead
of actually removing them.

14

Assembling and Running a CCA Application

. Warning

If you remove the quit command from the r c file, Ccaffeine will leave you in inter-
active mode rather than terminating and returning you to the shell prompt. In this
case, you should not capture Ccaffeine's output into afile, asinstructed in Step 2 be-
cause you won't be able to see the cca> prompt and it will appear that Ccaffeine has
hung (in reality it isjust waiting for your input). If you make this mistake a Control-c
will interrupt Ccaffeine and return you to the shell prompt.

2.3. Using the GUI Front-End to Ccaffeine

2.3.1.

There is a graphical front-end for Ccaffeine (known as ccafe-gui, or “the GUI”) which provides a fairly
simple visual programming metaphor for the assembly of applications using CCA components. If you've
been through the previous sections of this chapter, you'll already recognize that using the GUI is entirely
optional. Aswith many environments that offer both graphical and non-graphical interfaces, we find that
new/inexperienced users tend to like the GUI, while once they “get the hang” of using the CCA, they
tend to prefer text-based scripting, asin Section 2.2, “ Running Ccaffeine Usinganr c File”.

In this section, we'll present the same sequence of operations as in Section 2.1, “A CCA Application in
Detail” and Section 2.2, “ Running Ccaffeine Using an r ¢ File ” using the GUI. Well focus on the
mechanics of using the GUI and assume that you've work through (or at least read) the previous sections
to understand what's going on in the Ccaffeine instance running behind the GUI, and in the CCA com-
ponents within Ccaffeine.

Running Ccaffeine with the GUI

Ccaffeine and its GUI are run as two separate processes, possibly on two different machines. In any
event, you'll need two separate terminal sessions to control and monitor the two processes. We will refer
to these as“ Ccaffeine host” and “GUI host”.

In this exercise, we will invoke Ccaffeine on the Ccaffeine host with:

gui - backend. sh --port 3314 \
--ccafe-rc rc_file \ @

“ This tells Ccaffeine the port number to expect the GUI to connect to. Typically, it can be any port
number between 1025 and 65535 that doesn't conflict with another application wanting to use the
same port. In this Guide, we will use port 3314, but you can change thisif it is problematic.

. Warning

If you're working in a setting in which there may be more than one person using
Ccaffeine on the same system, you must choose different ports, or you will conflict!
Choosing anything besides the default port, the chances of a conflict are small.

If you're participating in an organized CCA tutorial, we'll assign you a port number to
use for the GUI as part of your account information as a simple way to insure there
are no conflicts. Please use your assigned port number in this case!

15

Assembling and Running a CCA Application

E Anr c fileisrequired in order to set the component search path and do the repository get-global
commands to load the required components into the palette. In the tutorial, r ¢ files are automatic-
aly generated for use with the GUI. They ae $TUTORI AL_SRC/ conpon-
ent s/ exanpl es/ taskn_gui _r c. You may find it convenient to copy them into your work-
ing directory rather than retyping the complete path every time you need to reference them. So for
the first exercise, you should copy $TUTORI AL_SRC/ conpon-
ent s/ exanpl es/ t ask0_gui _r c to your working directory and use it as the argument for the
--ccafe-r c argument.

The default for ccafe-client (and ccafe-batch) isto direct most of their own output, as well as the output
from applications within them, to files named pQut n (for the stdout stream) and pEr r n (for the stderr
stream), where n denotes the MPI rank of the process. (In this Guide, we'll be running sequentially, so
well have only pQut 0 and pErr0.) The gui-backend.sh script invokes ccafe-client with the -

-ccaf e-i 02t t y todirect its output to the terminal instead of to the files (the files will still be created,
but will contain just a few startup messages relating to the MPI rank and the process id). Using -

-ccaf e-i 02t ty is more convenient for more interactive development work, but if you're going to
run an actual application, you probably want to capture the output in the files instead. With the current
gui-backend.sh, this would require modifying the script, but for “ production” computing with CCA, we
expect most people to use ther ¢ approach of the previous section rather than the GUI.

The Ccaffeine GUI isimplemented in Java, and is available asaj ar file that can be used with any re-
cent version of the Java runtime or the full software development kit. Because the Java invocation is
long and hard to remember, we provide convenience scripts to simplify using it. Which one you need
depends on your circumstances:

gui.sh This is the script to use if you're running the GUI on the same machine as the
backend. This script is configured and installed as part of the CCA tools build
process.

simple-gui.sh This is the script to use if you're running the GUI on a Linux-like machine and

want to connect to Ccaffeine running remotely. You will need to download this
to your local machine, along with the GUI's | ar file, following the directionsin
Section B.2, “The Ccaffeine GUI”.

simple-gui.bat This is the script to use if you're running the GUI on a Windows machine and
want to connect to Ccaffeine running remotely. You will need to download this
to your local machine, along with the GUI's | ar file, following the directionsin
Section B.2, “The Ccaffeine GUI”.

Below, we will refer to simple-gui.sh, but you should replace it with whichever command is appropriate
for your situation.

-~ Note

While the GUI can be run remotely, using the X11 protocol to display on your local X11
server, this is generally unacceptably slow because of the way Java handles graphics in
X11. You will probably get more satisfactory performance if you can run the GUI on your
local system and alow it to connect over the network to the remote host where you're run-
ning Ccaffeine. Tunneling the GUI-Ccaffeine connection over your ssh connection is a
straightforward way to deal with firewalls that often prevent direct access to most ports on
remote hosts. It has the added advantage, for the purposes of this Guide, that you would
use the same arguments to invoke the GUI running remotely through a tunnel or locally on
the same machine as the backend. For more information, see Appendix A, Remote Access
for the CCA Environment and in particular Section A.3, “Tunneling other Connections
through SSH”.

In this exercise, we will invoke the GUI on the GUI host with:

16

Assembling and Running a CCA Application

si mpl e-gui . sh --builderPort 3314 \ “

L1

--host | ocal host g

This tells the GUI which port to use for the connection to Ccaffeine host. In general, it should
match the ccafe-client - - port option (though when tunneling the connection through ssh, that
need not be the case).
This tells the GUI which host to connect to for the Ccaffeine backend. In general, it should be the
Ccaffeine host (though when tunneling the connection through ssh, it would bel ocal host).

Note

Since gui.sh is designed to be used on the same machine as Ccaffeine isrunning on, it does
not take a--host argument. The simple-gui scripts do requireit.

Note

Ccaffeine should be running and ready to receive the GUI's connection before you start the
GUI. If you're scripting their execution, especially on the same machine, the sleep com-
mand can help build in afew seconds of delay.

Note

Once the GUI displays on your screen, it may take a few more seconds before it will re-
spond to user actions.

2.3.2. Assembling and Running an Application Using the

GUI

1

Run gui-backend.sh on the Ccaffeine host using the appropriate port and thet askO_gui _rcrc

file. The command will look something like:

gui - backend. sh --port 3314 --ccafe-rc $TUTORI AL_SRC/ conponent s/ exanpl es/ t ask0_¢

depending on the port number assigned to you, and whether or not you've copied ther ¢ file to your

local directory.

In the Ccaffeine host terminal window, you will see something like:

(Ccaf fei ne host)

(19419) CrulLi
(19419) CruLi
(19419) CrulLi
(19419) CruLi
(19419) CrulLi
(19419) CnLi
(19419) CnulLi

(19419) ny rank: 0, ny

ned i
ned i
ned i
ned i
ned i
ned i
ned i

ent Mai
ent Mai
ent Mai
ent Mai
ent Mai
ent Mai
ent Mai

5335335335355

.CcxX: execNanme is ccafe-client
.CXx: runType is CLIENT
.cxx: |If execNanme is unexpected, blanme your MPl startt
.cxx: If MPlI _Init is unwanted, try adding the switch '
.CxXx: or try setenv CCAFE_USE MPI O .
.cxx: MPI _Init being called.

cxx: MPI _Init succeeded.

: 19419

pid

(19419) MapEveryt hi ngToFil e(pQut0, pErr0)

Type: Server

17

Assembling and Running a CCA Application

which is similar to what you saw running ccafe-single in Step 1 of Section 2.1, “A CCA Applica
tion in Detail”, except that in ccafe-client, MPI is configured “on” by default. The next-to-last line
is special to ccafe-client (and ccafe-batch) and serves as a reminder that by default, the stdout and
stderr output streams from these executables are funneled to the indicated files. This message ap-
pears (and the files are created, but with minimal content) even though we used the -

-ccaf e-io2tty option.

Run the simple-gui.sh on the GUI host.

Once the GUI connects to Ccaffeine, Ccaffeine begins running the r ¢ file it was invoked with. In
the GUI host terminal window, you first see some startup messages from the GUI itself, followed
by a series of messages as Ccaffeine processes the r ¢ file and the GUI displays the results. These
are debugging messages and can largely be ignored. In the Ccaffeine host terminal, you should see
some additional messages as Ccaffeine processes ther c file, like:

(Ccaf fei ne host)
CCAFFEI NE configured wth babel.
CndLi neClient parsing ...

CndCont ext CCAMPI : ;i ni t RC. Found /san/ honedi rs/ bernhol d/task0_gui _rc.
There are allegedly 31 classes in the conponent path

Finally, you should see a “gui >" prompt in the GUI host terminal window, and the GUI itself
should have appeared on your display, |looking something like this:

Common Component Architecture

B Common Component Architecture: Untitted.ObHd =~~~ .~ &
File CCA Info

Actions

‘ Run H Remove H Remove All H Open... u Save u Save As...

Arena

CXXDriver

FO0Driver
CubeFunction

PiFunction

MonteCarlo

RandNum®Generator

= 5
—
©

The default layout has the palette area fairly narrow. You can click-and-drag on the
bar separating the palette and the arena to adjust the width.

As mentioned above, thet ask0_gui _r ¢ sets up the path and performs the appropriate reposit-
ory get-global commands. (Note that in this case, al of the available components have been in-

18

Assembling and Running a CCA Application

cluded, for convenience, whereas in the previous command-line based procedures, the repository
get-global commands appeared in two different places.)

At this point, you've completed the equivalent of the first three steps in Section 2.1, “A CCA Ap-
plication in Detail” (as well as the additional repository get-global commandsin Step 7) or in the
r ¢ file described in Section 2.2, “ Running Ccaffeine Usinganr ¢ File”.

For the remainder of this procedure, each step will be functionally equivalent to the matching step
of the command-line based procedures described above. Please refer to those sections for more de-
tailed explanations of what is happening “behind the scenes’.

We will begin by instantiating adr i ver s. CXXDr i ver component. Click-and-drag the compon-
ent you want from the palette to the arena. When you release the mouse button in the arena, adia-
log box will pop up prompting you to name this instance of the component. The default will be the
last part of the component's class name (i.e. CXXDr i ver for dri vers. CXXDri ver) with anu-
merical suffix to insure the nameis unique. The suffix starts at 0 and simply counts up according to
the number of instances of that component you've created in that session. Y ou can, of course, enter
any instance name you like, as long as it is unique across all components in the arena, but for sm-
plicity, we will always accept the default value in this Guide.

For the first application, you should instantiate

drivers. CXXDri ver,
functions. Pi Functi on,

i ntegrators. MonteCarl o,
randongens. RandNumGener at or,

(you may natice some debugging messages in the GUI host terminal window as you do this), and
your GUI should look something like this:

Common Component Architecture

B Common Component Architecture: Untitled_0.bld (changed) =~~~ = &
File CCA Info

Actions

‘ Run H Remove H Remove All H Open... ‘| Save ‘| Save As... ‘

Palette Arena

- IntegratorPort FunctionPort
CXXDriver0Q PiFunction0

CXXDriver
F90Driver

CubeFunction

PiFunction

‘ IntegratorPort ‘ FunctionPort

| e emCensrEiaiiar |
MonteCarlo MonteCarlo0

RandNumGenerator

‘ RandomGeneratorPort

RandNum®Generator0

=
—
©

Y ou can drag components around the arena to arrange them as suits you -- just click
on the black area of the compoment and drag it to the new location. The positions
have no bearing on the operation of the GUI or your application.

19

Assembling and Running a CCA Application

The next step is to begin making connections between the ports of your components. Click-
and-release CXXDri verOQ's I ntegratorPort uses port, then click-and-release Mont e-
Car |l 00's| nt egr at or Port provides port and ared line should be drawn between the two:

hd Common Component Architecture

B Common Component Architecture: Untitl

changed

ed_0.bld (

File CCA Info
Actions
‘ Run H Remove H Remove All H Open... ‘| Save ‘| Save As... ‘
Arena
CXXDriver - IntegratorPort FunctionPort
PiFunction0

F90Driver

CubeFunction

PiFunction

IntegratorPort ‘ FunctionPort

| e emCensrEiaiiar |
MonteCarlo MonteCarlo0

RandNumGenerator

‘ RandomGeneratorPort

RandNum®Generator0

=
—
©

If you hover the cursor over a particular port on a component, a “tool tip” box will
pop up with the port's name and type based on the arguments to the addPr ovi des-
Port or regi sterUsesPort cadlsin the component's set Ser vi ces method.
This can be useful for double checking to make sure you're connecting matching
ports.

Also notice that when you hover over a particular port (either uses or provides),
matching ports of the opposite type (either provides or uses) will be highlighted.

Note

o

Y ou can move components around even after their ports are connected -- the connec-
tions will automatically rearrange. There is no harm in connections crossing each oth-
er, nor in connections passing behind other components (though of course they may
make it harder to interpret the “wiring diagram” correctly).

Complete the first application by making the following connections:

e CXXDriverOQ'slntegratorPort toMnteCarl 00'sl nt egrat or Port

e MonteCarl o0'sFuncti onPort toPi Functi onO'sFuncti onPort

« NMbnt eCarl 00's Randontzener at or Port to RandNuntGener at or 0's RandonmGener -
ator Port.

At this point, your GUI should look something like:

20

Assembling and Running a CCA Application

hd Common Component Architecture i

itled_0.bld

85 Common Compoenent Architecture: Unt (changed) =~~~ &
File CCA Info
Actions
‘ Run H Remove H Remove All H Open... ‘| Save ‘| Save As... ‘
Arena
CXXDriver IntegratorPort FunctionPort
CXXDriverQ PiFunction0

F90Driver

CubeFunction

PiFunction

IntegratorPort ‘ FunctionPort

RandomGeneratorPort
MonteCarlo MonteCarlo0

RandNumGenerator

RandomGeneratorPort

RandNumGenerator0Q

= =

The application is now fully assembled and is ready to run. If you click-and-release the GoPor t
button on the CXXDr i ver O component, you should see the result appear in the Ccaffeine host ter-
minal, “Value = 3.141449" and the message “##specific go conmmand
successf ul ” inthe GUI host terminal.

Next, we're going to use some of the other components to assemble a different application using the

e integrators.M dpoint and
e« functions. CubeFunction

components. Since they're already in the palette, you can instantiate them in the same way as Step
4,

hd Common Component Architecture 7

tecture: Untitled_0.bld

changed)

B Common Component Archi (

File CCA Info

Actions

‘ Run H Remove H Remove All H Open... u Save u Save As... ‘

CXXDriver - IntegratorPort FunctionPort
iFuncti
FOODriver CXXDriver0 PiFunction0

FunctionPort

Palette Arena

CubeFunction0Q

IntegratorPort ‘ FunctionPort
RandomGeneratorPort
MonteCarlo0 |

‘ IntegratorPort | FunctionPort

Midpoint0O
RandomGeneratorPort

RandNumGeneratorQ

RandNum®Generator

21

Assembling and Running a CCA Application

Tip

Aswe've mentioned, wiring diagrams can become hard to interpret when they become
cluttered, as is the case with the screen shot above. To help interpret the diagram, re-
member the following:

* “Wires’ only connect to the sides of ports -- on the left side of provides ports (on
the left side of the component), or on the right side of uses ports. Connections are
never made to the top or bottom of a component.

* The GUI's wire-drawing agorithm is aware only of the two components that are
being connected. It will make no attempt to avoid other components or other
wires. So wires can pass behind components without connecting to any of their
ports, and wires may overlap.

« If you're still uncertain how to interpret the connections try rearranging the com-
ponents sightly. Connections attached to the component will follow as you drag it
around, but others not associated with that component will remain unchanged.

Next, we break the port connections we don't need so we can reconnect to the new components.
Right-click on the | nt egr at or Port (either the user or the provider) and a dialog box will pop
up asking you to confirm that you want to break the connection. Y ou will need to break the follow-
ing connections:

e CXXDriverQ'slntegratorPort toMnteCarl o0'sl nt egrat or Port
 MnteCarl 00'sFuncti onPort toPi Functi onO'sFuncti onPort

The fact that Mont eCar | 00 remains connected to RandNunmGener at or O is immateria be-
cause neither component will be used in the remainder of this exercise.

- Note

Step 7 and Step 8 could have been donein either order.

Assemble the new application by making the following connections:

e CXXDriverQ'slntegratorPort toM dpoi ntO'sl nt egr at or Port
e M dpoi nt0'sFuncti onPort toPi Functi onO'sFuncti onPort

22

Assembling and Running a CCA Application

10.

11.

Common Component Architecture

8 Common Component Architecture: Untitled_0.bld (changed) = &
File CCA Info

Actions

‘ Run H Remove H Remove All H Open... ‘| Save ‘| Save As... ‘

Palette Arena

drivers. CXXDriver ‘%‘M
- - CXXDriver0
drivers. FOQODriver

functions. CubeFunction IntegratorPort ‘ FunctionPort
functions. PiFunction Midpoint0

integrators. Midpoint _FunctionPort |

CubeFunction0
integrators. MonteCarlo
randomgens. RandNumGenerator ‘ Vi e i | FunctionPort

RandomGeneratorPort —
MonteCarlo0

I-{ RandomGeneratorPort

RandNum®Generator0Q

FunctionPort

PiFunctionQ

Click-and-release the GoPor t button on the CXXDr i ver 0 component, you should see the result
appear in the Ccaffeine host terminal, “Val ue = 3. 141553” and the message “##speci fi c
go command successf ul ” inthe GUI host terminal.

Finally, create a third application by replacing Pi Funct i on0 with CubeFunct i on0. When
you click onthe GoPor t you should get “Val ue = 0. 250010” in the Ccaffeine host terminal.

Common Component Architecture

B Common Component Architecture: Untitled_0.bld (changedy &
File CCA Info

Actions

‘ Run H Remove H Remove All H Open... u Save u Save As... ‘

Palette Arena

drivers. CXXDriver ‘ GoPort ‘ IntegratorPort FunctionPort
- - CXXDriver0 PiFunction0
drivers. FO0Driver

functions. CubeFunction

functions. PIFUNction IntegratorPort ‘ FunctionPort

Midpoint0 :
integrators. Midpoint FunctionPort
CubeFunction0
integrators. MonteCarlo
IntegratorPort FunctionPort
randomgens. RandNum®Generator ‘¥|
RandomGCeneratorPort
MonteCarlo0
RandomGeneratorPort
RandNumGenerator0Q

To politely exit the GUI, select File — Quit. This will terminate both the GUI and the backend
ccafe-client sessions.

. Tip

23

Assembling and Running a CCA Application

If you've used the GUI to setup and start a long-running simulation, and you don't
want to leave the GUI running continuously, you can use the File - Detach option to
close the GUI but leave the backend running. However it is currently impossible to
reattach to a running session.

2.3.3. Notes on More Advanced Usage of the GUI

There are a couple of other features of the GUI and its interaction with the Ccaffeine backend that are
worth mentioning.

Ther ¢ file used in conjunction with a GUI session need not be limited to path and repository get-
global commands -- it is possible to include all Ccaffeine commands, such as in the script of Sec-
tion 2.2, “ Running Ccaffeine Using anr ¢ File”. The GUI will display al instantiated components,
and all connections between their ports. However, the GUI has no mechanism to place the compon-
entsintelligently in the arena, so it just puts them all on top of each other. You can, of course, drag
them into more reasonable positions.

It is possible to save the visual state of the GUI ina*“. bl d” file using the Save or Save As... button.
The . bl d file can be loaded into the GUI and replayed by launching it with the - - bui | dFi | e
file.bldoption.

The syntax of the . bl d file is similar to that of the r ¢ file, but they are not interchangeable. The
. bl d file can contain commands to instantiate and destroy components and to connect and discon-
nect ports, as well as commands to move components within the arena, and it can only be inter-
preted by the GUI. The path and repository get-global commands must always be in the r c file,
which is interpreted only by the Ccaffeine backend. Also, Ccaffeine itself does not understand the
movement commands of the . bl d file.

24

Chapter 3. Sewing CCA Components
Into an Application: the Driver
Component

$Revision: 1.45 $
$Date: 2006/08/22 22:09:49 $

In this exercise, you will create a new Driver component. This component is very simple, and basically
only uses other components (it also provides a GoPort). If you're working in an environment in which
components are already available that do most of what you need, it is often sufficient to create a com-
ponent, which we refer to generically as adriver, that orchestrates these existing components to perform
your computation.

Unlike other component models (e.g. Cactus [http:/citeseer.nj.nec.com/allen00cactus.html] or ESMF
[http://sdcd.gsfe.nasa.gov/ESS/esmf_tasc/]) CCA does not impose a built-in execution model. CCA al-
lows the user to determine how the components are to be used. The driver component, in essence, takes
the place of the main program in anormal application.

In this section we will walk through the construction of a driver component, either in Fortran (SIDL
namedri vers. FO0Dri ver) or C++ (SIDL namedri ver s. CXXDr i ver) Regardless of language,
our driver component will use ani nt egrat or. | nt egr at or Port (defined in $STUDENT _SRC/
ports/sidl/integrator.sidl).Itwill dsoprovideagov. cca. ports. GoPort that allows
an outside entity (a user or script) to start execution of the component. (These ports should be familiar
from Chapter 2, Assembling and Running a CCA Application.)

' I mportant

This and subsequent exercises use the st udent - sr ¢ code tree instead of thet ut ori -

al - sr ¢ code tree. The difference is that in the st udent - sr ¢ we have deleted a bunch
of components which you will recreate in these exercises. You can always refer to the
completed versionsin thet ut ori al - sr ¢ to see what the final results should look like.

You'll need to build the st udent - sr ¢ code tree in your own directory before you can
proceed, by following the instructions in Appendix C, Building the Tutorial and Sudent
Code Trees.

If you are participating in an organized tutorial your account information handout will tell
you where you can obtain the tar file on the system you're using instead of having to down-
load it.

3.1. The SIDL Definition of the Driver Compon-

ent

The first step in creating a new component is to create its . si dl file. In SIDL, a component is a class
that implements severa SIDL interfaces. All CCA components must implement the
gov. cca. Conponent interface, which is defined as part of the CCA specification (the CCA specific-
ation uses the gov. cca namespace). In addition, components must implement the interfaces corres-
ponding to any CCA ports they wish to provide. The CCA specification defines a few ports, such as
gov. cca. ports. GoPort, but mostly, ports are defined by the people who write components, or by
communities that get together to agree on “standard” interfaces.

25

http://citeseer.nj.nec.com/allen00cactus.html
http://sdcd.gsfc.nasa.gov/ESS/esmf_tasc/

The Driver Component

In order to better understand what is required to implement a given interface, you need to find the SIDL
specification for it. First, we'll look in the SIDL file for the CCA specification to see what the
gov. cca. Conponent interface looks like.

1.

View CCA_TOOLS ROOT/ shar e/ cca- spec-babel -0_8_0-babel -1. 0. 0/ cca. si dl .
First, notice the package declarations at the beginning of thefile:

package gov {
package cca version 0.8.0 {

which declare the gov. cca namespace for everything in the file.

Now, search for “interface Component”:

/**

* Al conponents nust inplenment this interface.
*/
i nterface Conponent ({

... Comments elided ...

voi d set Services(in Services services) throws CCAException;

Which tells us that our driver will have to implement a set Ser vi ces. This is the key method
that allows a piece of code to become a CCA component. The component's set Ser vi ces meth-
od is invoked by the CCA framework when the component is instantiated, and advertises to the
framework the ports the component will provide and use.

Since the port this component provides is also part of the CCA specification, this is the place to
look for the definition of the GoPor t . Search for “interface GoPort”:

package ports {
/**

* Go, conponent, gol!
*/

interface GoPort extends Port {
Comrents elided ...

int go();

First, notice that there is an additional package declaration here, making the full name of this inter-
facegov. cca. ports. GoPort . Thisdefinition tells us that our driver component must also im-
plement ago method.

Now you have enough information to write the SIDL declaration for your driver component. At this
point, you should choose whether you want to implement your driver component in C++ or Fortran
90. (Once you get one done, you can implement the other too, if you wish.)

Edit the file $STUDENT_SRC/ conponent s/ si dl / dri vers. si dl and type in one of the
two following SIDL declarations, according to your choice of language:

26

The Driver Component

a
package drivers version 1.0 {
cl ass F90Driver inplenments gov.cca. ports. GoPort,
gov. cca. Conponent
int go();
voi d set Services(in gov.cca. Services services)
t hrows gov. cca. CCAExcepti on;
}
}
b.

package drivers version 1.0 {
cl ass CXXDriver inplements gov.cca. ports. GoPort,
gov. cca. Conponent

int go();
voi d set Servi ces(in gov.cca. Services services)
t hrows gov. cca. CCAExcepti on;

First, notice that the two declarations are identical except for the name, and in reality, you could
choose anything you wanted for the name. The only reason we put an indication of the implementa-
tion language into the class name of this component was pedagogical: to avoid a name collision if
you want to eventually implement both versions, and identify what distinguishes them. Normally,
you might want different implementations of a component if they do things differently (i.e. use dif-
ferent algorithms), or in the case of a driver, solve different problems. Under normal circumstances,
there is no reason to have more than one implementation of a component that does precisely the
same thing (though it is common to have multiple implementations that do things in somewhat dif-
ferent ways, but with the same result).

Second, notice that the class definition references both gov. cca. ports. GoPort and
gov. cca. Conmponent , and declares all of the methods that we saw in those interface definitions,
with precisely the same signatures.

Now you need to modify the Makef i | e system so that it is aware of the new component you're
adding (thedri vers. si dl isalready listed there along with other . si dlI files).

Edit $STUDENT_SRC/ conponent / Makel ncl . conponent s and make the following addi-
tions:

SIDL files containing conponent declarations

For exanpl e:

SIDL_FILES = sidl/drivers.sidl

SIDL_FILES = sidl/functions.sidl sidl/integrators.sidl sidl/randongens.sidl \
sidl/drivers.sidl sidl/unitdrivers.sidl sidl/library.sidl

The COVPONENTS list contains the fully-qualified names of the conponent
classes, augnmented with - LANGUAGE, where LANGUAGE is the |anguage

in which the conponent is inplenmented, e.g., c, cxx, f90.

For exanpl e:

COVPONENTS = drivers. FO0Driver-f90 drivers. CXXDri ver - cxX

COVMPONENTS = drivers. PYDriver-python functions. Pi Function-cxx \

27

The Driver Component

I'ibrary. CxxUni tsLi braryConp-cxx library. PyUnitsLi braryConp-python \
undrivers. PyDriver-python \
functions. Li near Function-c integrators. MonteCarl o-f90 \
randongens. RandNunGener at or-cxx integrators. Trapezoi d-cxx \
i ntegrators. Si npson-f 77\
drivers. CXXDri ver - cxx

Of course if youve chose to create the Fortran 90 driver, you should add
drivers. F90Dri ver - f 90 to the definition of COMPONENTS instead. In both cases, notice the
backslash (“\ ") used to continue definition on to the next line. make will accept long lines, but the
files are easier to read if they're nicely formatted.

1 | mportant

Before proceeding, you need to be sure that you have done the initial build of the
st udent - sr c, following the directions in Appendix C, Building the Tutorial and
Student Code Trees.

6. Whenitisprocessing a. si dl file, Babel needs to be able to resolve external references contained
within the file (for example, to gov. cca. Conmponent , or to other ports, etc.). The simplest way
to do thisis to have Babel collect al of the information it needs in a repository. The build system
for the tutorial is designed to do this, so at this point, we need to add thenew dr i ver s. si dl file
to the repository.

In the $STUDENT _SRC/ conponent s directory, type nake . repository to make Babel
process the . si dl files and update the XML repository. The output should look something like
this:

touch . sidl

Cenerating XM. for SIDL packages contai ni ng conponent decl arations
/ san/ ccal cca-tool s_gcc_intel FO0_PI C/ bi n/ babel -t xm -R ./xm _repository \
-R/ san/ ccal cca-tool's_gcc_intel F90_PI C/ share/ \
cca- spec- babel -0_8 0-babel -1.0.0/ xm \
-0 ../xm _repository sidl/functions.sidl sidl/integrators.sidl \
sidl/randongens.sidl sidl/drivers.sidl sidl/unitdrivers.sidl \
S|dI/I|brary sid
Babel : Parsing URL "file: /san/honedlrs/bernhold/student src/ \
conmponent s/ sidl/functions.sidl"
Babel : Parsing URL "file:/san/ honedirs/ ber nhol d/ st udent-src/ \
conponents/sidl/integrators.sidl".
Babel : Parsing URL "file:/san/honedirs/bernhol d/ student-src/ \
conponent s/ si dl / randongens. si dl ".
Babel : Parsing URL "file:/san/honedirs/bernhol d/ student-src/ \
conponents/sidl/drivers.sidl".
Babel : Parsing URL "file:/san/honedirs/bernhol d/ student-src/ \
conponents/sidl/unitdrivers.sidl"
Babel : Parsing URL "file:/san/honedirs/bernhol d/ student-src/ \
components/sidl/library.sidl"
touch .repository

The next step is to implement the internals of the component, which are obviously dependent on the im-
plementation language you've chosen. For C++, continue directly on with Section 3.2, “Implementation
of the CXXDri ver in C++". For Fortran 90, please jump to Section 3.3, “Implementation of the

28

The Driver Component

FOO0Dr i ver in Fortran 90".

3.2. Implementation of the CXXDr i ver in C++

1. Thenext step isto get Babel to generate the skeleton code that we will fill in with the component's
implementation. In the $STUDENT_SRC/ conponents directory, type nake
.drivers. CXXDri ver - cxx. The output should look something like this:

Cenerating a cxx inplementation for the drivers. CXXDriver conponent.
/ san/ ccal/ cca-tools_gcc_ I ntel FO0_PI T bi n/ babel -s cxx -R ./xm repository \
-R/'san/ccal/ cca-tool s_gcc_intel F90_PI C/ shar e/ cca- spec- babel -0_7_8-babel - 0. 10.
-g -u -E -l -mdrivers.CXXDriver. --suppress-tinestanp drivers.CXXDriver
Babel : Resol ved synbol "drivers.CXXDriver"...
touch .drivers. CXXDri ver - cxx

and in the $STUDENT_SRC/ conponent s/ dri ver s/ cxx directory, you should see the fol-
lowing files:

drivers. CXXDri ver. babel . make
drivers_CXXDriver | npl.cxx
drivers_CXXDriver_I npl . hxx

gl ue

al of which were generated by Babel. (gl ue isactually a directory that contains alarge number of
generated files that Babel needs to do its job, but which you never need to modify.) The source
code files that you will need to modify in order to implement the component are the so-called | m

pl files. For C++, both a source file (. cxx) and the corresponding header file (. hxx) are gener-
ated.

2. In your editor, take a look through both $STUDENT_SRC/ conpon-
ents/drivers/cxx/drivers_CXXDriver _I npl. cxx and $STUDENT_SRC/
conponents/drivers/cxx/drivers_CXXDriver | npl.hxx to familiarize yourself
with their structure before you make any changes.

a. Nearthetopof drivers_ CXXDri ver | npl . hxx, you will see a group of include direct-
ives:

I

/1 Includes for all method dependenci es.
11

#i f ndef included_drivers_CXXDriver_hxx
#incl ude "drivers_CXXDriver. hxx"

#endi f

Babel generates include directives for header files that are necessary to resolve the types used
in the SIDL definition of the class you're implementing (in this case, in the $STUDENT _SRC/
conponents/sidl/drivers. sidl file). It does not automatically generate include dir-
ectives for interfaces you implement. You will have to add those and any other header files
your implementation requires as part of the implementation process.

When an automatically generated file is manually modified, there is always a danger that the
modifications will be overwritten the next time the file is generated. Babel solves this with a
concept called splicer blocks. These structured comments that appear to the compiler as regu-

29

The Driver Component

lar comments, but are interpreted by Babel as having a special meaning. Babel will preserve
code within a splicer block when the file is regenerated. Code outside splicer blocks will be
overwritten. Most Babel-generated files contain numerous splicer blocks -- everywhere you
might need to add something to the generated skeleton. Here is an example:

/1 DO NOT- DELETE splicer.begin(drivers. CXXDriver. _includes)
/1 Put additional 1ncludes or other arbitrary code here...
/1 DO NOT- DELETE splicer.end(drivers. CXXDriver. _includes)

Note that each splicer block has a name that is unique within the file, and has explicit begin-
ning and end markers. In this case, the leading comment syntax is appropriate to C++, but of
course files generated for other languages will have different ways of denoting comments.

Inthedrivers_CXXDriver _| npl.cxx, You will see that Babel has already generated
the signatures for all of the methods you need to implement, giving them appropriate C++-ized
names, and has provided splicer blocks ready for you to fill in (with a default method body
that throws a "method not implemented” exception). This includes both the go method inher-
ited from the gov. cca. ports. GoPort definition, and the set Ser vi ces method inher-
ited from the gov. cca. Conponent definition. You will obviously need to delete the ba-
bel-generated code that throws the exception (or comment it out), and replace it with the code
that actually implements the method under consideration.

3.2.1. The set Ser vi ces Implementation

1. Wwell begin by implementing the set Servi ces method in

dr

ivers_CXXDriver | npl.cxx. Here is what the routine should look like (you'll need to

typein the stuff marked up | i ke t hi s), along with some comments about different sections.

] *x
* Method: setServices|[]
*/
voi d
drivers:: CXXDriver _inpl::setServices (

/*in*/ :.gov::cca::Services services)

t hrow (

)M

::gov::cca:: CCAException

/| DO NOT- DELETE splicer. begin(drivers. CXXDriver. set Servi ces)
/1 insert inplenmentation here

framewor kServi ces = servi ces; ﬂ

/1l Provide a Go port
gov::cca::ports::GoPort gp = (*this); E

f ranmewor kSer vi ces. addPr ovi desPort (gp, E
"GoPort™,

30

The Driver Component

"gov. cca. ports. GoPort",
f ramewor kSer vi ces. creat eTypeMap());

/1l Use an IntegratorPort port
framewor kSer vi ces. regi sterUsesPort ("IntegratorPort",

"integrator.|ntegratorPort",
f ramewor kSer vi ces. creat eTypeMap()) ;

/1 DO NOT- DELETE splicer.end(drivers. CXXDriver. set Servi ces)

ﬂ When the framework calls set Ser vi ces, it passes in a gov.cca.Services object (in C++
gov::cca:Services) that we need to keep a copy of. Note that f r amewor kSer vi ces is not
declared here. We will add a declaration for it to the . hxx filein the next step.

@ In order to register the ports that our component will provide with the framework, we use the
addPr ovi desPort method of the gov. cca. Ser vi ces interface. You can find thisin-
terface inthe cca. si dl file (where you previously looked up gov. cca. Conponent and
gov. cca. ports. GoPort) inorder to check its signature, which is:

voi d addProvi desPort (in gov.cca.Port inPort,
in string portName,
in string type,
i n gov.cca. TypeMap properties)
t hrows gov. cca. CCAException ;

(Of course we're actualy calling the C++ version of the interface.)

The first argument is the object that actually provides the port. The way we wrote the SIDL,
thedri vers. CXXDri ver class provides the port, and since we're writing a method within
this class, the babel C++ binding allows the enclosing object to be accessed through the stand-
ard C++ *this mechanism (cast to the appropriate type).

The second and third arguments are a local name for the port, which must be unique within
the component, and a type, which should be globally unique. If the actual types of the ports
don't match between user and provider, it will cause a failed cast or possibly a segmentation
fault. The string type here is a convenience to the user, giving a human-readable way to
identify the type of the port that can be presented in the framework’s user interface. By con-
vention, the SIDL interface name for the port is used for the type.

The final argument is a gov. cca. TypeMap. This is a CCA-defined type that provides a
simple hash table that can be used to associate properties with a provides port. In practice, it is
rarely used, but must be present.

E’ We must aso tell the framework which ports we expect to use from other components. L ook-
ingincca. si dl , wefind that the method's signatureis:

voi d registerUsesPort(in string portNane,
in string type,
in gov.cca. TypeMap properties)
t hrows gov. cca. CCAException ;

The first and second arguments are a local name for the port, following the same rules and

31

The Driver Component

conventions as in the addPr ovi desPor t invocation above. The final argument is, once
again, agov. cca. TypeMap, likeaddPr ovi desPort .

The header file also requires a couple of additions. First, let's take care of declaring f r amewor k-
Ser vi ces asaprivate variable belonging to thedr i ver s: : CXXDr i ver class.

Edit $STUDENT_SRC/ conponent s/ drivers/cxx/drivers_CXXDriver _I npl. hxx
and add the following:

' }**
* Synmbol "drivers.CXXDriver" (version 1.0)
*
/
class CXXDriver_inpl : public virtual ::drivers::CXXDriver
/1 DO NOT- DELETE splicer.begin(drivers. CXXDriver. _inherits)
/'l Insert-Code-Here {drivers. CXXDriver._inherits} (optional inheritance here)
[/ DO NOT- DELETE splicer.end(drivers. CXXDriver. _inherits)
/1 Al data marked protected will be accessabl e by
/'l descendant |npl cl asses
pr ot ect ed:

bool _w apped;

/1 DO NOT- DELETE splicer. begin(drivers. CXXDri ver. _i npl enent ati on)

/'l Insert-Code-Here {drivers.CXXDriver._inplenentation} (additional details
::gov::cca:: Services franmeworkServices;

/| DO NOT- DELETE splicer.end(drivers. CXXDriver. _i npl enentati on)

We also need to add the include directives for the header files for the classes we inherit from. (For
technical reasons, Babel does not insert these automatically when it generates thefile.)

/| DO NOT- DELETE splicer.begin(drivers. CXXDriver. _incl udes)
/1 Put additional includes or other arbitrary code here...

#i nclude "integrator_IntegratorPort. hxx"
#i nclude "gov_cca_ports_GoPort. hxx"

/1 DO NOT- DELETE splicer.end(drivers.CXXDriver. _includes)

Note that in naming files, Babel trandates periods (“. ”) in the SIDL to underscores (*_").

Now, although the component is not complete, it is a good idea to check that it compiles correctly
with the code you've added so far.

First, change directories to $STUDENT _SRC/ conponent s and run make dri vers. Thiswill

install Makefile and Makelncl.user files in $STUDENT_ SRC/ conpon-
ent s/ driver s/ cxx.

Then, change directories to $STUDENT_SRC/ conponent s/ dri ver s/ cxx and run make. If
you get any compiler errors, you should fix them before going on.

32

The Driver Component

3.2.2. The go Implementation

1

Once again, edit $STUDENT_SRC/ conpon-
ents/drivers/cxx/drivers CXXDriver I npl.cxx and add the implementation of
the go method:

] **

* Method: go[]

*/

int32 t

drivers::CXXDriver _inpl::go ()
throw ()

{
/| DO NOT- DELETE splicer. begi n(drivers. CXXDri ver. go)

/1 insert inplenentation here

doubl e val ue;

int count = 100000;
doubl e | ower Bound = 0.0, upperBound = 1.0;

ciintegrator::lntegratorPort integrator; @

/1 get the port
gov::cca::Port port = franeworkServices.getPort("IntegratorPort");
integrator = babel _cast< ::integrator::IntegratorPort >(port);

e

if(integrator._is_nil()) { E’
fprintf(stdout, "drivers.CXXDriver not connected\n");
framewor kServi ces. rel easePort ("I ntegratorPort");

return -1,
}
/'l operate on the port
value = integrator.integrate (|l owerBound, upperBound, count);

4]

fprintf(stdout,"Value = %f\n", val ue);
fflush(stdout);

/1l release the port.
framewor kSer vi ces. rel easePort ("1 ntegratorPort"); E

return O; ﬂ

/1 DO NOT- DELETE splicer.end(drivers. CXXDri ver. go)

In this section we get a handle to the particular i nt egr at or. | nt egr at or Por t that the
driver's uses port has been connected to. First, we have to declare a variable of the appropriate
type (:integrator::IntegratorPort is the C++ trandation of the SIDL i ntegrat -
or.IntegratorPort, defined in $STUDENT_SRC/
ports/sidl/integrator.sidl.Then weinvoketheget Port onourfranmewor k-
Servi ces object. The argument to this method is the loca name we used in the r e-

g Setup the parameters with which to call the integrator.

33

The Driver Component

gi st er UsesPort invocation. Note the use of the babel _cast method to cast from the
gov::cca:: Port toitssub-type: :integrator::IntegratorPort.

E’ This code checks that the get Por t worked, and returned avalid port. If the get Por t falls,
or if the driver's uses port has not been connected to an appropriate provider, then get Por t
will return anil port object. The _i s_ni | method is automatically available on al SIDL ob-
jects. Because the driver can't do anything without being properly connected to an integrator,
theresponseto get Por t failingisto abort by returning a non-zero value.

Note

get Port returning nil need not be treated as a fatal error in al cases. For ex-
ample, a component may be designed so that certain ports are optional -- to be
used if present, but to be ignored if not. Another possibility is that the compon-
ent may be able to accomplish the same thing through several different ports, so
that only one of a given group needs to be connected.

L

ﬂ Here we actually call the i nt egr at e method on the i nt egr at or port we just got a
handle for. The signature of the i nt egrat e method is defined in $STUDENT_SRC/
ports/sidl/integrator.sidl.

Finally, once we're done using the port, wecall r el easePort .

8 It is considered impolite for a component to call exi t because it will bring down the entire

application, and possibly crash the framework. Instead, components should simply return.

2. Congratulations, you have completed the implementation of the CXXDri ver! To check your
work, run make in $STUDENT_SRC/ conponent s/ dri ver s/ cxx. If you get any compiler
errors, you should fix them before going on.

3. Atthispoint, it isagood ideato go up to $STUDENT _SRC and run maeke to insure that anything
else which might depend on the existence of the new dri vers. CXXDri ver component gets
built too.

The next step isto test your new driver component, in Section 3.5, “Using Y our New Component”.

3.3. Implementation of the FOODr i ver in For-
tran 90

Before we begin the implementation, it is important to understand that, regardless of language, both the
CCA and especially Babel/SIDL impose an object-oriented model on any of its supported languages, in-
cluding Fortran. This means that each Fortran component has state and methods. State means that vari-
ables are associated with a particular instance component and that these state variables (sometimes re-
ferred to as private data) can take on different values for different instances. A method is a subroutine
that is associated with the component. A short introduction to the way CCA/Babel deal with imposing
an object model on Fortran is given in Section 3.4, “SIDL and CCA Object Orientation in Fortran” and
can be read at your leisure. You should also read the Fortran 90 section of the Babel Users Guide
[http:/www.lInl.gov/CA SC/components/software.htmi].

There are other limitations of the Fortran 90 standard that Babel deals with by adhering to certain con-
ventions:

» Fortran doesn't offer the hierarchical structures for routine and type names in the way that most OO
languages do, so SIDL's hierarchical dot-separated notation is translated into a flat namespace using
underscores in Fortran. For example, gov. cca. Ser vi ces is translated to gov_cca Services. A

34

http://www.llnl.gov/CASC/components/software.html

The Driver Component

reference to that SIDL interface would be defined as a variable in this fashion:
type(gov_cca_Services_t) :: services

Because of the reguirement that all symbols in Fortran 90 be at most 31 characters, the sometimes
long names common in OO programming styles need to be abbreviated. Babel keeps the most signi-
ficant portion of the name (the base name) and truncates the rest, adding a hash to make it unique if
necessary. For example, our own FOODr i ver component'sset Ser vi ces() subroutine declara-
tion looks like:

recursive subroutine F90Dri _set Servi cesdkhxt4z7ds_m (self, services, &
excepti on)

The next step in implementing the driver is to get Babel to generate the skeleton code that we will
fill in with the component's implementation. In the $STUDENT_SRC/ conponent s directory,
typemake . drivers. FO0Dri ver - f 90. The output should look something like this:

Cenerating a f90 inplenentation for the drivers. F90Dri ver conponent.

/ san/ ccal/ cca-tool s_gcc_intel FOO_PI ¢ bi n/ babel -s f90 -R ./xm _repository \
-R/ san/ccal/ cca-tool s_gcc_intel F90_PI C/ shar e/ cca- spec- babel -0_8_0- babel -1. 0. 0/ x
-g -u -E -1 -mdrivers. F90Driver. --suppress-tinmestanp drivers.F90Driver

Babel : Resol ved synbol "drivers. F90Driver"...

touch .drivers. FO0Dri ver-f90

and in the $STUDENT _SRC/ conponent s/ dri ver s/ f 90 directory, you should see the fol-
lowing files:

drivers. FO0Dri ver. babel . make
drivers_F90Driver | npl.F90
drivers_F90Driver Mod. F90

gl ue

all of which were generated by Babel. (gl ue isactually a directory that contains a large number of
generated files that Babel needs to do its job, but which you never need to modify.) The source
code files that you will need to modify in order to implement the component are the so-called | m

p! files. For Fortran 90, both a source file (_I npl . F90) and the corresponding module file
(_Mod. F90) are generated.

In your editor, take a look through both $STUDENT SRC/ conpon-
ents/drivers/f90/drivers_F90Driver | npl.F90 and $STUDENT _SRC/
conponent s/ drivers/cxx/drivers_F90Driver_Md. FO0 to familiaize yourself
with their structure before you make any changes.

a. When an automatically generated file is manually modified, there is always a danger that the
modifications will be overwritten the next time the file is generated. Babel solves this with a
concept called splicer blocks. These structured comments that appear to the compiler as regu-
lar comments, but are interpreted by Babel as having a special meaning. Babel will preserve
code within a splicer block when the file is regenerated. Code outside splicer blocks will be
overwritten. Most Babel-generated files contain numerous splicer blocks -- everywhere you
might need to add something to the generated skeleton. Here is an example:

35

The Driver Component

| DO- NOT- DELETE splicer.begin(drivers. FO0Dri ver. use)
! Insert use statenents here...
! DO NOT- DELETE splicer.end(drivers. FO90Dri ver. use)

Note that each splicer block has a name that is unique within the file, and has explicit begin-
ning and end markers. In this case, the leading comment syntax is appropriate to Fortran 90,
but of course files generated for other languages will have different ways of denoting com-
ments.

b. Inthedrivers F90Driver | npl. F90, You will seethat Babel has already generated
the signatures for all of the methods you need to implement, giving them appropriate names
that conform to the Fortran 90 standard (including being hashed to remain within the 31 char-
acter limit if necessary), however it should be fairly easy to match them up with corresponding
SIDL names. Furthermore, Babel also generates a "default” method implementation that
throws a "method not implemented” exception. You will need to delete the exception-throw-
ing code (or comment it out) before adding code that actually implements the method under
consideration. In this case, both the go method inherited from the
gov. cca. ports. GoPort definition, and the set Ser vi ces method inherited from the
gov. cca. Conmponent definition are there, along with several others associated with Babel.

3.3.1. The set Ser vi ces Implementation

1. Wwell begin by implementing the set Servi ces method in
drivers_F90Dri ver _I npl . F90. Here is what the routine should look like (you'll need to
typein the stuff marked up | i ke t hi s), along with some comments about different sections.

I Method: setServices|[]
!

recursive subroutine F90Dri _set Servi cesdkhxt4z7ds_m (self, services, &
excepti on)
use sidl
use sidl _Not I npl ement edExcepti on
use gov_cca_CCAExcepti on
use gov_cca_Services
use sidl _Baselnterface
use sidl _RuntineException
use drivers_F90Dri ver
use drivers_ F90Dri ver _inpl
I DO NOT- DELETE splicer. begi n(drivers. FOODri ver. set Servi ces. use)
I Insert use statenents here..

use gov_cca_TypeMap I A CCA catch-all properties list (enpty for us)
use gov_cca_Port ! needed to use a gov.cca. Port (we do)
use gov_cca_ports_GoPort ! need to export our inplenmentation of GoPort

I DO NOT- DELETE splicer.end(drivers. FO0Dri ver. set Servi ces. use)

36

The Driver Component

inmplicit none

type(drivers_F90Driver_t) :: self I in
type(gov_cca_Services_t) :: services ! in
type(sidl _Baselnterface_t) :: exception ! out

I DO NOT- DELETE splicer. begi n(drivers. F90Dri ver. set Servi ces)
I Insert the inplenmentation here...

type(gov_cca_TypeMap t) ;. nmyTypeMap ﬂ
type(gov_cca_Port t) ;. nyPort
type(SIDL_Baselnterface_t) :: excpt

type(drivers_F90Driver_wap) :: dp
call drivers_F90Driver__get_data n(self, dp) @

I Set my reference to the services handl e
dp%l_privat e_dat a% r amewor kServi ces = servi ces E’

call addRef (services, excpt)

I Create an enpty TypeMap

call createTypeMap(dp%l_private_dat a% r amewor kServi ces, & ﬂ
nyTypeMap, excpt)

call checkExceptionDriver(excpt, 'setServices createTypeMap call')

! Provide a GoPort
call cast(self, nmyPort, excpt) E

call addProvi desPort (dp%l_pri vat e_dat a% r amewor kServi ces, &

myPort, 'GoPort', 'gov.cca.&Port', &

nyTypeMap, excpt)
call checkExceptionDriver(excpt,'setServices addProvi desPort: GoPort')

I Register to use an integrator port
call registerUsesPort (dp%l_private_dat a% r amewor kServi ces, & E
&

"IntegratorPort',
"integrator.|Integrator', &

nyTypeMap, excpt)
call checkExceptionDriver(excpt, &
'set Services registerUsesPort: IntegratorPort')

call del eteRef (nyTypeMap, excpt)

I DO NOT- DELETE splicer.end(drivers. FOODri ver. set Servi ces)
end subroutine F90Dri _set Servi ces4dkhxt 4z7ds_mi

ﬂ Declaration of variables that will be needed below. The types are defined in various modules
used above. The drivers F90Driver_wrap type is a Babel idiom for the private data associated
with the particular instance of this component, in an object-oriented sense.

E’ When the framework calls set Ser vi ces, it passes in a gov.cca.Services object (in C++
gov::cca:Services) that we need to keep a copy of in the private data associated with thisin-
stance of our component. Babel uses “reference counting” to track usage of objectsin order to
know when it is safe to delete them. Because Fortran has no native mechanism for reference
counting, we must use Babel's addRef method to indicate that we're storing a reference to
theser vi ces object that the framework passed into set Ser vi ces
The ser vi ces methods to register uses and provides ports requires a gov.cca.TypeMap (in
Fortran TypeMap), which we create here.

37

The Driver Component

In SIDL, methods can throw exceptions. In languages like Fortran, which don't have native
support for exceptions (if you're not familiar with exceptions, it is sufficient to think of them
as error codes), they are trandated into an additional subroutine argument (in this case
excpt) which then should be checked (“caught”). We'll add the checkExcepti on-
Dri ver method in Step 2. Note also that for SIDL methods that do not explicitely throw an
exception, Babel adds an extraargument except i on of type sidl_Basel nterface to the meth-
od's argument list.

When Babel creates my Ty peMap, it will (internally) add a reference to it. Once we're done
using it, we can tell Babel that by calling Babel's del et eRef method, which you can see at
the end of the routine. When the reference count goes to zero, Babel will destroy the ny Ty -

peRef object and reclaim the memory associated with it.

" Caution

Failure to follow proper reference counting procedures in Babel/Fortran (or oth-
er non-00 languages, such as C) code will lead to “memory leaks” in your ap-
plication. See the Babel Users Guide
[http://www.lInl.gov/CA SC/components/docs/users_guide/users guide.html] for
more detailed information.

In order to register the ports that our component will provide with the framework, we use the
addPr ovi desPort method of the gov. cca. Ser vi ces interface. You can find thisin-
terfaceinthe cca. si dl file (where you previously looked up gov. cca. Conponent and
gov. cca. ports. GoPort) inorder to check its signature, which is:

voi d addProvi desPort (in gov.cca.Port inPort,
in string portNane,
in string type,
i n gov.cca. TypeMap properties)
t hrows gov. cca. CCAException ;

(Of course we're actualy calling the Fortran 90 version of the interface.)

The first argument is the object that actually provides the port. The way we wrote the SIDL,
thedrivers. FOODri ver class provides the port, and since we're writing a method within
this class, we use Babel'scast method to cast our self pointer to type gov.ccaPort.

The second and third arguments are a local name for the port, which must be unique within
the component, and a type, which should be globally unique. If the actual types of the ports
don't match between user and provider, it will cause a failed cast or possibly a segmentation
fault. The string type here is a convenience to the user, giving a human-readable way to
identify the type of the port that can be presented in the framework's user interface. By con-
vention, the SIDL interface name for the port is used for the type.

The final argument is a gov. cca. TypeMap. This is a CCA-defined type that provides a
simple hash table that can be used to associate properties with a provides port. In practice, it is
rarely used, but must be present.

We must also tell the framework which ports we expect to use from other components. L ook-
ingincca. si dl , wefind that the method's signatureiis:

voi d regi sterUsesPort(in string portNane,

38

http://www.llnl.gov/CASC/components/docs/users_guide/users_guide.html

The Driver Component

in string type,
i n gov.cca. TypeMap properties)
t hrows gov. cca. CCAException ;

The first and second arguments are a local name for the port, following the same rules and
conventions as in the addPr ovi desPort invocation above. The final argument is, once
again, agov. cca. TypeMap, again likeaddPr ovi desPort .

2. Themodulefile also requires a couple of additions. First, let's take care of declaring f r amewor k-
Ser vi ces as part of the modul€'s private data.

Edit $STUDENT_SRC/ conponents/drivers/f90/drivers_F90Dri ver _Md. FOO
and add the following:

iybe drivers_F90Driver _priv
sequence
I DO NOT- DELETE splicer. begi n(drivers. FOODri ver. privat e_dat a)

| Handl e to framework Services object
type(gov_cca_Services_t) :: frameworkServices

I DO NOT- DELETE splicer.end(drivers. FOODri ver. private_dat a)
end type drivers_F90Driver_priv

3. Weaso need to add the use directives for the F90 module for gov. cca. Ser vi ces.

| DO NOT- DELETE splicer.begin(drivers. FO0Dri ver. use)
I Insert use statenents here...

' CCA framework services nodul e
use gov_cca_Services

I DO NOT- DELETE splicer.end(drivers. F90Dri ver. use)

4. Now, athough the component is not complete, it is a good idea to check that it compiles correctly
with the code you've added so far.

First, change directories to $STUDENT_SRC/ conponent s and run maeke dri vers. Thiswill
install Makefile and Makelncl.user files in $STUDENT_ SRC/ conpon-
ents/drivers/f90.

Then, change directories to $STUDENT _SRC/ conponent s/ dri ver s/ f 90 and run nake. If
you get any compiler errors, you should fix them before going on.

3.3.2. Implementing the Constructor and Destructor

Constructor and destructor are concepts from object-oriented programming. Specifically, they are the
routines that are called to create an instance of an object, and when it is being destroyed. When using

39

The Driver Component

most OO languages in the CCA/Babel environment, the constructor and destructor are handled pretty
much automatically. In a non-OO language, like Fortran or C, we have to do a little more work. Spe-
cifically, we have to alocate and deallocate the data needed to maintain the private state of the compon-

ent instance.

1. Edit

and find the constructor method, which Babel abbreviatesct or .

The constructor must allocate the space for the private data, initialize the private data as appropriate
(in this case, we set f r amewor kSer vi ces to nul |'), and Babel has to be told about the private
data. In this component, the only private data we need to storeis a pointer to the ser vi ces object

passed into set Ser vi ces.

Cl ass constructor called when the class is created.

recursive subroutine drivers_F90Driver__ctor_m (self)

use drivers_F90Dri ver

use drivers_ F90Dri ver _inpl

I DO NOT- DELETE spl i cer. begi n(drivers. FOODri ver. _ctor. use)
I Insert use statenents here. ..

I DO NOT- DELETE splicer.end(drivers. FOODri ver. _ctor. use)
inmplicit none

type(drivers_F90Driver_t) :: self ! in

DO NOT- DELETE spl i cer. begi n(drivers. FOODri ver. _ctor)
Insert the inplenentation here...

I Access private data

type(drivers F90Driver wap) :: dp

! Allocate nmenory and initialize

al | ocate(dp%d_pri vat e_dat a)

call set_null (dp%_private_dat a% r anewor kSer vi ces)
call drivers_F90Driver__set_data n(self, dp)

DO NOT- DELETE splicer.end(drivers. F90Dri ver._ctor)

end subroutine drivers_F90Driver__ctor_m

2. Find the destructor method, which Babel abbreviates dt or . The destructor's job is to undo what

the constructor did.

Cl ass destructor called when the class is del eted.

recursive subroutine drivers_F90Driver__dtor_m (self)

use drivers_F90Dri ver

use drivers_ F90Dri ver _inpl

I DO NOT- DELETE spli cer. begi n(drivers. FOODri ver. _dtor. use)
I Insert use statenents here. ..

I DO NOT- DELETE splicer.end(drivers. FOODri ver. _dtor. use)
inmplicit none

type(drivers_F90Driver_t) :: self ! in

DO NOT- DELETE spl i cer. begi n(drivers. FOODri ver. _dtor)

40

$STUDENT_SRC/ conponent s/ drivers/f90/drivers_F90Dri ver _| npl. F90

The Driver Component

! Insert the inplenentation here...

I Access private data and deal | ocate storage
type(drivers_F90Driver_wap) :: dp

call drivers_F90Driver__get_data n(self dp)
deal | ocat e(dp%l_pri vat e_dat a)

I DO NOT- DELETE splicer.end(drivers. FOODri ver. _dtor)
end subroutine drivers_ F90Driver_ _dtor_mi

3. Now, athough the component is not complete, it is a good idea to check that it compiles correctly
with the code youve added so far. Run mmke in $STUDENT_SRC/ conpon-
ent s/ drivers/f90. If you get any compiler errors, you should fix them before going on.

3.3.3. The go Implementation

1. Once again, edit $STUDENT_SRC/ conpon-
ents/drivers/f90/drivers_F90Driver | npl. F90 and add the implementation of the
go method:

I Method: go[]
!

recursive subroutine drivers_F90Driver_go_m (self, retval, exception)
use sidl
use sidl _Notl npl enent edException
use sidl _Baselnterface
use sidl _Runti meException
use drivers_F90Dri ver
use drivers_ F90Driver _inpl
I DO NOT- DELETE splicer. begi n(drivers. FO0Dri ver. go. use)
! Insert use statenents here...

use sidl _Baselnterface “

use gov_cca_Port
use integrator_IntegratorPort

I DO NOT- DELETE splicer.end(drivers. FO0Dri ver. go. use)
inmplicit none

type(drivers F9ODriver t) :: self ! in

i nteger (selected_int_kind(9)) :: retval ! out
type(sidl _Baselnterface_t) :: exception ! out

I DO NOT- DELETE spli cer. begi n(drivers. FOODri ver. go)
I Insert the inplenmentation here...

type(gov_cca_ Port _t) :: general Port

type(SIDL_Baselnterface t) :: excpt
type(integrator _IntegratorPort _t) :: integratorPort E

41

The Driver Component

! Private data reference
type(drivers_F90Driver_wap) :: dp

I local variables for integration

real (kind=sidl _double) :: |owBound
real (kind=sidl double) :: upBound
i nteger (kind=sidl _int) :: count
real (kind=sidl _double) :: value

! Initialize |local variables
count = 100000

| owBound = 0.0
upBound = 1.0

I Access private data
call drivers_F90Driver__get _data n(self, dp)
retval = -1

I get the port ...
call getPort(dp%l_private_dat a% r amewor kServi ces, & E;

"IntegratorPort', general Port, excpt)
call checkExceptionDriver(excpt, &

"getPort(''IntegratorPort'')")
if(is_null(generalPort)) then
write(*,*) '"drivers.F90Driver not connected
return
endi f

I Get an IntegratorPort reference fromthe general port one
call cast(general Port, integratorPort, excpt) ig

call checkExceptionDriver(excpt, 'cast(general Port, integratorPort, excpt)')
if (not_null(integratorPort)) then

value = -1.0 ! nonsense number to confirmit is set

| operate on the port

call integrate(integratorPort, |owBound, upBound, count, & (5]
val ue, excpt)

call checkExceptionDriver(excpt, 'integrate(integratorPort, |owBound, upBc
wite(*,*) "Value ="', value

el se I integratorPort is nul
wite(*,*) 'DriverF90: inconpatible IntegratorPort

endi f

! rel ease the port
call releasePort(dp%d_private_dat a% r anewor kServi ces, & ﬁ}

"IntegratorPort', excpt)
call checkExceptionDriver(excpt, 'releasePort(''IntegratorPort'')")

retval = 0 ii
return

I DO NOT- DELETE splicer.end(drivers. FOODri ver. go)
end subroutine drivers_F90Driver_go_m

ﬂ Declarations for modules we need to use in this routine.

42

The Driver Component

o

Setup the variables and parameters with which to call the integrator.
These portions of the code are associated with getting a handle to the particular i nt egr at -
or. | ntegratorPort that the driver's uses port has been connected to.

First, we have to declare variables of the appropriate type to hold the port. Because of the way
OO programming works in CCA/Babel, we first get the port as a generic gov.cca.Port
(gov_cca Port_t in Fortran 90) and then cast it to the specific port we need to use, integrat-
or.IntegratorPort (integrator_IntegratorPort t in Fortran 90). Recall that i ntegrat -
or. | ntegratorPort is defined in $STUDENT_SRC/
ports/sidl/integrator.sidl).

Then, we invoke the get Port on our f r amewor kSer vi ces object. The argument to this
method is the local name we used in ther egi st er UsesPor t invocation, and it returns a
gov.cca.Port (and an exception).

Finally, we use Babel's cast method to cast the generic port to the specific integrator port
that we need.

This code checks that the get Por t worked, and returned avalid port. If the get Por t falls,
or if the driver's uses port has not been connected to an appropriate provider, then get Por t
will return anull port object. Thei s_nul | method is automatically available on the Fortran
90 binding of any SIDL object. Because the driver can't do anything without being properly
connected to an integrator, the response to get Port failing is to abort by returning a non-
zero vaue.

It is also possible that a valid gov.cca.Port would be returned, but it might not be the integrat-
or.IntegratorPort we expect. If thisis the case, the cast will return a null value. The proper
action inthis caseis also to fail gracefully by returning a non-zero result.

- Note
get Port returning nil need not be treated as a fatal error in al cases. For ex-
ample, a component may be designed so that certain ports are optional -- to be
used if present, but to be ignored if not. Another possibility is that the compon-
ent may be able to accomplish the same thing through several different ports, so
that only one of a given group needs to be connected.

Here we actually call the i nt egr at e method on the i nt egr at or port we just got a
handle for. The signature of the i nt egr at e method is defined in $STUDENT_SRC/

ports/sidl/integrator.sidl. Notice that while the SIDL definition of i nt eg-

r at e shows it as a function, returning a double precision result, in Fortran 90, Babel trans-
lates thisinto a subroutine with the return value as an extra argument. This is because Fortran
does not support functions returning al types (arrays, for example).

Finally, once we're done using the port, we call r el easePort .

It is considered impolite for a component to call exi t because it will bring down the entire
application, and possibly crash the framework. Instead, components should simply return.

There's one other bit of code we have to provide before we can declare this component complete. In
numerous places, we've seen exceptions being returned, and we've been using aroutine check Ex-
ceptionDri ver todea with them. Thisis amethod that we have to write.

Exceptions are a potentially powerful and sophisticated way of handling errors in software. But for
the purposes of this exercise, we're going to take a very simple approach. Our exception handler
routine simply test whether or not the exception is a null object, and if it is print a message and tell
Babel that as far as we're concerned it can delete the excpt object. Notice that this routine does
not exit or abort. As we've noted, it is not considered polite behavior for a component to exit, even
in the event of an exception.

43

The Driver Component

In $STUDENT_SRC/ conponent s/ drivers/f90/drivers_F90Dri ver _I npl . F90
locate the splicer blocks for miscellaneous code, at the very end of the file, and enter the following:

I DO NOT- DELETE spl i cer. begi n(_m scel | aneous_code_end)

I Insert extra code here...

! Small routine (not part of the SIDL interface) for

I checking the exception and printing the nessage passed as
I and argunent

|

subrouti ne checkExceptionDriver (excpt, nsQ)
use SIDL Baselnterface

use gov_cca_CCAException

inmplicit none

type(sidl _Baselnterface t), intent(inout) :: excpt
character (len=*) :: nmseg ! in

type(sidl _Baselnterface_t) :: throwaway

if (not_null (excpt)) then

write(*, *) "drivers.F90Driver Exception: ', nsg
caldl _]gel et eRef (excpt, throwaway)

end i

end subroutine checkExceptionDriver

I DO NOT- DELETE splicer.end(_niscel |l aneous_code_end)

3. Congratulations, you have completed the implementation of the FOODri ver! To check your
work, run make in $STUDENT_SRC/ conponent s/ dri ver s/ f 90. If you get any compiler
errors, you should fix them before going on.

4. At thispoint, it isagood ideato go up to $SSTUDENT _SRC and run make to insure that anything

else which might depend on the existence of the new dri vers. CXXDri ver component gets
built too.

The next step isto test your new driver component, in Section 3.5, “Using Y our New Component”.

3.4. SIDL and CCA Object Orientation in For-

tran

There will be afew artifacts of CCA's (and Babel's) insistence on an object model. Generally the object
oriented style of programming groups state data and subroutines (or methods) into "objects’. Because
CCA requires an object model for its components, Fortran programmers will have to become a little fa-
miliar with how CCA/Babel implements thisin the language. A broad exposition on object oriented con-
cepts is beyond the scope of this tutorial document, more and better information can be found elsewhere
[http://en.wikipedia.org/wiki/Object_oriented_programming].

The first thing objects need is a constructor and destructor to initialize state data. For Fortran, the meth-
ods ending in _ctor and _dt or are the constructor and destructor for the component (see listing
above). This allows the programmer to create (in the constructor) and delete (in the destructor) state data
associated with the component. One thing that almost all components want to store is the
gov_cca_Servi ces handle that is passed in through the set Ser vi ces() . A complex component
may wish to store parameters associated with its function as well.

44

http://en.wikipedia.org/wiki/Object_oriented_programming

The Driver Component

Looking at the cca specification cca. si dl , Babel maps each CCA SIDL type (e.g. gov. cca. Port)
to a Fortran type (e.g. type(gov_cca Port_t)).

Because return values cannot accept all Babel types and because Fortran does not provide either an ob-
ject model or a mechanism for exceptions, these features are placed in the argument list:

e A handle that represents the component and holds the state (or private) data for the component is
prepended to the front of the argument list for every subroutine method: it is usually called sel f .

» Thereturn value is appended to the end of the argument list.

 If there is an exception specified in the .sidl file, then the exception (of type
SIDL_Baselnterface t) is appended after the return value.

Asan example, if auser specifiesa SIDL snippet such as:

file: ./cca-spec-babel/cca.sidl |ine:108

package gov {

package cca version 0.8.0 {

o Port getPort(in string portNanme) throws CCAException

}')/ end of package cca
} /1 end package gov

In Fortran translates into:

i&/be(gov_cca_Port_t) 11 port
type(SI DL_Baselnterface_t) :: excpt
type(gov_cca_Services) :: frameworkServices

bbft = get Port (frameworkServices, port, excpt)

3.5. Using Your New Component

1. Change directories to $STUDENT_SRC/ conponent s/ exanpl es and edit t ask1l_rc. This
file will assemble and run an application using the new driver component you've created. However
it includes lines for both versions of the driver component, and probably you've only implemented
one. So you will need to comment out al of the lines which refer to the driver component you did
not implement.

2. Run the script with ccaf e-single --ccafe-rc taskl_rc. It should run without errors
and give you aresult like Val ue = 3. 140347 (since we're using a Monte Carlo integration al-
gorithm, results will vary).

3. Fedl freeto modify t ask1 _r c to assemble applications with different components. The beginning
of ther c file loads the palette with all of the available components and creates an instance of each.
See Chapter 2, Assembling and Running a CCA Application for further information and ideas for
other “applications’ you can construct.

45

Chapter 4. Creating a Component from
an Existing Library

$Revision: 1.47 $
$Date: 2006/08/03 19:45:32 $

In this exercise, you will wrap an existing (“legacy”) software library as a CCA component (i.e.
“componentize” it). The CCA is designed to make it as easy as possible to componentize existing soft-
ware, and a significant fraction of CCA components are created in this way. While this specific example
is small, the techniques can be used to produce a component that uses an existing library with minimal
or no modifications to legacy code is applicable for large legacy codes.

The integrator components are Fortran90 wrappers over an existing legacy integrator library. For the
purposes of this exercise, the legacy library is located in the $STUDENT_SRC/ | egacy/ f 90 direct-
ory. Thel nt egr at or . f 90 code implements a midpoint rule integration approach. Our goal isto cre-
ate an integrator component that uses the legacy implementation to compute the integral of a function.

4.1. The legacy Fortran integrator

Our Fortran legacy library (in $STUDENT_SRC/ | egacy/ f 90) contains an integration agorithm,
which can be invoked as follows:

call integrate_np(functionParans, |owBound, upBound, count)

where functionParams is a variable of type FunctionParams t. This type is used to store various func-
tion-specific attributes, such as the constant coefficients. The definition of this type is in the Func-
t i onModul e module, inthe LegacyFunct i onModul e. f 90 file;

file: $STUDENT_SRC/ | egacy/ f 90/ LegacyFuncti oniMbdul e. f 90
nodul e Functi onMbdul e
inmplicit none

type FunctionParans_t

private

real, dimension(3) :: coef
end type FunctionParans_t

cont ai ns
subroutine init(parans, coefficients)

I 11 NPUT PARAMETERS:
type(FunctionParans_t), intent(lINOUT) :: parans
t(l

real, dinension(:), inten N) :: coefficients
integer :: i
doi =1,3
params%oef (i) = coefficients(i)
end do

end subroutine init
real function eval (parans, Xx)

I 11 NPUT PARAMETERS:
type(FunctionParans_t), intent(IN :: parans

46

Creating a Component from an Existing Lib-
rary

real, intent(IN) X
eval = 2 * x
end function eval

end nodul e Functi onModul e

The legacy integrator (in | nt egr at or . f 90) uses the midpoint integration algorithm to integrate an
arbitrary function that has an eval function and uses f unct i onPar ans to store its state. The com-
plete code for the legacy integrator follows.

file: $STUDENT_SRC | egacy/ f90/ 1 ntegrator.f90
nodul e | ntegrator
use Functi onMdul e “

implicit none
cont ai ns

real function integrate_np(functionParans, |owBound, upBound, count)
inmplicit none

I 11 NPUT PARAMETERS:

type(FunctionParans_t),intent(IN) :: functionParans @
real, intent(IN) :: | owBound

real, intent(IN) :: upBound

i nteger, intent(IN) :: count

I 1 LOCAL VARI ABLES:

real :: sum h, x, dcount, func_val

i nteger :: i

integrate_np = -1

I Compute integral
sum= 0.0
h = (upBound - | owBound) / count

do i =0, count
X = lowBound + h * (i + 0.5)
func_val = eval (functionParans, x) !ﬂ
sum = sum + func_val

end do

integrate_np = sum* h
end function integrate np

end nodul e | ntegrator

Noteson thel nt egr at or. f 90 file

The | nt egr at or module uses the Funct i onModul e, which means that the integrator can
only evaluate functions defined in this Funct i onModul e, or other Fortran modules that "ex-
tend" it.

E The f unct i onPar ans argument of the integrator is the only way function parameters can be
passed through to the function being eval uated.

47

Creating a Component from an Existing Lib-
rary

E’ This evaluates the function given the parameters passed into the | nt egr at or .

4.2. The Funct i onModul e wrapper.

To enable the legacy integrator to evaluate functions that are not defined in the same fashion as the
Funct i onModul e above (i.e., such that they define the eval method or equivalent interface that
takes a FunctionParams t argument and a real argument) is to create another Funct i onMbdul e that
allowsaFuncti onPort to beused for the function evaluation.

file: $STUDENT_SRC/ | egacy/ f 90/ Functi onModul eW apper . f 90
nodul e Functi onMbdul e

I This nodul e repl aces the Functi onModul e used by the | egacy integrator.
I Thus, we need to nakes sure that this nodule is first in the nodule
I search path when buil ding the integrator conponent.

I W& need to include the function port definitions
use function_FunctionPort type “

use function_FunctionPort
inmplicit none

type FunctionParans_t
sequence I required for component version
type(function_FunctionPort t) funcPort g

end type FunctionParans _t

i nterface eval

I This is the one called by the I egacy Integrator
nodul e procedure eval Function
end interface

cont ai ns
subrouti ne set FunctionPort (parans, port)
type(FunctionParans_t), intent (QUT) :: parans
type(function_FunctionPort_t), intent(IN) :: port

parans% uncPort = port
end subroutine setFuncti onPort

real function eval Function(parans, x)
use function_FunctionPort
I input paraneters:

type(FunctionParans_t), intent(IN) :: params
real, intent(IN) :: X

I I ocal variabl esreal

real (selected_real kind(15, 307)) :: xx
real (selected_real kind(15, 307)) :: retval

I Conpute value by calling the function evaluation in Functi onMdul e
XX = X
cal |l eval uate(paranms% uncPort, xx, retval) ﬂ

eval Function = retval
end function eval Functi on

end nodul e Functi onModul e

48

Creating a Component from an Existing Lib-
rary

Noteson the Funct i onMbdul eW apper . f 90 file

“ The Functi onModul eW apper module uses (includes) the Functi onPort type and
Functi onPort modules (in $STUDENT_SRC/ port s/ functi on/f 90, whose definitions
were automatically generated by Babel from the SIDL definition of func-
tion. FunctionPort ($STUDENT_SRC/ ports/sidl/function.sidl).

The FunctionParams _t type that was originally defined in L egacyFunctionM odule.f90.

8 The legacy Funct i onMbdul e contained the eval function; in our wrapper implementation, we
create an eval interface that contains the new evaluation function, eval Functi on.

ﬂ Thisisthe call to the eval uat e subroutine of the Funct i onPor t , using the parameters passed
totheeval Funct i on. Note that the par anms% uncPor t is supposed to have aready been set
by the caller by using the set Funct i onPor t subroutine defined in this module.

Note

In one of the first steps of this tutorial, the entire tutorial tree was built (see Appendix C,
Building the Tutorial and Sudent Code Trees), including the sources in the
$STUDENT_SRC/ | egacy/ f 90 directory and its subdirectories. Two distinct libraries
were created, one containing only legacy codes (i b/ | i bLegacyl nt egr at or. a),
and another one (1 i b/ | i bW appedLegacyl nt egr at or. a) containing the Func-
ti onModul e definition in Funct i onModul eW apper . f 90 instead of the Func-
ti onModul e definition definition contained in LegacyFuncti onMbdul e. f 90.
Also, the compiled modules for each version (legacy and wrapped) are put in separate in-
clude directories: i ncl ude for the legacy code, and i ncl ude_w for the wrapped ver-
sion. While the simple application example (in si npl eApp/ Mai n. f 90) uses only the
legacy codes, the i ncl ude_w directory and the l'ib/
I i bW appedLegacyl nt egr at or. a are used in the compilation of the Midpoint in-
tegrator component that you will write in the steps that follow.

4.3. Thei ntegrator. | ntegratorPort Defini-

tion

The file $STUDENT _SRC/ ports/sidl/integrator.sidl aready contains the i nt egr at -
or. | ntegratorPort SIDL declaration:

package integrator version 1.0 {
interface IntegratorPort extends gov.cca. Port

doubl e integrate(in double | owBound, in double upBound,
inint count);

}

Thei nt egrat or. | nt egratorPort SIDL interface extendsthe gov. cca. Port interface, which
does not have any methods. Thus, the only method in thei nt egrat or. I nt egrat or Port isi n-
t egr at e, which takes several arguments that determine the region of integration and the number of
points at which the function is evaluated.

4.4. SIDL definition of the Midpoint component

49

Creating a Component from an Existing Lib-
rary

We will write a SIDL-based component that implements the port defined in previous steps and calls
thei nt egr at e_np method implemented in the legacy code described in Section 4.1, “The leg-
acy Fortran integrator” to integrate a function, using function components that implement the
function. FunctionPort port described in Section 4.3, “The integrat-
or. I ntegratorPort Definition” (and defined in $STUDENT_SRC/
ports/sidl/function.sidl).

Edit the file, $STUDENT _SRC/ conponent s/ si dl /i nt egrat ors. si dl to define the class
for the new integrator component, i nt egr at ors. M dpoi nt :

package integrators version 1.0 {

/1 The follow ng conponents inplenment all methods of the

/'l integrator.IntegratorPort and gov.cca. Conponent interfaces.

/'l Since they use the SIDL 'inplenents-all' keyword, the

/'l methods do not need to (but optionally can) be listed explicitly.

class Mdpoint inplements-all integrator.|ntegratorPort,
gov. cca. Conmponent

{

}

cl ass MonteCarlo inmplenents-all integrator.IntegratorPort,
gov. cca. Conponent
gov. cca. Conmponent Rel ease

{

/'l integrator.IntegratorPort nethods:
doubl e integrate(in double | owBound, in double upBound,
inint count);

/1 gov. cca. Conponent net hods:
voi d set Servi ces(in gov.cca. Services services)
t hrows gov. cca. CCAExcepti on;

/1 gov. cca. Conponent Rel ease net hods:
voi d rel easeServi ces(in gov.cca. Servi ces services)
t hrows gov. cca. CCAExcepti on;

Note that the M dpoi nt class, unlike the MonteCarl o class does not implement the
gov. cca. Conponent Rel ease interface, which is optional.

Edit the file $STUDENT _SRC/ conponent s/ Makel ncl . conponent s to add a new compon-
ent description in the COMPONENTS variable, which contains the list of components in this direct-
ory. Each value consists of the fully-qualified name of the component (including packages), to
which we append "-language”, where language is one of ¢, cxx, or f90. In this case, the name is
i ntegrators. M dpoi nt, and the language is f90, so you need to add i nt egrat -
ors. M dpoi nt - f 90. The updated value of COMPONENTS should look like something like this:

COVPONENTS = functions. Pi Function-cxx \
i ntegrators. MonteCarl o-f90 randongens. RandNuntGener at or - cxx \
drivers.F90Driver-f90 drivers. CXXDriver-cxx \
i ntegrators. M dpoint-f90

Note the backslash (“\ ") that has to be added in order to extend the entry to the next line.

In the $STUDENT _SRC/ conponent s directory, run neke . r eposi t ory. Thiswill generate

50

Creating a Component from an Existing Lib-
rary

the XML representation of the i ntegrator. M dpoint SIDL class and store it in the
$STUDENT_SRC/ xnd _r eposi t ory directory.

4. In the $STUDENT _SRC/ conponent s directory, run nmake
.integrators. M dpoi nt-f90. This will generate Fortran 90 server code for the i nt eg-
rators. M dpoi nt component class.

4.5. Fortran 90 implementation of the Midpoint
Integrator

4.5.1. The M dpoi nt module implementation

» After the Fortran 90 code has been generated by Babel, in $STUDENT_SRC/ com
ponent s/ i nt egr at or s/ f 90, edit the Fortran module definition to define data that will be
stored in each instance of this component:

file: $STUDENT_SRC/ conponents/integrators/f90/integrators_M dpoi nt_Md. F90
#i ncl ude"i nt egrat ors_M dpoi nt _f Abbrev. h"
nmodul e integrators_M dpoi nt_i npl

I DO NOT- DELETE spli cer. begi n(i ntegrators. M dpoi nt. use)
I Insert use statenents here...

' CCA framework services nodul e
use gov_cca_Services

I Use a "wapper"” nodule for the | egacy Functi onMddul e nodul e
use Functi onModul e “

I Use | egacy Integrator nodule
use | ntegrator E

I DO NOT- DELETE splicer.end(integrators. M dpoint. use)
private :: wapQbj _s

i nterface w apQbj
nmodul e procedure wapj _s
end interface

L3
type integrators_Mdpoint _priv
sequence
I DO NOT- DELETE splicer. begi n(i ntegrators. M dpoint. privat ﬂe_dat a)

I Handl e to framework Services object
type(gov_cca_Services_t) :: frameworkServices

I Function paraneters (required by |egacy integrator)
type(FunctionParans_t) :: funcParans

I DO NOT- DELETE splicer.end(integrators. M dpoint. private_data)
end type integrators_Mdpoint_priv

51

Creating a Component from an Existing Lib-
rary

type integrators_M dpoint_wap

sequence

type(integrators_Mdpoint_priv), pointer :: d_private_data
end type integrators_M dpoint_wap

end nodul e i ntegrators_M dpoi nt _i npl

Noteson thei nt egrat ors_M dpoi nt _Mod. F90 file

(1]
(3]

3

Thei nt egrat or s_M dpoi nt module uses the FunctionModule, which means that the in-
tegrator can only evaluate functions defined in this FunctionModule, or other Fortran modules
that "extend" it.

This component stores a handle to the framework's Services object, equivalently to the way
the Driver component was implemented in Step 2.

Thelegacy | nt egr at or module isincluded.

Thei nt egrat ors. M dpoi nt component, like the legacy integrator (see Integrator.f90)
requires that the function whose integral is to be computed provides its state via the Function-
Params _t type.

4.5.2. Defining the constructor and destructor

In the same directory ($STUDENT _SRC/ conponent s/ i nt egr at or s/ f 90), edit thei nt egr at -

ors_ M
ors M

routines;

file:

dpoint _Inpl.F90 and insert the code between splicer blocks of the i ntegrat -
dpoint__ctor_m,integrators_Mdpoint_dtor_m, and set Servi ces sub-

$STUDENT_SRC/ conponent s/ i nt egrat ors/ f90/i nt egrat ors_M dpoi nt _I npl .

I Cass constructor called when the class is created.

recursive subroutine integrators_Mdpoint__ctor_m (self)

use sidl

use sidl _Notl npl ement edExcepti on
use sidl _Baselnterface

use sidl _Runti meException

use integrators_M dpoint

use integrators_M dpoint_inpl

I DO NOT- DELETE splicer. begin(i ntegrators. M dpoi nt. _ctor. use)
I Insert use statenents here...
I DO NOT- DELETE splicer.end(integrators. M dpoint. ctor. use)

i mpl

icit none

type(integrators_Mdpoint t) :: self ! in

I DO NOT- DELETE splicer. begin(integrators. M dpoint. ctor)
I Insert the inplenmentation here...

I Access private data
type(integrators_Mdpoint_wap) :: dp

A

locate nenmory and initialize

al | ocate(dp%_private_dat a)

52

F90

Creating a Component from an Existing Lib-
rary

call set_null (dp%l_privat e_dat a% r amewor kSer vi ces)
call integrators_Mdpoint__set _data n(self, dp)

I DO NOT- DELETE splicer.end(integrators. M dpoint. _ctor)
end subroutine integrators Mdpoint_ctor_m

I Class destructor called when the class is del eted.
!

recursive subroutine integrators_Mdpoint__dtor_m (self)
use sidl
use si dl _Not I npl ement edExcepti on
use sidl _Baselnterface
use sidl _Runti meException
use integrators_M dpoint
use integrators_M dpoi nt _i npl
| DO NOT- DELETE splicer.begi n(integrators. M dpoint._dtor. use)
I Insert use statenents here. ..
I' DO NOT- DELETE splicer.end(integrators. M dpoint._dtor. use)
inmplicit none
type(integrators_Mdpoint_t) :: self I in

I DO NOT- DELETE splicer. begi n(i ntegrators. M dpoint._dtor)
I Insert the inplenmentation here...

type(SI DL_Baselnterface_t) :: throwaway

I Access private data and deal | ocate storage
type(integrators_M dpoint_wap) ::. dp

call integrators_M dpoint__get_data rr(self dp)

I Decrenent reference count for framework services handl e
if (not_null (dp%d_private_dat a% r anewor kServi ces)) then

cal | del et eRef (dp%_pri vat e_dat a% r amewor kSer vi ces, t hr onaway)
end if

deal | ocat e(dp%l_pri vat e _dat a)

I' DO NOT- DELETE splicer.end(integrators. M dpoint. _dtor)
end subroutine integrators Mdpoint_dtor_m

4.5.3. The set Ser vi ces implementation

In this step we continue to edit the $STUDENT_SRC/ conpon-
ents/integrators/f90/integrators_M dpoint_Inpl. F90 file, adding the implementa-
tion of the set Ser vi ces subroutine, which is part of the gov. cca. Conponent . Note that in order
to accommodate identifier length restriction in Fortran (31 characters), the name of the subroutine was
automatically shortened by Babel. The name mangling algorithm attempts to preserve the most signific-
ant part of the name to help identifying it.

recursive subroutine Mdpoi_setServices6_nbhtawdm m (sel f, services,
exception)
use sidl
use sidl _Notl npl enent edExcepti on
use gov_cca_CCAExcepti on
use gov_cca_Services
use sidl _Baselnterface
use sidl _RuntimeException
use integrators_M dpoi nt
use integrators_M dpoint_i npl

53

Creating a Component from an Existing Lib-
rary

I' DO NOT- DELETE splicer. begi n(i ntegrators. M dpoi nt. set Servi ces. use)
I Insert use statements here...

use gov_cca_TypeMap
use gov_cca_Port
use SIDL_Basel nterface

I DO NOT- DELETE splicer.end(integrators. M dpoint. set Servi ces. use)
inmplicit none

type(integrators_Mdpoint_t) :: self I in
type(gov_cca_Services_t) :: services ! in
type(sidl _Baselnterface t) :: exception ! out

I DO NOT- DELETE spl i cer. begi n(i ntegrators. M dpoi nt. set Servi ces)
I Insert the inplenentation here...

type(gov_cca_TypeMap_t) ;. nyTypeMap
type(gov_cca_Port _t) .. integratorPort
type(SI DL_Basel nterface_t) :: excpt

type(SI DL_Baselnterface_t) :: throwaway

I Access private data

type(integrators_M dpoint _wap) :: dp

call integrators_M dpoint__get data rr(self dp)

I Set my reference to the services handl e
dp%d_privat e_dat a% r amewor kServi ces = services

call addRef(services, throwaway)

I Create a TypeMap with ny properties
call createTypeMap(dp%_private_dat a% r amewor kServi ces, nyTypeMap, excpt)
call checkExceptionM d(excpt, 'setServices createTypeMap call')

call cast(self, integratorPort, throwaway)

I Register nmy provides port

call addProvi desPort (dp%l_privat e_dat a% r amewor kServi ces, integratorPort, &
"IntegratorPort', 'integrator.IntegratorPort', &
nyTypeMap, excpt)

call checkExcepti onM d(excpt, 'setServices addProvi desPort: IntegratorPort')

I The ports | use
call registerUsesPort (dp%_private_dat a% r anewor kServi ces, &
"FunctionPort', 'function.FunctionPort', &

nmyTypeMap, excpt)
call checkExceptionM d(excpt, 'setServices registerUsesPort: FunctionPort')

cal |l del et eRef (nyTypeMap, throwaway)

I DO NOT- DELETE splicer.end(integrators. M dpoint. set Services)
end subroutine M dpoi_set Services6_nbht awdm mi

4.5.4. The i nt egr at e implementation

Continuing your edits in the i nt egr at or s_M dpoi nt _I npl . F90 file, fill in the implementation
of thei ntegrator. | ntegratorPort interface component, inserting the call to the legacy integ-
rator inthei nt egr at e method.

file: $STUDENT_SRC/ conponents/integrators/f90/integrators_M dpoint_Inpl.F90
recursive subroutine M dpoint_integrateekg4n6wgha_mi (sel f, | owBound, upBound,
count, retval)
use sidl

Creating a Component from an Existing Lib-
rary

use sidl _Notl npl ement edExcepti on

use sidl _Baselnterface

use sidl _RuntinmeException

use integrators_M dpoint

use integrators_M dpoint _inpl

I DO NOT- DELETE splicer. begi n(integrators. M dpoint.integrate.use)
I Insert use statenents here..

use function_FunctionPort

use randonmgen_RandomCGener at or Por t
use gov_cca_Services

use gov_cca_Port

use sidl _Baselnterface

use | ntegrator I Legacy integrator nodul e
use Functi onModul e I Legacy function nodul e w apper

I' DO NOT- DELETE splicer.end(integrators. M dpoint.integrate. use)
inmplicit none

type(integrators_Mdpoint _t) :: self ! in
real (kind=sidl _double) :: lowBound ! in

real (kind=sidl _double) :: upBound ! in
integer (kind=sidl_int) :: count ! in

real (kind=sidl_double) :: retval ! out
type(sidl _Baselnterface t) :: exception ! out

DO NOT- DELETE splicer. begi n(integrators. M dpoint.integrate)
Insert the inplenentation here..

type(gov_cca_Port _t) :: general Port
type(function_FunctionPort_t) :: functionPort

t ype(randonmgen_RandonmCeneratorPort_t) :: randonPort
type(SI DL_Baselnterface_t) :: excpt

I Legacy types and wrappers:
type(FunctionParans_t) :: funParans

I Private data reference
type(integrators_Mdpoint_wap) :: dp

I Copi es of base type argunents to the integrate nethod
real :: |bnd, ubnd
i nteger :: cnt

real (selected_real kind(15, 307)) :: sum wdth, x, func
i nteger (selected_int_kind(9)) :: i

I Access private data

call integrators_Mdpoint__get data m(self, dp)

retval = -1

if (not_null (dp%d_private_ data% ramewor kServi ces)) then
I Cbtain a handle to a FunctionPort
call getPort(dp%l_privat e_dat a% r amewor kSer vi ces, &

"FunctionPort’, general Port, excpt)

if (is_null(excpt)) then

call cast(general Port, functionPort, excpt)
if (not_null (functionPort)) then

I Set the function port in the Functi onMbdul e w apper
call setFunctionPort (funParans, functionPort)

55

Creating a Component from an Existing Lib-
rary

I Invoke legacy integrator algorithmto conmpute integra
[bnd = | owBound

ubnd = upBound

cnt = count

retval = integrate_np(funParans, |bnd, ubnd, cnt)
el se I functionPort is null

wite(*,*) 'Exception: Mdpoint: inconpatible FunctionPort'
endi f

I Free ports

call rel easePort (dp%_private_data% r anewor kServi ces, &
"FunctionPort', excpt)

call checkExceptionM d(excpt, 'releasePort(''FunctionPort'')")

else ! excpt is not null

call checkExceptionM d(excpt, 'getPort(''FunctionPort'')")

endi f
el se I framewor kServices is null

wite(*,*) "Error: Mdpoint: integrate called before setServices'
endi f

' DO NOT- DELETE splicer.end(integrators. M dpoint.integrate)
end subroutine M dpoint _integrateekg4néwgha_mi

Finally, in the i nt egrat ors_M dpoi nt _| npl . F90 file, find the very last splicer block (labeled
_mi scel | aneous_code_end) and add the following helper subroutine:

file: $STUDENT_SRC/ conponents/integrators/f90/integrators_M dpoint_Inpl.F90

|
I Snall routine (not part of the SIDL interface) for

I checking the exception and printing the nessage passed as
I and ar gunent

|

subrouti ne checkExcepti onM d(excpt, nsQ)
use SI DL Basel nterface
use gov_cca_CCAExcepti on
inmplicit none

type(sidl _Baselnterface t), intent(inout) :: excpt
character “(len=*) :: meg ! in
ype(SI DL_Baselnterface t) :: throwaway
|f (not nuII(excpt)) t hen
write(*, *) 'integrators. M dpoint Exception: ', msg
gall del et eRef (excpt, throwaway)
end if

end subroutine checkExcepti onMd

4.6. Building the Fortran 90 implementation of
thei ntegrators. M dpoi nt component.

1. In the $STUDENT_SRC/ conponent s/ i nt egrat or s/ f 90 directory, edit the user-defined
settingsin Makel ncl . user file to specify the include paths and library location of the legacy in-
tegrator library.

56

Creating a Component from an Existing Lib-
rary

il e: $STUDENT_SRC/ conponent s/integrators/f90/ Makel ncl . user
I nclude path directives, including paths to Fortran nodul es
NCLUDES =\
$(CCASPEC_BABEL_F90MFLAG) $(COVPONENT_TOP_DIR)/ ../l egacy/ f90/i ncl ude_w

f
#
I

Library paths and nanes

LIBS =\
-L$(COVPONENT_TOP_DIR)/ ../l egacy/f90/1ib \
-1 W appedLegacyl nt egr at or

Note that the | NCLUDES variable is used by the Fortran compiler to locate compiled module in-
formation; since the flag used to specify the search path for modules is not the same in al com-
pilers, we use the variable CCASPEC_BABEL _ F90MFLAG, which was set during the configuration
and installation of Babel and CCA tools. The COMPONENT _TOP_DI Rvariable is set automatically
when the component's Makefile is generated from the $STUDENT_ SRC/ com
ponent s/ Makefil e_t enpl at e. ser ver makefile template.

Also note that the library specified in the definition of the LI BS variable is not the original legacy
library, which contained the original definition of Funct i onMbdul e and FunctionParams t. The
only difference between the legacy library and | i bW appedLegacyl nt egr at or . a isthat the
origina Funct i onMbdul e has been replaced with a new definition of Functi onModul e in
Functi onMbdul eW apper . f 90 as described in Section 4.2, “The Funct i onModul e wrap-

per.”.

2. In $STUDENT_SRC/ component s/ i nt egrat or s/ f 90, run make. This will build the dy-
namic component libraries and generate the * . cca files needed to load these libraries and instanti-
ate the components in the Ccaffeine framework. After a successful build, you should be able to see

the I'i bi nt egrat orsM dpoi nt-f90. so and [i bi nt egratorsM dpoi nt -
f90. so. ccafilesinthe $STUDENT_SRC/ conponent s/ | i b directory.

Note
L

In this step, the makefile automatically generated the . cca file needed by the Ccaf-
feine and Babel runtime systems to identify and locate babel components. This file
can also be generated manually by executing the following command in the directory
$STUDENT_SRC/ conponent s/ i b:

genSCLCCA. sh cca “pwd /1i bi nt egrat orsM dpoi nt-f90.so \
i ntegrators. M dpoi nt integratorsM dpoint dynam c private now \
> integrators. M dpoint.cca

4.7. Using your new | nt egrat ors. M dpoi nt
component

To see the new Midpoint integrator component in action, in $STUDENT_SRC/ conponent s, run
ccafe-single --ccafe-rc exanples/task2 rc
Feel free to modify t ask2_r ¢ to assemble applications with different components. The beginning of

the r ¢ file loads the palette with all of the available components and creates an instance of each. See
Chapter 2, Assembling and Running a CCA Application for further information and ideas for other

57

Creating a Component from an Existing Lib-
rary

“applications’ you can construct.
The output should look something like this:

(3587) OndLi nedientMain.cxx: MPlI _Init not called in ccafe-single node.

(3587) CndLi ned ientMain.cxx: Try running with ccafe-single --ccafe-npi yes , or
(3587) COndLinedientMin.cxx: try setenv CCAFE USE MPI 1 to force MPI Init.
(3587) ny rank: -1, ny pid: 3587

ny rank: -1, ny pid: 3587

ny rank: -1, ny pid: 3587

CCAFFEI NE configured with babel

ny rank: -1, ny pid: 3587

Type: One Processor Interactive

cca>
CmdCont ext CCAMPI : @i ni t RC: Found task2_rc.

cca># There are allegedly 8 classes in the component path

cca>
cca>Loaded drivers. CXXDri ver NOWN GLOBAL .

cca>Loaded functions. Pi Functi on NOW GLOBAL .
cca>Loaded integrators. M dpoi nt NON GLOBAL

cca>
cca>driver of type drivers.CXXDriver
successfully instantiated

cca>pi func of type functions. Pi Function
successfully instantiated

cca>m dpoi nt of type integrators. M dpoint
successfully instantiated

cca>
cca>driver))))IntegratorPort---->IntegratorPort((((m dpoint
connection nade successfully

cca>m dpoint)))) FunctionPort---->FunctionPort ((((pifunc
connection made successfully

cca>
cca>Val ue = 3. 141553
##speci fic go conmand successfu

cca>
cca>
bye!
exit

58

Chapter 5. Creating a New Component
from Scratch

$Revision: 1.26 $
$Date: 2006/08/23 16:21:28 $

5.1.

In this exercise, you will put together what you've learned in the previous tasks to create a complete
component from scratch. We will add to the list of f unct i on components by creating one that returns
the cube of the argument. The new component class will be named f unct i ons. CubeFuncti on,
and it will implement the functi on. Functi onPort interface (defined in $STUDENT SRC/
ports/sidl/function. sidl) justas the other function components do. The following proced-
ures will guide you through writing the component in C++, though very little would change for if you
wanted to implement it in another Babel-supported language. If you're looking for a C language ex-
ample, try thef unct i ons. Li near Functi on.

SIDL Component Class Specification

In this step, we will definethef uncti on. CubeFuncti on SIDL class and build its XML repository
representation

1. Edit the file $STUDENT_SRC/ conmponent s/ si dl / functi ons. si dl , and add the defini-
tion of the class CubeFunct i on to the packagef uncti ons

package functions version 1.0 {

cl ass LinearFunction inplenments function. Functi onPort,
gov. cca. Conponent
{

/!l function. FunctionPort nethods:
doubl e eval uate(in double x);

/1 gov. cca. Conponent net hods:
voi d set Services(in gov.cca. Services servi cesHandl e)
t hrows gov. cca. CCAExcepti on;

sone definitions skipped ...

class Pi Function inplenents-all function. FunctionPort,
gov. cca. Component
{

}

cl ass CubeFunction inplenents-all function. FunctionPort,
gov. cca. Conponent

{

}

2. Editthefile $STUDENT _SRC/ conponent s/ Makel ncl . conponent s to add a new compon-
ent description in the COMPONENTS variable, which contains the list of components in this direct-
ory. Each value consists of the fully-qualified name of the component (including packages), to
which we append "-language”, where language is one of ¢, cxx, or f90. In this case, the name is
functions.CubeFunction, and the language is cxx. The updated value of COMPONENTS should look

59

Creating a New Component from Scratch

like this:

COVPONENTS = functions. Pi Function-cxx \
i ntegrators. MonteCarl o-f90 randongens. RandNunGener at or - cxx \
drivers. CXXDriver-cxx integrators. M dpoint-f90 \
functions. CubeFuncti on- cxx

Note the backslash (“\ ") that has to be added in order to extend the entry to the next line.

3. In the $STUDENT_SRC/ conponent s directory, run make . repository. This will re-
generate the XML representation of the SIDL component class definitions (including the newly ad-
ded class CubeFunct i on and store them in the $STUDENT_SRC/ xm _r eposi t ory direct-
ory so that all references can be easily resolved.

The output from this step should look something like this:

touch .sidl

CGenerate XML for SIDL packages contai ning conponent decl arations

babel -t xml -R ./xm repository -R/ san/ccal/cca-tools_gcc_intel F90_PI C/ shar e/ cc
Babel : Parsing URL "file:/san/ honedirs/bernhol d/ student-src/conponents/sidl/dri
Babel : Warning: Synmbol exists in XM. repository: drivers. F90Driver-v1.0

Babel : Warning: Synbol exists in XM repository: drivers.CXXDriver-v1.0

Babel : Parsing URL "file:/san/ honedirs/bernhol d/ student - src/ conponents/sidl/fur
Babel : Warning: Synmbol exists in XM repository: functions.LinearFunction-v1.0
Babel : WaArning: Synbol exists in XM repository: functions. NonlinearFunction-vl
Babel : Warning: Synbol exists in XM repository: functions.PiFunction-v1.0
Babel : Parsing URL "file:/san/homedirs/bernhol d/ student-src/conponents/sidl/int
Babel : Warning: Synbol exists in XM repository: integrators.MnteCarlo-v1.0
Babel : Warning: Synbol exists in XM. repository: integrators.Mdpoint-v1.0
Babel : Warning: Synbol exists in XM. repository: integrators.ParallelMd-v1.0
Babel : Parsing URL "file:/san/homedirs/bernhol d/ student-src/conponents/sidl/rar
Babel : Warning: Synbol exists in XM repository: randongens. RandNunCener at or - v
touch .repository

5.2. Generating Babel Server Code for the New
Component

e In the $STUDENT_SRC/ conponent s directory run nake
. functi ons. CubeFunct i on- cxx to generate the C++ server-side binding for the component
classf uncti ons. CubeFunct i on. The output from this step should look something like this:

Cenerating a cxx inplenentation for the CubeFuncti on conmponent

babel -s cxx -R ./xm repository -R/ san/ccal/cca-tools _gcc_intel FO0 Pl C share/ cc
-g -u -E -1 -m"functions. CubeFunction." --suppress-tinestanp functions. CubeFur
Babel : Resol ved synbol "functions. CubeFunction”. ..

touch . functions. CubeFuncti on

Upon completion of this step, the directory $STUDENT _SRC/ conponent s/ f unct i ons/ cxx

60

Creating a New Component from Scratch

should contain two additiona files, f uncti ons_CubeFuncti on_I npl . cxx and func-
ti ons_CubeFuncti on_I npl . hxx which will be edited to provide the implementation of the
newly defined component.

5.3. Implementing the New Component

1. Edit the file functi ons_CubeFuncti on_I npl . hxx in the directory $STUDENT SRC/
component s/ functions/cxx. You will need to add the declaration for the
gov: :cca:: Servi ces object tothe pri vat e object state. This will be done inside the Babel
splicer block f uncti ons. CubeFuncti on. _i npl enent ati on. We will cal this variable
f ramewor kSer vi ces. Upon completion, this splicer block should look like this:

/| DO NOT- DELETE spli cer. begi n(functions. CubeFunction. _i npl ement ati on)

/'l Insert-Code-Here {functions. CubeFunction. inplenentation} (additional de
gov: :cca:: Services f ramewor kSer vi ces;

/1 DO NOT- DELETE splicer.end(functions. CubeFuncti on. i npl enent ati on)

2. Edit the file functi ons_CubeFunction_I npl . cxx in the directory $STUDENT SRC/
conmponent s/ funct i ons/ cxx to provide the implementation details. First, you'll need to edit
the body of the setServices method (between the Babel splicer blocks func-
tions. CubeFuncti on. set Servi ces). Upon completion, this part of the file should look
likethis:

"]/ DO NOT- DELETE splicer. begi n(functi ons. CubeFuncti on. set Servi ces)
/'l Insert-Code-Here {functions. CubeFunction. set Servi ces} (setServices mnethod)

f ramewor kSer vi ces = servi ces;
gov::cca:: TypeMap tm = services. creat eTypeMap();
if(tm _is_nil())
fprintf(stderr, "Error:: %:%: gov::cca::TypeMap is nil\n",

__FILE_, __LINE_);

exit(1);
}
gov::cca::Port p = (*this); /1 Babel required casting
I

if(p._is_nil()) {
fprintf(stderr,
"Error:: %:%l: Error casting (*this) to gov::cca::Port \n",
__FILE_, __LINE_):
exit(1);

servi ces. addPr ovi desPort (p,
"FunctionPort",
"function. FunctionPort", tm;

// Babel required casting
gov: :cca:: Conponent Rel ease cr =
. : babel _cast < gov::cca:: Conponent Rel ease >(*this);

61

Creating a New Component from Scratch

services. regi sterForRel ease(cr);
return;

/| DO NOT- DELETE splicer.end(functions. CubeFuncti on. set Servi ces)

3. Next you will need to edit the implementation for the method eval uat e inside the Babel splicer
block functi ons. CubeFuncti on. eval uat e. After adding the implementation for this
method, the body should look like this

/1 DO NOT- DELETE spl i cer. begi n(functi ons. CubeFuncti on. eval uat e)

/'l Insert-Code-Here {functions. CubeFunction. eval uate} (eval uate nethod)
return x*x*x;

/| DO NOT- DELETE splicer.end(functions. CubeFuncti on. eval uat e)

4. To build the newly written component into a usable library, type make in the directory
$STUDENT_SRC/ conponent s/ f unct i ons/ cxx. Thiswill compile, link, and install the new
component into alibrary that isinstalled in the directory $STUDENT_SRC/ conponent s/ | i b.

Note

In this step, the makefile automatically generated the . cca file needed by the Ccaf-
feine and Babel runtime systems to identify and locate babel components. This file
can also be generated manually by executing the following command in the directory
$STUDENT _SRC/ conponent s/ | i b:

o=

genSCLCCA. sh cca “pwd /I i bfuncti onsCubeFuncti on-cxx.so \
functions. CubeFunction cubeFunction dynanic private now \
> functions. CubeFunction. cca

5.4. Using Your New Component

1. Change directories to $STUDENT_SRC/ conponent s/ exanpl es and edit t ask3_rc. This
file will assemble and run an application using al of the new components you've created. However
it includes lines for both versions of the driver component, and probably you've only implemented
one. So you will need to comment out al of the lines which refer to the driver component you did
not implement.

2. Run the script with ccaf e-single --ccafe-rc task3_rc. It should run without errors
and giveyou aresult of Val ue = 0. 250010.

3. Fed freeto modify t ask3_r c to assemble applications with different components. The beginning
of ther c file loads the palette with all of the available components and creates an instance of each.
See Chapter 2, Assembling and Running a CCA Application for further information and ideas for
other “applications’ you can construct.

62

Chapter 6. Using TAU to Monitor the
Performance of Components

$Revision: 1.12 $
$Date: 2006/08/20 21:51:15 $

In this exercise, you will use the TAU performance observation tools to automatically generate a proxy
component that monitors all of the method invocations on a port allowing you to track their performance
information. While this approach won't provide all of the performance details of what is going on inside
each component, it gives you a very simple way to begin analyzing the performance of a CCA-based ap-
plication in order to identify which components might have performance issues.

We will start by create a proxy component for thei nt egr at or . | nt egr at or Por t . Note that you
only need to have completed Chapter 3, Sewing CCA Components into an Application: the Driver Com-
ponent in order to follow these instructions. Though the proxy will be implemented in C++, it can proxy
for components implemented in any language.

. Warning

The following instructions assume that you chose to implement the
drivers. CXXDri ver rather thanthedri vers. FO0Dr i ver . If you implemented the
drivers. F90Dri ver, youwill needto editt ask4_r c to reflect this.

6.1. Creating the Proxy Component

1. Edit the file $STUDENT_SRC/ conponent s/ si dl /i nt egrat ors. si dl and make the fol-
lowing addition:

package integrators version 1.0 {
cl ass MonteCarlo inplenents integrator.|ntegratorPort,

gov. cca. Conponent,
gov. cca. Conmponent Rel ease

{
/1 integrator.|ntegratorPort nethods:
doubl e integrate(in double | owBound, in double upBound, in int count);
/1 gov. cca. Conponent net hods:
voi d set Services(in gov.cca. Services services) throws gov.cca. CCAExXcept
/'l gov. cca. Conponent Rel ease net hods:
voi d rel easeServices(in gov.cca. Services services) throws gov. cca. CCAEx
}
class Trapezoid inplenments-all integrator.|ntegratorPort,
gov. cca. Conponent,
gov. cca. Conponent Rel ease
{
class Sinpson inplenents-all integrator.|ntegratorPort,
gov. cca. Conponent ,
gov. cca. Conponent Rel ease
{

63

Using TAU to Monitor the Performance of

Components
}
class IntegratorProxy inplenents-all integrator.|ntegratorPort,
gov. cca. Conponent
{
}

}

Thiswill give us anew component, called | nt egr at or Pr oxy that implementsthei nt egr at -
or.lntegratorPort.

Edit $STUDENT_SRC/ conmponent s/ Makel ncl . conponent s and make the following addi-
tions:

SIDL files containing conponent decl arations

For exanpl e:

SIDL_FILES = sidl/drivers.sidl

SIDL_FILES = sidl/functions.sidl sidl/integrators.sidl sidl/randongens.sidl \
sidl/drivers. sidl

The COVPONENTS list contains the fully-qualified names of the conponent

cl asses, augnented with - LANGUAGE, where LANGUAGE is the | anguage

in which the conponent is inplenented, e.g., c, cxx, f90.

For exanpl e:

COVPONENTS = drivers. FOODriver-f90 drivers. CXXDri ver - cxx

COVMPONENTS = functi ons. Pi Functi on-cxx \
i ntegrators. MonteCarl o-f90 randongens. RandNunGener at or - cxx \
drivers. CXXDriver-cxx integrators.|ntegratorProxy-cxx

In the $STUDENT_SRC/ conponent s directory, type make
.integrators.|ntegratorProxy-cxx to rebuild the repository. The output should look
something like this:

Cenerating XM for SIDL packages contai ni ng conponent decl arations
/ san/ ccal/ cca-tool s_gcc_intel FOO_PI T bi n/ babel -t xm -R ./xm _repository \
-R/'san/ ccal cca-tool s_gcc_i ntel FO0_PI C shar e/ cca- spec- babel - 0_7_8- babel - 0. 1C
-0 ../xm _repository sidl/functions.sidl sidl/integrators.sidl \
S|dI/randongens sidl sidl/drivers.sidl
Babel : Parsing URL "file:/san/ honedirs/bernhol d/\
student - src/ conponents/sidl/functions.sidl"
Babel : Parsing URL "file:/san/honedirs/bernhol d/\
student - src/ conponents/sidl/integrators.sidl"
Babel : Parsing URL "file:/san/honedirs/bernhol d/\
student - src/ conponent s/ si dl / randongens. si dl "
Babel : Parsing URL "file:/san/honedirs/bernhol d/\
student - src/ conponents/sidl/drivers.sidl"
Babel : Parsing URL "file:/san/ honedirs/bernhol d/\
student - src/ conponents/sidl/unitdrivers.sidl"
Babel : Parsing URL "file:/san/ honedirs/bernhol d/\
student-src/conponents/sidl/library.sidl"

touch .repository

Cenerating a cxx inplenentation for the integrators.|ntegratorProxy \
conponent .

Using TAU to Monitor the Performance of
Components

/ san/ ccal/ cca-tool s_gcc_intel FOO_PI T bi n/ babel -s cxx -R ./xm repository \
-R/'san/ccal/ cca-tools_gcc_intel FO0_PI C/ shar e/ cca- spec- babel -0_7_8-babel - 0. 1C

-g -u -E -l -mintegrators.|IntegratorProxy. --suppress-tinestanp \
i ntegrators. | ntegratorProxy
Babel : Resol ved synbol "integrators.|ntegratorProxy"...

touch .integrators.|ntegratorProxy-cxx

6.2. Using the proxy generator

1. Inthe $STUDENT_SRC/ conponent s/ i nt egr at or s/ cxx directory, type t au_babel _pg
-f i ntegrators_IntegratorProxy_Inml.cxx -h i ntegrat-
or _IntegratorPort. hxx -p I nt egrat or Port -t i ntegrat -
or. | ntegratorPort

The usage of the proxy generator is as follows:
Usage: tau_babel pg <filename> -h <header file> -p <port name> -t <port type> |

The - h option specifies the header file that needs to be included to use the port. Note that thisis the
same header file that was added to thedr i ver s. CXXDr i ver component in order to usethei n-
tegrator.IntegratorPort.

The - p option specifies the name of the port. The generated proxy will have two ports named with
the port name given appended with “Provide” and “Use” to distinguish them.

The -t option specifies the C++ type of the port. It can be found by examining the appropriate
header file.

The- f option forces overwrite of the | npl . cc and file_| npl . hh files.

2. Openintegrators_IntegratorProxy | npl.cxx and look at the code that the proxy
generator inserted between the splicer blocks to get afeel for what is really going on.

3. Now build the proxy by going to $STUDENT_SRC and running make.

6.3. Using the new proxy component

1. Change directories to $STUDENT_SRC/ conponent s/ exanpl es and edit t ask4_rc. This
file will assemble and run an application using the new proxy component you've created.

- Note

If you installed the cca tools yourself, you will need to modify t ask4_r c to reflect
the location of the performance component.

65

Using TAU to Monitor the Performance of
Components

2. Run the script with ccaf e-single --ccafe-rc task4_rc. It should run without errors
and giveyou aresult like Val ue = 3. 140347 asbefore.

3. Now look in the $STUDENT _SRC/ conponent s/ exanpl es directory and you should file a
filecalled profi | e. 0. 0. 0. Thisfile contains profile data for the last run. View it by executing
ppr of and you should get output similar to this:

Reading Profile files in profile.*

NODE 0; CONTEXT 0; THREAD O:

odi me Excl usi ve I ncl usi ve #Cal | #Subrs I nclusive Name
nsec total nsec usec/ cal |
100.0 32 32 1 0 32043 integrate \

doubl e (doubl e, double, int32_t)

Further exercises: Try swapping in adifferent integrator. Try generating a proxy for the Function port.

Users are encouraged to visit and read the documentation for TAU avalable at ht-
tp://www.cs.uoregon.edu/research/paracomp/tau/tautool s/

66

http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

Chapter 7. Understanding arrays and
component state

$Revision: 1.9 $
$Date: 2006/08/03 19:45:32 $

In this exercise, you will develop a component that uses Babel arrays as arguments in the ports that the
component provides. Specifically, this exercise will introduce and use the following concepts and arti-
facts

» Creating, changing and accessing “normal” SIDL arrays.

* Using “raw” SIDL arrays.

» Using object (component) state to store arbitrary data types (including arrays).

Note

This exerciseis self-contained. Components and ports explained and devel oped here do not
rely on components and/or ports used in the numerical integration exercises.

7.1. Introduction

In the first part of this exercise, we present the details of two components that work together to evaluate
a series of simple linear matrix operations. One component serves as the driver, while the other provides
the Li nearOp port. The specification of this port is found in the file $STUDENT_SRC/
ports/sidl/arrayop. sidl, partialy reproduced here for easy reference

package arrayop version 1.0{

/** This port can be used to evaluate a matrix operation of the form

* of the form
* R=2S8Sun{i=1, N] {Alphai Ai v_i} + Sunfj=1, N {Beta j v_j}}

* \Where:

* al pha_i, Beta_j Doubl e scal ar

* Al Doubl e array of size [m n]
* V_i, V_j Vector of size [n]

* Al v_j Matrix vector multiplication
*

/
i nterface Li near extends gov.cca. Port

{
/** Initialize (or Re-lnitialize) internal state in preparation
* for accunul ati on.
*/
void init();

/** Evaluate Acc = Acc + al pha A x, where

* Acc The internal accunul ator maintai ned by inplementors
* of this interface
* return the result in vector y (of size m
*
/
int nmul Mat Vec (in double al pha,
in rarray<double, 2> A(m n),
in rarray<double, 1> x(n),

67

Understanding arrays and component state

i nout rarray<double, 1> y(n),
in int m
in int n);

/** Eval uate Acc = Acc + beta v, where
* Acc The internal accunul ator maintai ned by inplenentors
* of this interface
*/return the result in vector y (of size m
*

i nt addVec (in double bet a,
in array<double, 1> v,
out array<double, 1> r);

[** Cet result of |inear operators
*

int getResult (inout rarray<double, 1> r(m,
in i nt n;

Note

» The port methods nul Mat Vec and get Resul t use SIDL raw arrays (also referred
to as r-arrays), which are designed to simplify implementation in Fortran dialects
(especially Fortran77). Raw arrays are assumed to adhere to column-major memory
layout, with zero-based indexing. Further details of raw SIDL arrays can be found in
the Babel User Guide [http://www.lInl.gov/CA SC/components/software.html].

e The port method addVec usesthe “norma” SIDL array class. This class allows access
to arrays through accessor functions. There are also provisions that allow access to the
underlying array memory for more efficient operations. Refer to the Babel User Guide
[http:/Avww.lInl.gov/CA SC/components/software.html] for more details on normal
SIDL arrays.

The student source contains fully implemented three components that provide the Li near Op port. The
components FQOArrayQp, F77ArrayQp, and CArrayQp can be found at $STUDENT SRC/

conponent s/ arrayQps/ {f 90, f 77, c} . Inaddition, a driver component that usesthe Li near Op
port can be found at $STUDENT _SRC/ conponent s/ arrayDri vers/ c.

In the following sections, we will present some of the aspects of using SIDL arrays, using the code in
the driver and the three ar r ayOps components as examples. Y ou will then be asked to implement a
component that providesaNonLi near Op port and a driver, using the aforementioned four components
as atemplate.

7.2. The CDri ver Component

The SIDL specification for the CDri ver component can be found in the file $STUDENT _SRC/
conponent s/ sidl/arraydrivers. si dl . Theimplementation of this component (in the C pro-
gramming language) can be found at $STUDENT _SRC/ conmrponent s/ arrayDri vers/c/ in the
two files arrayDrivers_CDriver_Inpl.c and arrayDrivers_CDriver_Inpl.h. Com-
ponent implementation details include details of component/framework interaction that should be now
familiar, and will not be discussed further in this exercise. We will focus on the handling of different
types of SIDL arraysin the go method.

68

http://www.llnl.gov/CASC/components/software.html
http://www.llnl.gov/CASC/components/software.html

Understanding arrays and component state

7.2.1. Using SIDL Raw Arrays

7.2.2.

Raw arrays (and vectors) are used as arguments in the call to nul Mat Vec. Note that multidimensional
SIDL raw arrays are always assumed to use column-major storage. This requirement necessitates special
treatment when calling methods that use SIDL raw arrays as arguments from languages that follow a de-
fault raw-major array storage order (C and C++). The caller may choose to alter the memory layout of
the array argument throughout its entire lifetime, or aternatively perform a matrix transpose operation
on “native” arrays before and after every call to a SIDL method that uses raw arrays. In the example
presented here, we have chosen to adopt column-major storage throughout the lifetime of the raw array
argument A, as shown in the initialization code shown below

/*
* | 1.0 4.0 | | 1.0 | | 3.0 |
*A=] 2.0 5.0 | vli=] 2.0| sdal =] 4.0 |
* | 3.0 6.0 | - - | 5.0 |
* - - - -
*
* Note that A needs to be stored in columm-major order to nake
* the call using SIDL raw arrays
*/
value:0.0;
for (i 0; i <=m i++){

for (j =0; J' <=n; j++){

Ali*n+] (value += 1.0);

}

When making a call to a SIDL method that has SIDL raw arrays arguments, the dimensions of those ar-
rays must be explicitly included in the argument list in the SIDL specification. No special “wrapping” of
native arrays is needed to make a call using SIDL raw arrays arguments. This can be seen in the call to
the nul Mat Vec method.

retval = arrayop_Li near Op_nul Mat Vec(Ili nopPort, al pha, A v1, vy,
if (retval 1= 0){
fprintf(stderr, "Error:: %:%: Error in call to mul MatVec() \n",
FILE_, _LINE_);
return(-1);

The requirement to use column-major memory layout is one of the restrictions imposed by Babel to al-
low for the use of raw arrays. See the Babel User Guide
[http://www.lInl.gov/CA SC/components/software.html] for the complete list.

Using SIDL Normal Arrays

SIDL “normal” arrays are implemented in the Babel runtime, with bindings in all Babel supported lan-
guages. SIDL normal arrays provided a more flexible array representation, with the ability to directly ac-
cess the underlying array memory in languages that support this capability (C, C++, F90, and F77). In
Python, there are situations where arrays must be copied when passing in and out, but direct access is
used wherever the Numerical Python package will alow. In Java, arrays are accessed using the Java
Native Interface. More information on SIDL norma arrays can be found in the Babel User Guide
[http://mww.lInl.gov/CA SC/components/software.html].

In this exercise, the method addVec uses SIDL normal arrays (sdal, and sda2). The SIDL specifica
tion of the addVec method designates sdal as an input argument, therefore it needs to be created
(more specifically, associated with memory) on the caller side before the call is made. The Babel

69

m,

n,

&t h

http://www.llnl.gov/CASC/components/software.html
http://www.llnl.gov/CASC/components/software.html

Understanding arrays and component state

runtime provides array manipulation bindings in Babel supported languages (except Python, which uses
Numeric Python arrays). The one-dimensional, SIDL doubl e array sdal is created using the follow-
ing code

sdal = sidl _double_ _array_createld(nj;

if (!sdal){
fprintf(stderr, "Error:: %:%l: Error creating sdal.\n",
__FILE__, __LINE_);
return(-1);

The Babel runtime C binding contains macros that allow direct access to underlying SIDL array memory
and properties (dimensions, strides, etc.), without having to go through the standard set () and get ()
methods. One such macro is used in this example to access the underlying memory of SIDL array sdal

sdal _data = sidl ArrayAddr 1(sdal, 0);
for (value =0.0, i =0; i <=m i++){
sdal data[i] = (double) i + 3.0 ;

}

Other macros are used in the loop that prints the result returned in the SIDL out array sda2, after the
call toaddVec.

printf("Result2 = ");

for (i = sidlLower(sda2, 0); i <= sidlUpper(sda2, 0); i++){
printf("%2f ", sidlArrayEl eml(sda2,i));
printf("\n");

Direct access to underlying SIDL array memory is aso available in the Babel SIDL array binding in
F77, F90, and C++. Example of such useisavailable in the discussion in Section 7.3, “Linear Array Op-
erations Components”.

7.3. Linear Array Operations Components

7.3.1.

In this section, we present some of the implementation details of (non-driver) components that provide
ports with SIDL arrays as arguments. The student source contains implementation of three components,
CArrayQp, F77Ar r ayOp, and F90Ar r ay Op, implemented in C, F77, and F90 respectively.

The CArrayOp Component

Code for the CArrayQp component can be found in the directory $STUDENT SRC/
conponent s/ arrayQps/ c,inthetwo |l npl filesarrayOps_CArrayQp_I npl.candarray-
Ops_CArrayQp_| npl . h. Private component state is represented by entries in the st ruct ar -
rayQps_CArrayQp__ dat ainthe header filearrayQps_CArrayQp_I mpl . h

struct arrayQps _CArrayQp_ data {
/* DO NOT- DELETE splicer. begin(arrayOps. CArrayQp. _data) */
gov_cca_Services franmeworkServi ces;
doubl e *nyVect or;
i nt myVeclLen;
/* DO NOT- DELETE splicer.end(arrayOps. CArrayQp. _data) */

b

Private component data is initialized and associated with the component instance in the component con-
structor method i npl _arrayQps_CArrayOp__ctor

70

Understanding arrays and component state

struct arrayQps_CArrayQp_ data *pd = (struct arrayOps_CArrayQp__dat a*)
calloc(1l, sizeof(struct arrayQps_CArrayQp_ data));

arrayQps_CArrayQp__set _data(sel f, pd);

arrayop_LinearOp_init(self);

return;

Note the use of the built-in method arrayOps_CArrayQOp__set dat a to associate the newly al-
located struct with this component instancee A corresponding method, array-
Ops_CArrayQp__get _dat a isused to access this private data.

The method i npl _arrayOps_CArrayQp_nul Mat Vec uses SIDL raw arrays (array A, and vectors
x and y). Multi-dimension SIDL raw arrays are assumed to be stored in column-major order, as shown
in the code to multiply array A and vector x

for (i=0; i
y[i] =0.0;
for (j =0; j <=mn j+){

y[i] += alpha * A[j*m+ i] * x[j]; [/* Raw array A is colum-mgjor */

<=nm i++){

Ld->rryVector[i] +=y[i];
y[i] = pd->nmyVector[i];

The method i npl _arrayOps_CArrayQp_addVec uses the more flexible SIDL normal arrays.
SIDL normal arrays are represented in Cusing astruct si dl _XXX__array, where XXX is the ac-
tual type of array elements. In this example, the SIDL out normal array *r is created (and underlying
memory allocated) in the call

*r = sidl _double_ array_createld(n);

Direct access to a SIDL normal array's underlying memory is acheived viathe C macro si dl Arr ay-
Addr 1 (for 1-dimensional arrays*r and v).

Note

¥
When implementing a method that has SIDL normal arrays as arguments, it should not be
assumed that the array is contiguous in memory (stride=1). SIDL normal arrays allow for
different strides in all dimensions. As such, the correct code for vector addition has the
form

vstride sidl Stride(v, 0);
for (i =0; i <=n; i++){
rdata[i] = pd->nyVector[i] += beta * vdata[i*vstride];

No stride is used when accessing the vector r sinceit is created inside the addVec routine
with astride=1 (implied inthecall tosi dl _doubl e__array_creat eld).

7.3.2. The F77ArrayQp Component

Code for the F77ArrayQp component can be found in the directory $STUDENT SRC/
conponents/arrayQps/f77, in I npl file arrayOps_f 77ArrayOp_I npl . f. Private com-
ponent state is represented by entries an an array of SIDL opaque types. It is the responsibility of the
programmer to ensure consistency of the treatment of entries in this array across method calls (this is

71

Understanding arrays and component state

similar to the way entriesinto conmon bl ocks are manipulated). Code for the creation and initializa-
tion of the private component state can be found in the component constructor method arr ay-
Ops_F77ArrayQp__ctor _fi.

integer *8 stateArray, intArray, tnp

tmp = 0

call sidl_opaque__array_createld f (3, stateArray)

call sidl_int__array_createld f(2, intArray)

if ((statearray .ne. 0) .and. (intArray .ne. 0)) then
call sidl _opaque__array_setl f(statearray, 0, tnp)
call sidl_opaque__array_setl f(statearray, 1, intArray)
I call sidl_opaque__array_setl f(statearray, 2, tnmp)

el se

The SIDL built-in method arrayQps_F77ArrayOp__set _data_f isused to associate the newly
created SIDL opaque array with this instance of the component. The method array-
Ops_F77ArrayOp__get _dat a_f isusedto retrieve this private data for further manipulation.

The method arrayQps_F77ArrayCp_mul Mat Vec_fi uses SIDL raw arrays arguments. In F77
implementation, SIDL raw arrays appear as regular F77 arrays, with zero-based indexing. The compon-
ent uses the SIDL normal array accVect or to store the running sum of the linear matrix operations.
Note that this enables the dynamic sizing of this vector at runtime to match the dimensions of the array
and vector arguments. Direct access to the underlying memory for SIDL normal arrays is done through
the si dl _doubl e__array_access_f method (for arrays of SIDL type doubl e). This method
computes uses a reference array (nat i veVec) of size one, and computes the offset (r ef i ndex) that
needs to be added to indices into nat i veVec to access memory associated with SIDL normal array
accVector.

call sidl _double array access_f(accVector, nativeVec,
| ower, upper, stride, refindex)

doi =0, m1l
y(i) = nativeVec(refindex + i)
doj =0, n-1 o .
y(i) =y(i) +alpha* A(i, j) * x(j)
end do

y(i) = y(i) + nativeVec(refindex + i)
nativeVec(refindex + i) = y(i)
end do

Accesssing entries in a norma SIDL array can aso be done through accessor subroutine calls. In the
case of arrays of SIDL typedoubl e, the accessor subroutinesare si dl _opaque__array_set 1l f
andsi dl _opaque__array_getl f (for singledimensiona arrays).

if (accVector .eq. 0) then
call sidl _double_ _array createld f(m accVector)
call sidl _int__array _setl f(intArray, O,
call sidl _opaque__array setl f(stateArray, 2, accVector)

dbl Tmp = 0.0
doi =0, ml
call sidl _double array _setl f(accVector, i, dblTnp)
end do
el se
Note

72

Understanding arrays and component state

When implementing a method that has SIDL normal arrays as arguments, it should not be
assumed that the array is contiguous in memory (stride=1). SIDL normal arrays alow for
different stridesin all dimensions. As such, the correct code for vector addition in addVec
has the form

doi =0, ml
nati veR(refindexR + i) = nativeVec(refindex + i) +
beta * nativeV(refindexV +i*strideV(1))
nativeVec(refindex + i) = nativeR(refindexR + i)
end do

No stride is used when accessing the array r since it is created inside the addVec routine
with astride=1 (implied inthecall tosi dl _doubl e__array_createld_f).

7.3.3. The FO0Ar rayQp Component

Code for the F90ArrayQp component can be found in the directory $STUDENT SRC/
conponent s/ arrayQps/ f 90, inthel npl filesarrayOps_F90ArrayQp_| npl . F90and ar -
rayQps_F90ArrayOp_Mod. F90. Private component state is represented by the t ype array-
Ops_F90ArrayQp_priv inthefilearrayQps_F90ArrayQp_Mod. F90

type arrayQps_F90ArrayQp priv
sequence
I DO NOT- DELETE splicer. begi n(arrayQps. FOOArrayQp. pri vat e_dat a)
I Handle to framework Services object

type(gov_cca_Services_t) :: frameworkServices
real (selected_real kind(15, 307)), dimension(:), pointer :: myVectorP
i nteger (selected_int_kind(9)) :: nyVecLen

I DO-NOT- DELETE splicer.end(arrayQps. FO0ArrayQp. pri vat e_dat a)
end type arrayOps_F90ArrayQp_priv

The constructor subroutine ar r ayOps_F90ArrayQp___ctor _m contains the code for the alloca
tion and initialization of the private data associated with this component instance

type(arrayOQps_F90ArrayQp_wap) :: dataWap
type(arrayQps_F90ArrayQp priv), pointer :: pd

al | ocat e(dat aW ap%d_pri vat e_dat a)

pd => dataWap%l_ private_data

I Allocate nenory and initialize

call set_null (pd% r anewor kSer vi ces)

pd%ryVect or P => NULL()

pd%vyVecLen = 0

call arrayQps _F90ArrayOp_set _data n{(sel f, dataWw ap)

Note that private data is accessed through the pointer pd, accessed through the variable dat aW ap of
type arrayOps_F90ArrayQp_wap. The «cal to the built-in method array-
Ops_F90ArrayQOp__set _dat a_massociates the newly created structure pointed to via pd with this
instance of the component. The corresponding method ar r ayOps_F90ArrayQp__get _dat a_mis
used to retrieve this private data for further processing.

The subroutine that implements the mul Mat Vec method uses SIDL raw arrays (note that the name of
this subroutine is altered by Babel to accomodate FOO identifier length restrictions as outlined in Sec-
tion 3.3, “Implementation of the F90Dr i ver in Fortran 90"). SIDL raw arrays manifest themselvesin
F90 implementations as regular FO0 arrays that use zero-based indexing.

73

Understanding arrays and component state

real (selected_real _kind(15, 307)), dinmension(0:m1,
real (selected_real kind(15, 307)), dinmension(0:n-1)
real (selected_real _kind(15, 307)), dinmension(0:m1)

The subroutine that implements the addVec method uses SIDI normal arrays. SIDL normal arrays are
represented as user defined types, with a poi nt er data member (d_dat athat points to an F90 array
built on top of the underlying SIDL array memory. While access to SIDL normal array entries can be
achieved via accessor subroutines (set and get - defined for al native SIDL types and user defined
classes and interfaces), it is more convenient (and efficient) to access those entries directly via the
d_dat a pointer.

vdata => v%l data
rdata => r%l_data
rdata = pd%ryVectorP + beta * vdata

pd%ryVector P = rdata

Note

When implementing a method that has SIDL normal arrays as arguments, it should not be
assumed that the array is contiguous in memory (stride=1). SIDL normal arrays allow for
different stridesin al dimensions. The Babel runtime build the correct FOO array descriptor
(dope vector) that correctly reflects the strides used to create the SIDL array.

7.4. Assignment: NonLi near Op Component
and Driver

In this section, you will usethe Li near Op components and driver described earlier as atemplate to de-
velop adriver and a component that provides the NonLi near Qp port. The specification of this port can
be found in the SIDL file $STUDENT_SRC/ por t s/ si dl / arrayop. si dl , and is repeated here for
convenience.

/** This port can be used to evaluate a linear matri x operation
* of the form

* R=9Sunfi=1, N] {Alpha_i log(Ai)} + Sun{j=1, N {Beta_j Aj .* Mj}}
* \Where:

* al pha_i, Beta_j Doubl e scal ar

* Al, Mj Doubl e array of size [m n]

* log(A i) El ementwi se | og (base 10) of matrix A

* Aj .* Mj El ementwi se nultiplication of Aj and M]

/
nt erface NonLi near Op extends gov. cca. Port

/** Initialize (or Re-lnitialize) internal state in preparation

for accunul ati on.

* X XA —

~

void init();

/** Evaluate Acc = Acc + al pha |og(A) where

* log(A) Elementwi se |og (base 10) of array A
* Acc The internal accunul ator maintai ned by inplenmentors
* of this interafce
* return the result in array R
*
/

74

Understanding arrays and component state

int logvat (in double al pha,
in rarray<double, 2> A(m n),
i nout rarray<double, 2> R(m n),
in int m
in int n);
/** Evaluate Acc = Acc + beta A .* M where
* Cx denotes el ementwi se nultiplications of arrays
* Acc the internal accunul ator nmintained by inplenmentors
* of this interafce
* return the result in array R
*/
int mul Mat Mat (in double bet a,

i n array<double, 2> A,
in array<double, 2> M
out array<, 2> R);

/** Get result of nonlinear operation accunul ation.

*
int getResult (inout rarray<double, 2> R(m n),
in i nt m
in i nt n);

1. Adding SIDL Specification

a. Edit the file $STUDENT _SRC/ conponent s/ si dl /arraydri vers. si dl to add spe-
cification for the nonlinear matrix operations driver.

class NLinearDriver inplenments-all gov.cca.ports. GoPort,
gov. cca. Conponent,
gov. cca. Conponent Rel ease

{}

b. Edit the file $STUDENT _SRC/ conponent s/ si dl / arrayops. si dl to add specifica-
tion for the nonlinear matrix operations component.

class NLinear O inplenents-all arrayop. NonLi near Op,
gov. cca. Conponent,
gov. cca. Conponent Rel ease

{}

2. Adding your new componentsto the build system

Edit the file $STUDENT_SRC/ conponent s/ Makel ncl . conmponent s to add the specifica-
tion of the two new components to the list of components in the COVPONENTS macro. The new
entries will be of the form arrayDrivers.NLinearDriver-XX and array-
Ops. NLi near Op- YY, where XX and YY are the language(s) you will use to implement the com-
ponents (lower case“c”, “cxx”, “f77", “f90", or “python”).

3. Generating code for the new components

Run nmake in the directory $STUDENT _SRC/ conrponent s to generate | npl files and Babel

75

Understanding arrays and component state

glue code for the newly added components. Note that this code may be generated in the same lan-
guage subdirectory that contains code for the Li near OQp driver or components, if you choose the
same language(s) for your new components.

Editing Implementation Files

Edit the newly generated | npl files to implement the methods in the driver and the NonLi n-

ear Op component. Build the new components (by running make in the directory where the | npl

files are generated).

Running the New NonLi near Op Component Application

You can run the application using one of the techniques outlined in Chapter 2, Assembling and

Running a CCA Application. Note that you will need to assign matching port types in the driver and
the component.

76

Chapter 8. Understanding objects and
passing modes

$Revision: 1.7 $
$Date: 2006/08/03 19:45:32 $

This exercise focuses on the use of objects in a component interface and the subtleties of parameter
passing modes. You will be working with a units of measurement library component that can perform
unit conversions, for example, convert a quantity in meters to an equivalent quantity in inches. The com-
ponent's design and implementation are simplified for the sake of this example; it is not intended for real
use.

Note

¥

This exercise is self-contained. Components and ports utilized in this example do not rely
on components or ports from other exercises.

8.1. The unit library

The unit library involves the following SIDL types:

package units version 1.0 {

}

i nterface UnknownUnit Exception extends sidl.BaseException { }

interface Unit {
string nane();
voi d conversi onFactors(out doubl e sl ope, out double offset);

i nterface Conversion {
Unit convertFron();
Unit convertTo();
doubl e convert(in double orig);

i nterface UnitsLibrary extends gov.cca. Port

Conversion | ookupConversion(in Unit src, in Unit dest);
voi d defineUnit(in string nane,
i n doubl e sl ope,
in doubl e of fset,
in Unit knownUnit,
out Unit newlnit);
voi d i nvert Conversion(inout Conversion convert);
Unit | ookupUnit(in string nane) throws UnknownUnit Exception;

}

This SIDL defines one CCA port and three helper interfaces. CCA ports should only reference SIDL in-
terfaces — not classes; otherwise, the client code becomes tightly coupled to the helper class implement-
ation.

The conver si onFact or s in the interface uni t s. Uni t is an excellent example of when out is
appropriate. Because two values must be returned, out is the appropriate mode for sl ope and of f -

77

Understanding objects and passing modes

set . The use of out for newUni t indefi neUnit issomewhat contrived for the sake of example.
Normally, one would use areturn value instead of using asingle out argument.

Now an imaginary, overworked, hapless scientific software developer saw this port definition and
thought this component would solve his problem of linking together a code from the US where all the
distances were calculated in inches and a code from the EU where al the distances were calculated in
meters. He decided to whip up atest code to verify that the component did what he expected, and thisis
what he wrote in the go method of his driver component's GoPor t .

DO NOT- DELETE spl i cer. begi n(go)
genericPort = self.d _services.getPort("UnitLibrary")
library = units. UnitsLibrary. UnitsLi brary(genericPort)

meter = library.| ookupUnit("neter")

inch = library. | ookupUnit("inch")

converter = library.|ookupConversion(mneter,inch)
reverseConverter = library.invertConversion(converter)

i nches = converter.convert(1) # convert 1 neter to inches
neters = reverseConverter.convert (1) # convert 1 inch to neters
print "1 meter = " + str(inches) + " inch"

print "1 inch = " + str(neters) + " nmeter"

sel f.d _services.rel easePort ("UnitLibrary")

return O

DO NOT- DELETE splicer. end(go)

The software devel oper expected that conver t er would convert quantities from meters to inches, and
rever seConverter would convert quantities from inches to meters. However, this is what the
driver component produced when run:

cca>go drive CGoPort

Loadi ng nai n: ok

1 meter = 0.0254 inch

1 inch = 0.0254 neter

##speci fic go conmand successfu

8.2. Exercises debugging the units library

1. Fird, verify that the components are installed and giving the same, incorrect answers by running
ccafe-single --ccafe-rc $STUDENT_SRC/ conponent s/ exanpl es/ obj ect _rc.
This script will try using a Python and C++ implementations of uni ts. Uni t sLi brary caled
i brary. PyUnitsLibraryConp and |i brary. CxxUni t sLi br ar yConp, respectively.
Alternatively, you can do this graphically using gui - backend.sh --port 3314 -
-ccaf e-rc $STUDENT_SRC/ conponent s/ exanpl es/ obj ect _gui _rc and si npl e-
gui.sh --builderPort 3314 --host | ocal host. Either approach should yield the
following output.

1 neter = 0.0254 inch
1 inch = 0.0254 neter
##speci fic go conmand successf ul

2. Modify the Python driver to output some information to help us figure out what is happening. Edit
$STUDENT_SRC/ conpon-
ent s/ undri vers/ pyt hon/undrivers/PyDriver_Ilnpl.py. Leading white space is

78

Understanding objects and passing modes

significant in Python, so ensure that the “p' in pri nt starts in the same column as the statements
around it.

DO NOT- DELETE spli cer. begi n(go)
genericPort = self.d_services.getPort("UnitLibrary")
library = units. UnitsLibrary. UnitsLi brary(genericPort)

meter = library. | ookupUnit("neter")

inch = library.|ookupUnit("inch")

converter = library.| ookupConversion(neter,inch)
reverseConverter = library.invertConversion(converter)

print "converter converts", converter.convertFrom().nane(), \
"to", converter.convertTo().name()

print "reverseConverter converts”, \
reverseConverter. convert From(). name(),
reverseConverter. convertTo(). nane()

i nches = converter.convert(1l) # convert 1 neter to inches

nmeters = reverseConverter.convert (1) # convert 1 inch to nmeters

print "1 meter = " + str(inches) + " inch"

print "1 inch = " + str(nmeters) + " neter"

self.d _services.rel easePort("UnitLibrary")

return O

DO NOT- DELETE spli cer. end(go)

to", \

Rebuild the Python driver with the following commands:

cd $STUDENT_SRC/ conponent s/ undri ver s/ pyt hon
rm-f .lib .lib-noli btool
make

Rerun the example using one of the approaches detailed above. Now the output should read.

converter converts inch to neter
reverseConverter converts inch to neter
1 meter = 0.0254 inch

1 inch = 0.0254 neter

##specific go conmand successf ul

Eurekal It appears that | ookupConver si on modifies its arguments. Hence, convert er and
rever seConvert er both end up being conversions from inches into meters; in fact, they are
both references to the same Conver si on object. Because the argument to | ookupConver -
si on isdeclared asi nout , our imaginary, hapless, overworked scientific software developer as-
sumed that | ookupConver si on would leave the incoming Conver si on unchanged and return
a distinct Conver si on to perform the reverse conversion. The actual implementation modifies
theincoming Conver si on and returnsit.

The implementation of | ookupConver si on is not illegal. However, it is confusing, and it is
easy to make the mistake shown here. There are two approaches we can take to make this compon-
ent better. Frist, we will modify the argument's mode to clarify the intent. Second, we will modify
the implementation to leave the incoming value unchanged and return a new, distinct Conver -
si on object.

If for some reason we want or need to use the initial implementation, we can clarify the compon-
ent'sinterface by using i n instead of i nout . The implementation is free to modify the state of the
incoming Conver si on object, and the new method signature makes it clear that the incoming
valueis modified.

79

Understanding objects and passing modes

Note

Modifications to simple data types (i.e., int, long, double, ...) passed asi n parameters
do not propogate to the caller. However, objects and interfaces are always passed by
reference. Hence, you can make callson an i n object that will change its state. Some
day, Babel will support a copy i n mode which will copy the incoming object/in-
terface, provided it is serializable, and prevent the subroutine from being able to
change the state of the incoming argument.

Edit $STUDENT_SRC/ ports/sidl/units. sidl and change the mode of i nvert Con-
versiontoin.

/**

* Transform a Conversion interface to convert values in the
* opposite direction. Note this can nodify or replace the

* jncom ng paraneter.

*/

voi d invert Conversion(in Conversion convert);

Next, rebuild the port library with the following commands:

cd $STUDENT_SRC/ ports

rm../xm _repository/units*. xm ../xm repository/library*.xnm \
.repository

make

6. Edit the Python driver you edited in Step 2. The new version should look like this.

DO NOT- DELETE spli cer. begi n(go)
genericPort = self.d_services.getPort("UnitLibrary")
l'ibrary = units. UnitsLibrary. UnitsLi brary(genericPort)

meter = library.lookupUnit("neter")
inch = library. | ookupUnit("inch")
converter = library.| ookupConversion(meter,inch)
reverseConverter = |ibrary.| ookupConversion(neter,inch)
library.invertConversion(reverseConverter)

reverseConverter = library.invertConversion(converter)

print "converter converts", converter.convertFrom().nane(), \
"to", converter.convertTo().nane()

print "reverseConverter converts", \
reverseConverter.convert Fron(). name(),
reverseConverter. convert To(). nane()

i nches = converter.convert(1l) # convert 1 neter to inches

nmeters = reverseConverter.convert (1) # convert 1 inch to neters

print "1 meter = " + str(inches) + " inch"

print "1 inch = " + str(neters) + " neter"

self.d _services.rel easePort("UnitLibrary")

return O

DO NOT- DELETE spli cer. end(go)

to", \

7. Rebuild the Python driver and components with the following commands:

cd $STUDENT_SRC/ conponent s

80

Understanding objects and passing modes

rm-f .undrivers.PyDriver-python .library. CxxUnitsLi braryConp-cxx \
.library. PyUnitsLibraryConp-python library/python/.lib \
library/cxx/.lib undrivers/python/.lib .repository

make

Rerun the example. The components should now produce this output:

converter converts neter to inch
reverseConverter converts inch to neter
1 neter = 39.3700787402 inch

1 inch = 0.0254 neter

##speci fic go conmand successf ul

However, this “solution” probably leaves you feeling a little hollow. You may be asking yourself,
what's the point of i nvert Conver si on. | could have built r ever seConvert er by simply
reversing the arguments to | ookupConver si on. If you're thinking this, you're absolutely right;
this approach isn't very useful.

Undo the changesto uni t s. si dl from Step 5 and the changesto PyDri ver _| npl . py from
Step 6. Rebuild the port definitions using the instructions above in Step 5 and the component im-
plementations as instructed in Step 7.

In this step, we are going to change the C++ component that implements
units.UnitsLibrary. You will need to edit $STUDENT_ SRC/ conpon-
ents/library/cxx/library_ CxxUnitsLibraryConp_I| npl. cxx. The current imple-
mentation of i nver t Conver si on isasfollows:

void library:: CxxUnitsLibraryConp_inpl::invertConversion (
/* inout */ ::units::Conversion& convert) throw ()

{
/1 DO NOT- DELETE splicer.begin(library.CxxUnitsLi braryConp.invert Conversion)
c:library:: CxxSi npl eConversion sc = ::babel _cast < ::library:: CxxSi npl eConver
sc.reverse();
/| DO NOT- DELETE splicer.end(library. CxxUnitsLi braryConp.invert Conversi on)

}

First, it down castsconvert to the actual implementation class, and then it callsr ever se to re-
verse the direction of the conversion.

We would like to replace that implementation with one that creates a new, distinct Conver si on
object. Something like this will do the trick.

void library:: CxxUnitsLibraryConp_inpl::invertConversion (
/* inout */ ::units::Conversion& convert) throw ()
{
/1 DO NOT- DELETE splicer.begin(library. CxxUnitsLi braryConp.invert Conversion)
convert = self. Il ookupConversion(convert.convertTo(),
convert.convertFrom());
) /| DO NOT- DELETE splicer.end(library. CxxUnitsLi braryConp.invert Conversi on)

Rebuild the example by executing make in the $STUDENT_SRC/ conponent s directory. After
rebuilding the component, rerun it and verify that the C++ implementation now produces:

81

Understanding objects and passing modes

10.

converter converts neter to inch
reverseConverter converts inch to neter
1 neter = 39.3700787402 inch

1 inch = 0.0254 neter

##speci fic go command successfu

Now perform a similar modification to the Python implementation of the component. You will
need to edit $STUDENT _SRC/ conpon-
ents/library/python/library/PyUnitsLibraryConp_Inpl.py. The current im-
plementation is similar to the initial C++ implementation.

DO NOT- DELETE spl i cer. begi n(i nvert Conver si on)

sc = library. PySi npl eConver si on. PySi npl eConver si on(convert)
sc.reverse()

return sc

DO NOT- DELETE spli cer. end(invert Conversi on)

Edit this to match the following. Please note that leading white space is significant in Python, so
make sure your statements start at the same column.

DO NOT- DELETE spli cer. begi n(i nvert Conversi on)

return self. | ORsel f.l ookupConversion(
convert.convertTo(), convert.convertFron())

DO NOT- DELETE spli cer. end(i nvert Conversi on)

Rebuilding the python implementation requires afew commands.

cd $STUDENT_SRC/ conponent s/ | i brary/ python
rm-f .lib .lib-nolibtool
make

Now rerun the python component too to verify that the changed fixed things.

82

Appendix A. Remote Access for the
CCA Environment

$Revision: 1.5$
$Date; 2004/10/10 21:10:08 $

There is really nothing special about using the CCA environment on a remote system compared to any
other tools routinely used in technical computing. But there are afew things you can do that might make
it more convenient to work remotely. So here are some notes intended to point you to the appropriate
placesin the manuals for the software you're using.

A.1. Commandline Access

Everything associated with the CCA can be done using only commandline access to the remote system.
The primary tool for thiskind of access at present is the Secure Shell protocol, SSH. Both free and com-
mercial implementations of ssh are widely available. Among the most common are OpenSSH
[http://www.openssh.org] for Linux(-like) systems and PUuTTY
[http://www.chiark.greenend.org.uk/~sgtatham/putty/] for Windows. When we describe specifically how
to do something with an SSH client, we will describe it for these two packages. However we won't be
using any unusual capabilities of SSH, so most other implementions probably have an equivalent.

A.2. Graphical Access using X11

Your remote CCA environment will be on a Linux(-like) system (because at present, the CCA tools do
not run directly on Windows), in which graphical tools (such as text editors, debuggers, performance
tools, etc.) typically use the X11 environment. If you wish to use these graphical tools remotely, you'll
need an X11 environment on your local system. Thisis standard on most Linux(-like) systems. On Win-
dows, you will probably haveto install an X11 server.

. Warning

Running X11 tools remotely can be annoyingly slow, especialy over along-haul connec-
tion or aslow network. Y ou may prefer to stick to commandline tools.

Most SSH clients are capable of forwarding X11 traffic through your SSH session. If this option is
available to you, it is probably the most convenient and definitely the most secure way of running X11
tools remotely. (It is possible for the administrator of the remote system to configure the SSH server to
prevent X11 forwarding, but we try to insure that this is not the case on the systems we use for organ-
ized tutorials.)

A.2.1. OpenSSH

In most cases, SSH will forward X 11 traffic by default, so the simplest thing isto go ahead and try it. To
explicitly enable X11 forwarding use the - X option to ssh. If you want to disable it for some reason (for
instance, it istoo slow for your taste and you have atendency to inadvertently start up graphical toolsin-
stead of commandline ones), then use the - x option.

A.2.2. PUTTY

In PUTTY, there is a checkbox to Enable X11 forwarding on the Connection - SSH - Tunnels config-
uration page.

83

http://www.openssh.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Remote Access for the CCA Environment

A.3. Tunneling other Connections through SSH

A.3.1.

Similar to X11 forwarding, most SSH clients have the ability to tunnel other network connections
through an SSH session, also known as port forwarding. Tunnels connect a port on your local system to
a port on a remote system, so that you can make a connection to the port on your local system and, via
the tunnel, it will be forwarded to the designated port of the remote system. (Other tunneling setups are
possible, but we do not use them in this Guide.) The remote system could be the system you SSH into,
or a system reachable from the system you SSH into. The two primary uses for tunnels in the context of
the CCA are working on clusters where internal nodes don't have direct access to the external network,
and making connections through firewalls, for example to run the GUI (of course the firewall must pass
the SSH connection that carries the tunnel).

An important thing to note about tunneling is that the port numbers on both ends of the tunnel must be
made explicit. Only one application at a time can listen on a port, so port humbers on both ends of the
tunnel must be selected to avoid conflicts. Assuming you're the only user on your local system, you must
select non-privileged port numbers (1025-65565) that don't conflict with each other, or with any servers
or other applications that might already be using ports on your system. In the examples below, we use
port 2022 on the | ocal host side of atunnel for an SSH connection. The same rules apply to the ports
on the remote system. If you're sharing the system on which you're running the exercises, you'll need to
be sure to select ports not being used by other users. Though statistically, the chances of a collision are
relatively small, we avoid such problems in organized tutorials by assigning each user a port number to
use for the Ccaffeine GUI (in the examples below, we use port 3314). If you're working on your own
and are encountering problems finding a free port, the netstat (netstat -a -t -u on Linux-like systems, or
netstat -a at the Windows command prompt) can give you alist of the ports currently in use.

Tunneling with OpenSSH

The-L | ocal Port:renot eHost: renotePort option to ssh is used to setup tunnels. The fol-
lowing are examples of some tunneling arrangements that might be useful in a CCA context:

» Establishing an SSH connection to the head node of a cluster which will forward SSH connections to
aninternal node. Then using the tunnel to make a direct connection to the internal node:

ssh -L 2022:clusterlnternal Node: 22 cl ust er HeadNode
ssh -p 2022 | ocal host

e Establishing an SSH connection to a firewalled machine which will forward connections from the
Ccaffeine GUI running locally to the Ccaffeine framework backend running remotely:

ssh -L 3314:renot eHost: 3314 renot eHost
java -classpath ccafe-gui.jar \
gov. sandi a. ccaf fei ne.dc. user _iface. Builderdient \
--buil derPort 3314 --host | ocal host

Tip

Don't worry if you don't understand the details of the java command that invokes the
GUI. It is described in more detail in Section 2.3, “Using the GUI Front-End to Ccaf-
feine”. The key features for this discussion are the - - bui | der Port 3314 -
- host | ocal host arguments, which tell the GUI to connect to the local end of the
tunnel.

» Establishing tunnelsto an internal node of a cluster for both SSH and Ccaffeine GUI connections:

Remote Access for the CCA Environment

ssh -L 2022: cl usterlnternal Node: 22 \
-L 3314:clusterlnternal Node: 3314 cl ust er HeadNode

which can be used precisely asin the preceeding examples.

A.3.2. Tunneling with PUTTY

In PUTTY, tunnels are specified on the Connection -~ SSH - Tunnels configuration page. To configure
atunnel, you need to go to the Add new forwarded port section of the page. Source port is the port on
your local system that you will connect to in order to use the tunnel. In the OpenSSH instructions above,
itislabeled | ocal Port andisthefirst part of the argument of the - L option. In PUTTY, the Destina-
tion field isr enot Host : r enot ePor t , or the second and third pieces of the OpenSSH - L argument.
The Loca button should always be checked (meaning that the tunnel will be setup to forward from your
local system to the destination system).

Tip
Y ou might want to take advantage of PUTTY's ability to save “sessions’ to save and easily

reuse complicated (or tedious) SSH configurations, particularly those including multiple
tunnels.

In order to use atunnel once it is setup, you simply enter give the application | ocal host and the ap-
propriate port number to connect to. To initiate a tunneled SSH session with PUTTY, you would enter
this information in the Session —» Host Name and Session - Port fields. In the examples given earlier
for OpenSSH (Section A.3.1, “Tunneling with OpenSSH”), a connection to | ocal host port 2022
would give you an ssh connection to directly to clusterinternalNode. And the Ccaffeine GUI would be
invoked in the same way as above (modulo unix vs. Windows details in the command itself).

85

Appendix B. Building the CCA Tools
and TAU, and Setting Up Your
Environment

$Revision: 1.22 $
$Date: 2005/09/22 22:08:26 $

The primary tools you'll be using are the Ccaffeine CCA framework [http://www.cca-forum.org/ccafe/]
and the Babel language interoperability tool [http://www.lInl.gov/CASC/components/babel .html]. This
section provides brief instructions on how to download and install a distribution of these tools (named,
creatively enough, “ccatools’) that has been tested for compatibility with the tutorial code. In
Chapter 6, Using TAU to Monitor the Performance of Components you will be using the TAU perform-
ance observation tools [http://www.cs.uoregon.edu/research/paracomp/tau/tautool /] in conjunction with
the CCA, and if you plan to do that exercise, it will be necessary to install TAU on your system aswell.

Caution

These tools are still under development as we extend their capabilities. Consequently, it is
possible to find numerous releases and snapshots of the individua tools, any given com-
bination of which may not have been tested for compatibility. Don't use the individual tool
distributions unless you've got a particular reason, usually based on direct conversations
with their developers. The latest version of the “ccatools’ package is the recommended
distribution for routine use and will provide you with a matched set of tools that will work
together properly.

B.1. The CCA Tools

B.1.1. System Requirements

L

Note

We strongly recommend using a Linux platform to work through these exercises, since this
is currently the most extensively tested and most easily supported platform for the CCA
tools. If this is not possible, or you have a specific need to use another platform while
working through these exercises, please contact us at
<tutorial -wg@ca-forum or g> to discuss the best way to proceed. Were aso in-
terested to hear what platforms you would like to run your CCA applications on in the
longer term in order to help us focus our porting and testing efforts.

The requirements to build the CCA tools on Linux platforms are listed below. Requirements for other
platforms will vary somewhat.

* gcc>=32

» Java Software Development Kit >= 1.4. The java and javac commands must be in your execution

path.

Gnome XML C Parser (libxml2) -- most recent Linux distro's already have it, regardless of whether

Gnomeisinstalled.

86

http://www.cca-forum.org/ccafe/
http://www.llnl.gov/CASC/components/babel.html
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

Building the CCA Toolsand TAU, and Set-
ting Up Y our Environment

* GNU autobuild tools: anything recent.

* A connection to the internet. (A network connection is required both to download the code cca-tools
package and during the build process.)

Additional Optional Software. There are also a number of other packages which are not required in
order to build the CCA tools, but can be used if present (and may be required in order to obtain certain
functionality). If you want to use them, they should be installed before you begin to install the CCA
toals.

e MPI: recent versions of MPICH are known to work. At present, the automatic configuration tools do
not handle other MPI implementations, and Ccaffeine has not yet been extensively tested against
other implementations.

- Note

At present, there are no exercises that require MPI.

e Python >= 2.2 built with --enable-shared (on platforms that support shared libraries), and Numeric-
a Python (NumPy). If you have multiple versions of Python installed and prefer to have aversionin
your execution path that does not meet the criteria above, you should set the PYTHON environment
variable to point to a suitable version for the CCA tools prior to configuring them. You can check
the python version with python - V.

» Fortran 90: A variety of Fortran 90 compilers are supported. Because Babel needs to know about the
format of the array descriptors used internally by the compiler, the CCA tools will have to be con-
figured with both the path to the compiler and information about which compiler it is. Hereisthe list
of currently supported compilers and the associated |abels recognized by the CCA tools configura

tion script.
Compiler CCA Tools“VENDOR” Label
Absoft Absoft
HP Compaq Fortran Alpha
Cray Fortran Cray
GNU gFortran GNU
IBM XL Fortran IBMXL
Intel v8 Intel
Intel v7 Intel_7
Lahey Lahey
NAG NAG
SGI MIPS Pro MIPSpro
SUN Solaris SUNWSspro

You should have the compiler in your execution path, and any relevant . so libraries in your
LD LI BRARY_PATH. These are required to properly configure the CCA tools package.

B.1.2. Downloading and Building the CCA Tools Package

87

Building the CCA Toolsand TAU, and Set-
ting Up Y our Environment

1. The latest verson of the CCA Tools package can be found a ht-
tp://www.cca-forum.org/tutorial s/#sources with a filename of the form
cca-tool s-version.tar. gz.

2. Untar the cca-tools tar ball some place that is convenient to build and follow the instructions in the
README to build it.

The CCA tools build procedure has been tested on a variety of systems with arange of different config-
uration options, and it works the majority of the time. However it is possible your platform or configura-
tion requirements will confuse it, and it will not build properly for you. If this happens, please contact us
at <tutorial -wg@ca-forum or g> with the output of your attempt to configure and build the
package, and any pertinent information about your system. We want to help you get aworking CCA en-
vironment and improve the packaging of the tools for future users.

B.2. The Ccaffeine GUI

B.2.1.

B.2.2.

The Ccaffeine front-end GUI is part of the CCA tools distribution you installed above. But if you're run-
ning the exercises on a remote system and want to use the GUI (it is not required to complete the exer-
cises), you will need to download and setup the GUI on your local system before you can use it. (It will
work over an X11 connection to the remote system, if you have one, but we tend to find performance of
Java tools like the GUI unacceptable and generally recommend running it locally and connecting to the
remote system via an SSH tunnel, as described in Section A.3, “Tunneling other Connections through
SSH".)

System Requirements

These requirements apply to both Linux-like and Windows systems.

» Java Software Development Kit >= 1.4. The java command must be in your execution path.

Downloading and Setting Up the GUI

1. To usethe GUI on your local system, you will need to download the ccaf e- gui . j ar and the
convenience script to run it. The script to download depends on which operating system you're loc-
a system is running. For Linux-like systems, itissi npl e- gui . sh, and for Windows systems, it
issi nmpl e- gui . bat . The files could be copied (using scp) from the CCA tools installation on
the remote system (in the $CCA_TOOLS_ROOT/ bi n subdirectory), or (probably more conveni-
ently) downloaded from http://www.cca-forum.org/tutorial s/ #sources.

2. The scripts expect to be located in the same directory as the j ar file. Instructions for using the
scripts can be found in Section 2.3, “Using the GUI Front-End to Ccaffeine”.

B.3. Downloading and Installing TAU

- Note

88

http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources

Building the CCA Toolsand TAU, and Set-
ting Up Y our Environment

Note that TAU is only needed for Chapter 6, Using TAU to Monitor the Performance of
Components. If you're not planning to do that exercise, or want to delay installing TAU un-
til then, everything else should work fine without it.

1. The latest version of the TAU Portable Profiling package can be found at ht-
tp://www.cs.uoregon.edu/research/paracomp/tau/tautools/. Also needed for the exercises requiring
TAU is the Performance component, available at ht-
tp://www.cs.uoregon.edu/research/paracomp/proj/tau/ccal.

2. Untarthet au_versi on. tar. gz filein aconvenient place.

3. Next, configure TAU with . / confi gur e opti ons. You can specify an installation prefix with
the - pr ef i x=TAU_ROOT option (the default is use the directory in which you build TAU). There
are many other configuration options available (type . / confi gur e - hel p for acompletelist).

- Note
In these exercises, MPI is not needed, but if you want to build TAU with it, you'll
need to use the - npi i nc and - npi | i b options. Also, for these exercises, TAU
does not need to be compiled with Fortran support. Fortran support would be required
to work with Fortran code you directly instrument. In these exercises, you will be us-
ing TAU viaathe TAU performance component, which iswritten in C++.

4. Build TAU using meke i nstal |

5. Untar theper f or mance- ver si on. t ar . gz file someplace convenient to build.

6. Configure the performance component using . / confi gure -ccaf e=CCA TOOLS ROOT -
t aurmakefi | e=TAU ROOT/ i ncl ude/ Makefil e -wW t hout -cl assi ¢ -
wi t hout - proxygen -ccat k=TAU CMPT_ROOT. CCA TOOLS ROOT and TAU_ROOT are
the installation roots for the CCA tools and TAU that you specified in previous steps.
TAU_CVMPT_ROOT is the directory into which you want the performance component tools in-
stalled.

7. Build the performance component using make ; nake i nstall

B.4. Setting Up Your Login Environment

Once the CCA tools (and TAU, if needed) have been built, you will need to setup your login environ-
ment so that the appropriate commands are added to your execution path, and libraries are added to your
LD _LI BRARY_PATH.

Wherever you installed the tools above, we will use the following notation in this section:

CCA TOOLS ROOT The fully qualified path to where the CCA tools were installed (the - - pr ef i x
directory, or the default . / | ocal expanded to be complete paths, rather than
relative)

TAU_ROOT The fully qualified path to TAU'sinstall directory (the - pr ef i x directory)

89

http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/proj/tau/cca/
http://www.cs.uoregon.edu/research/paracomp/proj/tau/cca/

Building the CCA Toolsand TAU, and Set-
ting Up Y our Environment

TAU_CMPT_ROOT The fully qualified path to the TAU performance component (the - ccat k dir-
ectory).

Then the following commands should work, depending on which shell you use:
csh, tcsh and Related Shells.
set pat h=(CCA TOOLS ROOT/ bin TAU ROOT \

TAU_CMPT_ROOT $pat h)
setenv LD_LI BRARY_PATH CCA TOOLS ROOT/ | i b: $LD_LI BRARY_PATH

bash, ksh, sh and Related Shells.

export PATH=ECCA TOOLS_ROOT/ bi n: TAU_ROOT: TAU_CMPT_ROOT: $PATH
export LD LI BRARY_PATH=CCA TOOLS ROOT/ | i b: $LD LI BRARY_PATH

These commands could be added to your own login files (SHOVE/ . cshrc or SHOVE/ . profi |l e),
put in afile somewhere else and sourced in your login files (thisis the approach we use in the organized
tutorials), or, if appropriate, added to the system login setup by your system administrator.

Tip

If you're a participant in an organized tutorial, we've aready prepared a login file with
these commands, and others needed for the tutorial, which you simply source in your login
file. Specific instructions on how to set this up should have been provided to you along
with your tutorial account information.

If you are using Python, you also need to set your PYTHONPATH environment variable to include the
locations of Python modules associated with the CCA tools and the tutorial itself.

csh, tcsh and Related Shells.

set env PYTHONPATH CCA TOOLS ROOT/ i b/ pyt hon2. 3/ si t e- packages/ :\
$TUTORI AL_SRC/ port s/ | i b/ pyt hon: \
$TUTORI AL_SRC/ conponent s/ 1i b/ pyt hon

bash, ksh, sh and Related Shells.

export

PYTHONPATH=CCA TOCOLS ROOT/ | i b/ pyt hon2. 3/ sit e- packages/ :\
$TUTORI AL_SRC/ port s/ Ti b/ pyt hon:

$TUTORI AL_SRC/ conponent s/ 1 i b/ pyt hon

Unfortunately, because of the way Python works, you will have to modify the PYTHONPATH any time
you add new Python components to your application.

90

Appendix C. Building the Tutorial and
Student Code Trees

$Revision: 1.10 $
$Date; 2005/11/11 22:24:59 $

The code for the tutorial itself comes in two forms, with pointers to both at ht-
tp://www.cca-forum.org/tutorials/#sources. Thefilet ut ori al - src-versi on. tar. gz isthe com-
plete package, which has the full code for al of the components created in this Guide as well as a num-
ber of others. The file st udent - src-versi on. tar. gz is a stripped-down version of the tutoria
code, from which we've removed all of the components created in working through this Guide.

- Note

At the time this particular version of the Hands-On Guide was generated, the ver si on
was 0.4.1 rcl. If there's a more recent version available, you should probably use it, but
you should also look for a more current version of this Guide to go with it. Both should
have the same base version number (i.e. 0.4.1) with different release numbers. Take the
highest available release number. Note too that because both the CCA tools and the tutorial
code are evolving over time, you should make sure to use the version of the CCA tools dis-
tribution that is recommended for the particular tutorial version you're working with.

In order to give you aricher set of components to play with initialy, we usethet ut ori al - src tree
in Chapter 2, Assembling and Running a CCA Application, and the st udent - sr c tree for the remain-
ing exercises. Throughout, the t ut ori al - src tree can be used as a reference, so see how things
should look when you complete the exercises.

If you're participating in an organized tutorial, we will have built thet ut ori al - sr ¢ tree for you in
advance in a common location, whereas if you're working through these exercises on your own, you'll
need to build it yourself. In both cases, you'll need to build your own copy of thest udent - sr c treeto
work in. The procedure for both is nearly identical, and unless otherwise indicated, we will use t u-
torial -srctoindicateeither t ut ori al - src or st udent - src.

" Tip

Make sure you've setup your login environment per Section B.4, “Setting Up Your Login
Environment”. To complete the procedures in this section, you will need to have Babel and
Ccaffeine in your execution path, and your LD_LI BRARY_PATH.

1. Download the file(s) you need from the location above. (If you're participating in an organized tu-
torial, the st udent - src-versi on. tar. gz tar file will already be on the system system, in
the location indicated in your account information handout.)

2. Untar the file in a convenient place with tar zxf tutorial-src-version.tar.gz.
When it completes, change directories into the new code tree.

3. The code tree includes components written in C, C++, F90, and Python. Y ou may need to configure
the code tree according to the languages you have available (dependent on how the CCA tools were
built in Appendix B, Building the CCA Tools and TAU, and Setting Up Your Environment). Run
./configure --with-1anguages="f90 ¢ cxx python" using the appropriate space-
separated list of languages for your environment. The default is to include the languages for which
Babel was configured when the CCA tools were installed (see Appendix B, Building the CCA Tools

91

http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources

Building the Tutorial and Student Code Trees

and TAU, and Setting Up Your Environment).

Once the tree is configured, type make to build it. This step may take several minutes. At the end
of the build output, you should see alist of components that were successfully built, such as:

SUCCESS bui | ding arrayDrivers. CDriver

and when it finally completes, you should see this message:

#HtfHHHH T Fini shed bui | di ng ever yt hi ng ######H###H#HTHH
#H##HHA#H You can run sonme sinple tests wth 'nmake check' #######

If the build terminates with an error message instead, please ask for assistance.

Once the build is complete, you can type nake check to perform abasic check that the compon-
ent have been built correctly. This is a convenience of the Makef i | e system we've put together
for the tutorial that tries to instantiate each component within the Ccaffeine framework. This
provides a basic check that the software you've built are “well-formed” CCA components. Y ou
should see a message like this, along with a couple of lines of output from make itself:

Testing conmponent instantiation.

==== Sinple tests passed, all built conponents were successfully \
i nstanti at ed.

Test sinple exanple involving a subset of the avail abl e | anguages: \
c cxx f90 f77 python java

Testing conponent connection and execution.

==== All sinple run tests passed, go command executed successfully.

Note that the second test (“Testing component connection and execution” is expected to fail at this
stage when building the st udent - sr ¢ tree because the component you're going to write in these
exercises are missing. Both tests should succeed for thet ut ori al - sr ¢ tree.

92

Appendix D. The Tutorial Build System

$Revision: 1.8$
$Date: 2005/08/26 03:15:26 $

This appendix contains a description of the makefiles and other scripts used to build the tutoria. The
main premise behind the build system is automation of as many steps in the port and component build
processes as possible.

Note

¥
While the tutorial build system is generally reusable for simple component projects, it is
not intended for "black-box" use with arbitrary component applications. Please email tu-
torial-wg@cca-forum.org with any questions regarding the reuse of the tutorial build sys-
tem in existing and new component applications.

The tutorial build system relies on a strictly-defined directory structures, in which the various files asso-
ciated with the port and component definitions and implementations reside. SIDL definitions for all
ports reside in ports/sidl directory; similarly the SIDL definitions of all components should be
placed intheconponent s/ si dl directory.

The following files are used during the build and can be modified to customize the build process. The
paths are relative to the top-level tutorial source code directory. Files which are expected to be modified
by the user are shown with italisized names. Modifying the rest of the files could be more error-prone
and is not recommended.

» conponent s/ Makel ncl . conponent s isthe makefile segment that contains a list of the fully-
qualified SIDL class names for all components, with a suffix encoding the language of the imple-
mentation. If SIDL definitions for new components are added to or removed from the conpon-
ents/sidl directory or a different implementation language for a certain component is
chosen, theconponent s/ Makel ncl . conponent s file must be updated accordingly.

» Makel ncl . user.in is the file from which configure generates Makel ncl . user. This file
contains some high-level user options, such as an optional installation prefix and the list of lan-
guages for which to generate client libraries. While both of these files can be modified by hand, it is
better practice to use configure with the appropriate options to generate the desired settings. For ex-
ample, it is better to run configure with the - - wi t h- | anguages option than to modify the value
of the USER_LANGUAGES variable directly.

* ports/Mkel ncl _tenpl ate. user and conponent s/ Makel ncl _tenpl at e. user are
simple makefile segments that allow user-specified values to be prepended to the | NCLUDES and
LI BS variables, used for compilation and linking, respectively. Modifying the top-level template
files must be done before the Babel-generated code has been built for the first time. In that case, the
build system will put copies of these filesin each port and component source subdirectories, and the
local file will be used in the individual port/component library builds. If the settings of those vari-
ables are not uniform across al ports or components, individual Makel ncl . user files can be
modified in their respective port/component source directories after the first build attempt (e.g., in-
voking make at the top level). It is usually a good idea to use revision control for any user-modified
portions of the build system in addition to the files containing component implementations.

Files that should not normally be modified:
» Makefi | e containstargets for invoking the build in all the tutorial subdirectories.

» configure.in contains macros for discovering or setting the location of the installed CCA tools,
namely, the ccaf e- conf i g script.

93

The Tutorial Build System

 Theutil s/ directory contains a number of utility shell scripts used by the build systems. Modify-
ing these is extremely dangerous and may easily break the build.

94

Appendix E. License (Creative
Commons Attribution 2.5)

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN
ASAUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE
RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS
AND CONDITIONS.

1. Definitions

a

" Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in
which the Work in its entirety in unmodified form, along with a number of other contributions,
consgtituting separate and independent works in themselves, are assembled into a collective
whole. A work that constitutes a Collective Work will not be considered a Derivative Work
(as defined below) for the purposes of this License.

" Derivative Work" means a work based upon the Work or upon the Work and other pre-
existing works, such as atranslation, musical arrangement, dramatization, fictionalization, mo-
tion picture version, sound recording, art reproduction, abridgment, condensation, or any other
form in which the Work may be recast, transformed, or adapted, except that a work that con-
stitutes a Collective Work will not be considered a Derivative Work for the purpose of this Li-
cense. For the avoidance of doubt, where the Work is a musical composition or sound record-
ing, the synchronization of the Work in timed-relation with a moving image ("synching") will
be considered a Derivative Work for the purpose of this License.

"Licensor" means the individua or entity that offers the Work under the terms of this Li-
cense.

"Original Author" meanstheindividual or entity who created the Work.
"Work" means the copyrightable work of authorship offered under the terms of this License.
"You" means an individual or entity exercising rights under this License who has not previ-

oudly violated the terms of this License with respect to the Work, or who has received express
permission from the Licensor to exercise rights under this License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising
from fair use, first sale or other limitations on the exclusive rights of the copyright owner under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) li-
cense to exercise therightsin the Work as stated below:

a

to reproduce the Work, to incorporate the Work into one or more Collective Works, and to re-
produce the Work as incorporated in the Collective Works;

to create and reproduce Derivative Works;

to distribute copies or phonorecords of, display publicly, perform publicly, and perform pub-

95

License (Creative Commons Attribution 2.5)

licly by means of a digital audio transmission the Work including as incorporated in Collective
Works,

to distribute copies or phonorecords of, display publicly, perform publicly, and perform pub-
licly by means of adigital audio transmission Derivative Works.

For the avoidance of doubt, where the work is amusical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to
collect, whether individually or via a performance rights society (e.g. ASCAP, BMI,
SESAC), royalties for the public performance or public digital performance (e.g. web-
cast) of the Work.

ii. Mechanical Rightsand Statutory Royalties. Licensor waives the exclusive right to col-
lect, whether individually or via a music rights agency or designated agent (e.g. Harry
Fox Agency), royalties for any phonorecord Y ou create from the Work ("cover version™)
and distribute, subject to the compulsory license created by 17 USC Section 115 of the
US Copyright Act (or the equivalent in other jurisdictions).

Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is
a sound recording, Licensor waives the exclusive right to collect, whether individually or viaa
performance-rights society (e.g. SoundExchange), royalties for the public digital performance
(e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114
of the US Copyright Act (or the equivalent in other jurisdictions).

The above rights may be exercised in al media and formats whether now known or hereafter de-
vised. The above rights include the right to make such modifications as are technically necessary to
exercise the rights in other media and formats. All rights not expressly granted by Licensor are
hereby reserved.

Restrictions. The license granted in Section 3 above is expressly made subject to and limited by
the following restrictions:

a

Y ou may distribute, publicly display, publicly perform, or publicly digitally perform the Work
only under the terms of this License, and You must include a copy of, or the Uniform Re-
source ldentifier for, this License with every copy or phonorecord of the Work Y ou distribute,
publicly display, publicly perform, or publicly digitally perform. Y ou may not offer or impose
any terms on the Work that alter or restrict the terms of this License or the recipients exercise
of the rights granted hereunder. Y ou may not sublicense the Work. You must keep intact all
notices that refer to this License and to the disclaimer of warranties. You may not distribute,
publicly display, publicly perform, or publicly digitally perform the Work with any technolo-
gical measures that control access or use of the Work in a manner inconsistent with the terms
of this License Agreement. The above applies to the Work as incorporated in a Collective
Work, but this does not require the Collective Work apart from the Work itself to be made
subject to the terms of this License. If Y ou create a Collective Work, upon notice from any Li-
censor Y ou must, to the extent practicable, remove from the Collective Work any credit as re-
quired by clause 4(b), as requested. If Y ou create a Derivative Work, upon notice from any Li-
censor Y ou must, to the extent practicable, remove from the Derivative Work any credit as re-
quired by clause 4(b), as requested.

If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or
any Derivative Works or Collective Works, Y ou must keep intact all copyright notices for the
Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the
Origina Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author
and/or Licensor designate another party or parties (e.g. a sponsor institute, publishing entity,
journal) for attribution in Licensor's copyright notice, terms of service or by other reasonable
means, the name of such party or parties; the title of the Work if supplied; to the extent reason-

96

License (Creative Commons Attribution 2.5)

ably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associ-
ated with the Work, unless such URI does not refer to the copyright notice or licensing in-
formation for the Work; and in the case of a Derivative Work, a credit identifying the use of
the Work in the Derivative Work (e.g., "French tranglation of the Work by Origina Author,"
or "Screenplay based on original Work by Original Author"). Such credit may be implemented
in any reasonable manner; provided, however, that in the case of a Derivative Work or Col-
lective Work, at a minimum such credit will appear where any other comparable authorship
credit appears and in amanner at least as prominent as such other comparable authorship cred-
it.

Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LI-
CENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY
OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MER-
CHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR
THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY
NOT APPLY TO YOU.

Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Termination

a. ThisLicense and the rights granted hereunder will terminate automatically upon any breach by
You of the terms of this License. Individuals or entities who have received Derivative Works
or Collective Works from You under this License, however, will not have their licenses ter-
minated provided such individuals or entities remain in full compliance with those licenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the dura-
tion of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves
the right to release the Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to withdraw this License (or
any other license that has been, or is required to be, granted under the terms of this License),
and this License will continuein full force and effect unless terminated as stated above.

Miscellaneous

a Eachtime You distribute or publicly digitally perform the Work or a Collective Work, the Li-
censor offers to the recipient a license to the Work on the same terms and conditions as the li-
cense granted to Y ou under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to
the recipient a license to the original Work on the same terms and conditions as the license
granted to Y ou under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not
affect the validity or enforceability of the remainder of the terms of this License, and without
further action by the parties to this agreement, such provision shall be reformed to the minim-
um extent necessary to make such provision valid and enforceable.

97

License (Creative Commons Attribution 2.5)

d. Noterm or provision of this License shall be deemed waived and no breach consented to un-
less such waiver or consent shall be in writing and signed by the party to be charged with such
walver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work li-
censed here. There are no understandings, agreements or representations with respect to the
Work not specified here. Licensor shall not be bound by any additional provisions that may
appear in any communication from You. This License may not be modified without the mutu-
a written agreement of the Licensor and Y ou.

Additional Information. For more information about the Creative Commons and this license, please
see their web site, http://creativecommons.org.

Requested Attribution. CCA Forum Tutorial Working Group, A Hands-On Guide to the Common
Component Architecture, version 0.4.1_rcl, 2006, http://www.cca-forum.org/tutorials/.

Or in BibTeX format:

@anual {hog-cca: 0.4.1 rc1,
title = {A Hands-On Guide to the Conmpn Conponent Architecture},
aut hor = {The Conmon Conponent Architecture Forum Tutori al
Wor ki ng G oup},
edition = {0.4.1 rcl},
year = 2006,
note = {http://ww. cca-forumorg/tutorials/}

98

http://creativecommons.org
http://www.cca-forum.org/tutorials/

	A Hands-On Guide to the Common Component Architecture
	Table of Contents
	Preface
	1. Help us Improve this Guide
	2. Finding the Latest Version of the CCA Hands-On Exercises
	3. Typographic Conventions
	4. File and Directory Naming Conventions
	5. Acknowledgments

	Chapter 1. Introduction
	1.1. The CCA Software Environment
	1.2. Where to Go from Here

	Chapter 2. Assembling and Running a CCA Application
	2.1. A CCA Application in Detail
	2.2. Running Ccaffeine Using an rc File
	2.3. Using the GUI Front-End to Ccaffeine
	2.3.1. Running Ccaffeine with the GUI
	2.3.2. Assembling and Running an Application Using the GUI
	2.3.3. Notes on More Advanced Usage of the GUI

	Chapter 3. Sewing CCA Components into an Application: the Driver Component
	3.1. The SIDL Definition of the Driver Component
	3.2. Implementation of the CXXDriver in C++
	3.2.1. The setServices Implementation
	3.2.2. The go Implementation

	3.3. Implementation of the F90Driver in Fortran 90
	3.3.1. The setServices Implementation
	3.3.2. Implementing the Constructor and Destructor
	3.3.3. The go Implementation

	3.4. SIDL and CCA Object Orientation in Fortran
	3.5. Using Your New Component

	Chapter 4. Creating a Component from an Existing Library
	4.1. The legacy Fortran integrator
	4.2. The FunctionModule wrapper.
	4.3. The integrator.IntegratorPort Definition
	4.4. SIDL definition of the Midpoint component
	4.5. Fortran 90 implementation of the Midpoint integrator
	4.5.1. The Midpoint module implementation
	4.5.2. Defining the constructor and destructor
	4.5.3. The setServices implementation
	4.5.4. The integrate implementation

	4.6. Building the Fortran 90 implementation of the integrators.Midpoint component.
	4.7. Using your new integrators.Midpoint component

	Chapter 5. Creating a New Component from Scratch
	5.1. SIDL Component Class Specification
	5.2. Generating Babel Server Code for the New Component
	5.3. Implementing the New Component
	5.4. Using Your New Component

	Chapter 6. Using TAU to Monitor the Performance of Components
	6.1. Creating the Proxy Component
	6.2. Using the proxy generator
	6.3. Using the new proxy component

	Chapter 7. Understanding arrays and component state
	7.1. Introduction
	7.2. The CDriver Component
	7.2.1. Using SIDL Raw Arrays
	7.2.2. Using SIDL Normal Arrays

	7.3. Linear Array Operations Components
	7.3.1. The CArrayOp Component
	7.3.2. The F77ArrayOp Component
	7.3.3. The F90ArrayOp Component

	7.4. Assignment: NonLinearOp Component and Driver

	Chapter 8. Understanding objects and passing modes
	8.1. The unit library
	8.2. Exercises debugging the units library

	Appendix A. Remote Access for the CCA Environment
	A.1. Commandline Access
	A.2. Graphical Access using X11
	A.2.1. OpenSSH
	A.2.2. PuTTY

	A.3. Tunneling other Connections through SSH
	A.3.1. Tunneling with OpenSSH
	A.3.2. Tunneling with PuTTY

	Appendix B. Building the CCA Tools and TAU, and Setting Up Your Environment
	B.1. The CCA Tools
	B.1.1. System Requirements
	B.1.2. Downloading and Building the CCA Tools Package

	B.2. The Ccaffeine GUI
	B.2.1. System Requirements
	B.2.2. Downloading and Setting Up the GUI

	B.3. Downloading and Installing TAU
	B.4. Setting Up Your Login Environment

	Appendix C. Building the Tutorial and Student Code Trees
	Appendix D. The Tutorial Build System
	Appendix E. License (Creative Commons Attribution 2.5)

