
A Hands-On Guide to the Common
Component Architecture

The Common Component Architecture Forum Tutorial Working Group

A Hands-On Guide to the Common Component Architecture
by The Common Component Architecture Forum Tutorial Working Group

Published 2007-11-10 12:47:46-05:00 (time this instance was generated)
Copyright © 2007 The Common Component Architecture Forum

Licensing Information

This document is distributed under the Creative Commons Attribution 2.5 License. See Appendix D, License (Creative Commons
Attribution 2.5) or http://creativecommons.org/licenses/by/2.5/legalcode for the complete license agreement.

In summary, you are free:

• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

• Attribution. You must attribute the work in the manner specified by the author or licensor.
• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Requested Attribution. CCA Forum Tutorial Working Group, A Hands-On Guide to the Common Component Architecture, ver-
sion 0.5.3_rc1, 2007, http://www.cca-forum.org/tutorials/.

Or in BibTeX format:

@Manual{hog-cca:0.5.3_rc1,
title = {A Hands-On Guide to the Common Component Architecture},
author = {The Common Component Architecture Forum Tutorial

Working Group},
edition = {0.5.3_rc1},
year = 2007,
note = {http://www.cca-forum.org/tutorials/}

}

http://creativecommons.org/licenses/by/2.5/legalcode
http://www.cca-forum.org/tutorials/

Table of Contents
Preface ... vi

1. Help us Improve this Guide .. vi
2. Finding the Latest Version of the CCA Hands-On Exercises vi
3. Typographic Conventions ... vi
4. File and Directory Naming Conventions ... vii
5. Acknowledgments .. viii

1. Introduction .. 1
1.1. The CCA Software Environment .. 1
1.2. Where to Go from Here .. 2

2. Assembling and Running a CCA Application .. 4
2.1. Using the GUI Front-End to Ccaffeine .. 5

2.1.1. Tools to Use when GUI host and Ccaffeine host are Identical 5
2.1.2. Tools to Use when GUI host and Ccaffeine host are Separate 5
2.1.3. Assembling and Running an Application Using the GUI 7

2.2. Running Ccaffeine Using an rc File ... 13
2.3. Notes on More Advanced Usage of the GUI ... 20

3. Using Bocca: An Application Generator for CCA .. 22
3.1. Creating a Bocca Project ... 22
3.2. Creating Ports and Components ... 24
3.3. Inserting Implementations into Bocca-Generated Components 30

3.3.1. Adding Methods to Ports .. 30
3.4. Language-Specific Implementations of the Function, Integrator, and Driver Components
... 35

3.4.1. C++ Implementation ... 35
3.4.2. Fortran9X Implementation .. 43
3.4.3. C Implementation ... 56

4. Using TAU to Monitor the Performance of Components ... 69
4.1. Creating the Proxy Component .. 69
4.2. Using the proxy generator ... 69
4.3. Using the proxy component ... 70

5. Understanding arrays and component state ... 73
5.1. Introduction ... 73
5.2. The CDriver Component ... 74

5.2.1. Using SIDL Raw Arrays .. 75
5.2.2. Using SIDL Normal Arrays .. 75

5.3. Linear Array Operations Components ... 76
5.3.1. The CArrayOp Component ... 76
5.3.2. The F77ArrayOp Component ... 78
5.3.3. The F90ArrayOp Component ... 79

5.4. Assignment: NonLinearOp Component and Driver ... 80
A. Remote Access for the CCA Environment ... 83

A.1. Commandline Access .. 83
A.2. Graphical Access using X11 ... 83

A.2.1. OpenSSH ... 83
A.2.2. PuTTY ... 83

A.3. Tunneling other Connections through SSH .. 84
A.3.1. Tunneling with OpenSSH .. 84
A.3.2. Tunneling with PuTTY ... 84

B. Building the CCA Tools and TAU and Setting Up Your Environment 86
B.1. The CCA Tools .. 86

B.1.1. System Requirements .. 86
B.1.2. Downloading and Building the CCA Tools Package 88

B.2. The Ccaffeine GUI .. 88

iv

B.2.1. System Requirements .. 88
B.2.2. Downloading and Setting Up the GUI .. 88

B.3. Downloading and Installing TAU .. 89
B.4. Setting Up Your Login Environment .. 89

C. Building the Tutorial Code Tree ... 92
D. License (Creative Commons Attribution 2.5) ...

A Hands-On Guide to the CCA

v

Preface
$Revision: 1.20 $
$Date: 2007/11/06 23:10:18 $

The Common Component Architecture (CCA) is an environment for component-based software engin-
eering (CBSE) specifically designed to meet the needs of high-performance scientific computing. It has
been developed by members of the Common Component Architecture Forum
[http://www.cca-forum.org].

This document is intended to guide the reader through a series of increasingly complex tasks starting
from composing and running a simple scientific application using pre-installed CCA components and
tools, to writing (simple) components of your own. It was originally designed and used to guide the
“hands-on” portion of the CCA tutorial, but we hope that it will be useful for self-study as well.

We assume that you've had an introduction to the terminology and concepts of CBSE and the CCA in
particular. If not, we recommend you peruse a recent version of the CCA tutorial presentations
[http://www.cca-forum.org/tutorials/] before undertaking to complete the tasks in this Guide.

1. Help us Improve this Guide
If you find errors in this document, or have trouble understanding any portion of it, please let us know so
that we can improve the next release. Email us at <help@cca-forum.org> with your comments
and questions.

2. Finding the Latest Version of the CCA
Hands-On Exercises

The hands-on exercises and this Guide are evolving and improving. We will maintain links to the cur-
rent releases of this Guide, the tutorial code, and accompanying tools at ht-
tp://www.cca-forum.org/tutorials/#sources. If you want older versions or intermediate "release candid-
ates", follow the links there to the parent download directories to see the full list of available files.

3. Typographic Conventions

• This font is used for file and directory names.

• This font is used for commands.

• This font is used for input the user is expected to enter.

• This font is used for “replaceable” text or variables. Replaceable text is text that describes
something you're supposed to type, like a filename, in which the word “filename” is a placehold-
er for the actual filename.

• The following fonts are used to denote various programming constructs: class names (CCA
“components”), interface names (CCA “ports”), and method names. Also variable
names and environment variables are marked up with special fonts.

• URLs [http://www.cca-forum.org/] are presented in square brackets after the name of the resource
they describe in the print version of this Guide.

• Sometime we must break lines in computer output or program listings to fit the line widths available.

vi

http://www.cca-forum.org
http://www.cca-forum.org/tutorials/
http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/

In these cases, the break will be marked by a “\” character. In real computer output, you see a long
continuous line rather than a broken one. For program listings, unless otherwise indicated, you can
join up the broken lines. In shell commands, you can use the “\” and break the input over multiple
lines.

4. File and Directory Naming Conventions
Throughout this Guide, we refer to various files and directories, the precise location of which depends
on how and where things were built and installed. All such references will be based on a few key direct-
ory locations, which will be determined when you build and install the software (Appendix B, Building
the CCA Tools and TAU and Setting Up Your Environment and Appendix C, Building the Tutorial Code
Tree). Wherever appropriate, we will write these as environment variables, so that the text in the Guide
can simply be pasted into your shell session (assuming your login environment is setup as suggested in
Section B.4, “Setting Up Your Login Environment”).

Warning

Note that tools such as the Ccaffeine framework do not expand environment variables. In
these cases, you'll need to type in the complete path, substituting the placeholder (i.e. “TU-
TORIAL_SRC”) with the actual path.

If you're participating in an organized tutorial, you will be given information separately about the partic-
ular paths corresponding to these locations.

CCA_TOOLS_ROOT
($CCA_TOOLS_ROOT)

The installation location of the CCA tools. (See Section B.1, “The
CCA Tools”.)

TAU_ROOT ($TAU_ROOT) The installation location of the TAU Portable Profiling package.
(See Section B.3, “Downloading and Installing TAU”.)

TAU_CMPT_ROOT
($TAU_CMPT_ROOT)

The installation location of the TAU performance component.
(See Section B.3, “Downloading and Installing TAU”.)

TUTORIAL_SRC
($TUTORIAL_SRC)

The location that the tutorial-src-version.tar.gz file
was unpacked and built. (See Appendix C, Building the Tutorial
Code Tree.)

WORKDIR ($WORKDIR) This is the location of a working directory, in which you can carry
out all of the exercises in this Guide. The basic requirements are
that you have write access and sufficient disk space for the work
(perhaps 100 MB), and if you're working through the tutorial in-
dependently, you can usually choose the WORKDIR based on your
knowledge of the system you're using. If you're part of an organ-
ized tutorial, you will be assigned a WORKDIR.

Important

If you're part of an organized tutorial please be care-
ful to use the WORKDIR you are assigned! Often
there are special considerations in such an environ-
ment, which might not be obvious to you as a parti-
cipant. For example, it is fairly common for all
cluster nodes to mount user home directories from a
single NFS file server. An entire class of students

Preface

vii

working on I/O-intensive activities (like building the
tutorial code) at the same time has been known to
kill servers from time to time. So frequently, you
will be asked to use directories local to your as-
signed cluster node.

5. Acknowledgments
There are quite a few people active in the Tutorial Working Group who have contributed to the general
development of the CCA tutorial and this Guide in particular:

People Benjamin A. Allan, Rob Armstrong, David E. Bernholdt (chair), Randy Bramley,
Tamara L. Dahlgren, Lori Freitag Diachin, Wael Elwasif, Tom Epperly, Madhusud-
han Govindaraju, Ragib Hasan, Dan Katz, Jim Kohl, Gary Kumfert, Lois Curfman
McInnes, Alan Morris, Boyana Norris, Craig Rasmussen, Jaideep Ray, Sameer
Shende, Torsten Wilde, Shujia Zhou

Institutions Argonne National Laboratory, Binghamton University - State University of New
York, Indiana University, Jet Propulsion Laboratory, Los Alamos National Laborat-
ory, Lawrence Livermore National Laboratory, NASA/Goddard, University of
Illinois, Oak Ridge National Laboratory, Sandia National Laboratories, University
of Oregon

Computer facilities for the hands-on exercises in this tutorial have been provided by the Computer Sci-
ence Department and University Information Technology Services of Indiana University, supported in
part by NSF Grants CDA-9601632 and EIA-0202048.

Finally, we must acknowledge the efforts of the numerous additional people who have worked very hard
to make the Common Component Architecture what it is today. Without them, we wouldn't have any-
thing to present tutorials about!

Preface

viii

Chapter 1. Introduction
$Revision: 1.28 $
$Date: 2007/11/10 17:39:40 $

In this Guide, we will take you step by step through a series of hands-on tasks with CCA components in
the CCA software environment. The initial set of exercises are based on an example that's intentionally
chosen to be very simple from a scientific viewpoint, numerical integration in one dimension, so that we
can focus on the issues of the component environment. It may look like overkill to have broken down
such a simple task into multiple components, but once you have a basic understanding of how to use and
create components, you should be able to extend the concepts to components that are scientifically inter-
esting to you and far more complex.

The exercises are laid out as follows:

• In Chapter 2, Assembling and Running a CCA Application, you will use pre-built components to as-
semble and run several different numerical integration applications.

• In Chapter 3, Using Bocca: An Application Generator for CCA, you will construct your own com-
ponents for the numerical integration example, using the bocca tool.

• In Chapter 4, Using TAU to Monitor the Performance of Components, you will use the TAU per-
formance observation tool [http://www.cs.uoregon.edu/research/paracomp/tau/tautools/] to automat-
ically instrument a component interface and monitor the performance of the application.

• In Chapter 5, Understanding arrays and component state, you will see examples of how to work
with arrays in a multi-language environment, including writing your own component. (Languages:
F77, F90, C)

You are strongly advised to at least read and understand Chapter 2, Assembling and Running a CCA Ap-
plication before going on to later exercises. You'll need to use the techniques of Chapter 2, Assembling
and Running a CCA Application to test the components you write later.

In Chapter 2, Assembling and Running a CCA Application, you'll be working with a complete version,
pre-built of the tutorial code tree. Then in Chapter 3, Using Bocca: An Application Generator for CCA
you'll start from scratch to create components on your own, replicating those in Chapter 2, Assembling
and Running a CCA Application. In this way, the separate complete tutorial code tree can always serve
as a reference if you run into problems. Of course if you're working through this Guide as part of an or-
ganized tutorial, there should be instructors around who can help you. And if you're working on your
own, you can email us for help at <help@cca-forum.org>.

1.1. The CCA Software Environment
The CCA is, at its heart, just a specification. There are several realizations of the CCA as a software en-
vironment. In this Guide, we use the following tools to provide that software environment, which are
currently the most widely used for high-performance (as opposed to distributed) computing using the
CCA:

Ccaffeine A CCA framework which emphasizes local and parallel high-performance computing,
and currently the predominate CCA framework in real applications. For more informa-
tion, see http://www.cca-forum.org/ccafe/.

Babel A tool for language interoperability. It allows components written in different languages
to be connected together. The Scientific Interface Definition Language (SIDL) is associ-
ated with Babel. For more information, see ht-
tp://www.llnl.gov/CASC/components/babel.html. Babel uses Chasm for Fortran 90 ar-
ray support. For more information, see http://chasm-interop.sourceforge.net
[http://chasm-interop.sourceforge.net;].

1

http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cca-forum.org/ccafe/
http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/components/babel.html
http://chasm-interop.sourceforge.net;

bocca A tool for generating and manipulating the skeleton code for components. Bocca is de-
signed to simplify some of the more tedious and mechanical aspects of creating compon-
ents. (Before bocca, this Guide was a lot longer because we had to take you step by step
through writing all of this "boilerplate" code for yourself.)

Many of the commands you will type are specific to the fact that you're using these tools as your CCA
software environment. But the components you will use and create are independent of the particular
tools being used.

1.2. Where to Go from Here
Before starting the exercises, you'll need to do a little bit of work to set things up. Depending on whether
you're working through the Guide on your own or participating in an organized tutorial, this may include
getting logged in to a remote system, preparing the CCA environment, and building the tutorial code
needed for Chapter 2, Assembling and Running a CCA Application.

1. Getting Connected

a. Organized Tutorial Participant

If you're participating in an organized tutorial, you'll probably be using a remote system that's
already setup with nearly all of the software you need. You'll be given details for your ac-
count, your machine assignment, etc. by the tutorial instructors. That info, together with the
notes in Appendix A, Remote Access for the CCA Environment should give you sufficient in-
formation to get logged in to the remote machine. If you have any problems, ask the tutorial
instructors.

b. Self-Study User

If you're working through the Guide on your own, you may choose to work locally or re-
motely, depending on the resources you have available. If you're working remotely, you may
want to refer to the notes on using the CCA tools remotely in Appendix A, Remote Access for
the CCA Environment.

2. Preparing the CCA Environment

a. Organized Tutorial Participant

In this case, the CCA tools (Ccaffeine, Babel, and bocca) will already have been built in a
common area. You will have to do is insure that your login environment is properly setup to
access those tools. This generally involves adding some directories to your PATH and setting
some other environment variables. Instructions will be included with your account informa-
tion. Some general notes can be found in Section B.4, “Setting Up Your Login Environment”.
If you wish to use the Ccaffeine GUI, you will also need to download it and set it up on your
local system. Instructions can be found in Section B.2, “The Ccaffeine GUI”.

b. Self-Study User

In this case, you will need to download and install the CCA tools (Ccaffeine, Babel, and
bocca) and configure your login environment to use them. Instructions can be found in Ap-
pendix B, Building the CCA Tools and TAU and Setting Up Your Environment. If you wish to
use the Ccaffeine GUI and you are working on a remote machine, you will need to download
the GUI and set it up on your local system. Instructions can be found in Section B.2, “The

Introduction

2

Ccaffeine GUI”.

3. Building the Tutorial Code

a. Organized Tutorial Participant

Once again, the tutorial code will already have been built in a central location.

b. Self-Study User

You'll also need to download and build the tutorial code tree. Instructions can be found in Ap-
pendix C, Building the Tutorial Code Tree.

Once you've setup everything as outlined above, you should be ready to proceed to Chapter 2, Assem-
bling and Running a CCA Application.

Introduction

3

Chapter 2. Assembling and Running a
CCA Application
$Revision: 1.11 $
$Date: 2007/11/10 16:51:48 $

In this exercise, you will work with pre-built components from the integrator example to compose sever-
al CCA-based applications and execute them. The integrator application is a simple example, designed
to illustrate the basics of creating, building, and running component-based applications without scientific
complexities a more realistic application would also present. The purpose of this application is to numer-
ically integrate a one-dimensional function. Several different integrators and functions are available, in
the form of components. A “driver” component controls the calculation, and for the Monte Carlo integ-
rator, a random number generator is also required. The specific components available are:

Drivers: drivers.CXXDriver, drivers.F90Driver,
drivers.PYDriver

Integrators: integrators.MonteCarlo, integrators.Simpson,
integrators.Trapezoid

Functions: functions.CosFunction (cos(x), which integrates to
sin(1), or roughly 0.841), functions.CubeFunction (x³,
which integrates to 0.25), functions.LinearFunction (x,
which integrates to 0.5), functions.PiFunction (4/(1+x²),
which integrates to pi), functions.QuinticFunction
(x^5-4x^4, which integrates to 1/6 - 4/5, or roughly -0.633),
functions.SquareFunction (x², which integrates to 1/3)

Random Number Generators: randomgens.RandNumGenerator (required by integ-
rators.MonteCarlo)

The Ccaffeine framework provide three different ways for users to interact with it in order to assemble
and run CCA applications. You can type commands in yourself at the framework's prompt, execute a
script containing those same commands, or use a graphical user interface. The graphical approach is the
easiest for most people to get a feel for how components work, so we will start with that (Section 2.1,
“Using the GUI Front-End to Ccaffeine”) and later discuss how actions in the GUI map onto instructions
in a script (see Section 2.2, “Running Ccaffeine Using an rc File”).

In practice, most users set the GUI interface aside after they become more comfortable with the CCA
environment in favor of the scripting approach. That's especially true once they've developed a bunch of
components and want to run simulations with them in batch jobs, where GUIs tend not to be so conveni-
ent. Of course it is entirely up to you which approach you use in the long run.

Note

This exercise uses the tutorial-src code tree. If you are participating in an organized
tutorial, the tree will have been built for you in advance, and the location will be noted on
your account information handout. If you're working through this exercise on your own,
you'll need to build the code tree, following the instructions in Appendix C, Building the
Tutorial Code Tree.

Tip

4

These exercises can involve a fair amount of typing. You may find it convenient to use the
online HTML version of this Guide (at http://www.cca-forum.org/tutorials/#sources to cut
and paste the necessary inputs. Note, however, that not everything can be cut-and-based
directly. Take particular care with lines that had to be broken for purposes of documenta-
tion, and for placeholder values such as “TUTORIAL_SRC”.

2.1. Using the GUI Front-End to Ccaffeine
There is a graphical front-end for Ccaffeine (known as ccafe-gui, or “the GUI”) which provides a fairly
simple visual programming metaphor for the assembly of applications using CCA components. The cur-
rent GUI is a Java tool, making it quite portable. It can also be used over network connections, so that
you can run it on your local machine to create and run applications on a computer somewhere else. In
this exercise, we'll use the Ccaffeine GUI to assemble and run several different “applications” using the
components already available in the tutorial-src tree.

Ccaffeine and its GUI are run as two separate processes, possibly on two different machines. Depending
on the specific circumstances, there are a variety of ways to invoke the GUI and the Ccaffeine frame-
work. Bocca generates two helper scripts in the utils subdirectory of a project, which will serve most
purposes. Which to use depends on whether the graphical display you're using (the “GUI host”) is dir-
ectly attached to the machine on which you're running the framework (the “Ccaffeine host”), or whether
they're separated by a network link.

2.1.1. Tools to Use when GUI host and Ccaffeine host are
Identical

When you're working on a display that is directly attached to the Ccaffeine host, the bocca-generated
utils/run-gui.sh script is the simplest one to use. It requires no arguments, and it automatically initial-
izes the framework with a palette consisting of all of the components in the bocca project.

Note

While the GUI can be run remotely, using the X11 protocol to display on your local X11
server, this is generally unacceptably slow because of the way Java handles graphics in
X11. You will probably get more satisfactory performance if you can run the GUI on your
local system and allow it to connect over the network to the remote host where you're run-
ning Ccaffeine. Tunneling such a connection through an ssh session provides a straight-
foward way to deal with intervening firewalls.

In this exercise, you will need to execute $TUTORIAL_SRC/utils/run-gui.sh in order to launch the
front-end GUI and back-end framework with the pre-built components. In later exercises, you should be
sure to invoke the utils/run-gui.sh script that corresponds to the bocca project you're working on.

2.1.2. Tools to Use when GUI host and Ccaffeine host are
Separate

When working over the network, it is more effective to launch the GUI locally (since it is Java, it will
work on Windows platforms as well as Mac, Linux, and unix) and simply transmit text commands over
the network. This is the approach we generally use for organized tutorials, with the Ccaffeine host on a
remote cluster, and your own laptop or another machine serving as the GUI host. Obviously this mode
will require the use of two separate commands, one to launch the GUI and the other to launch the Ccaf-
feine framework. The bocca-generated utils/bocca-gui-backend.sh script can be used to launch the

Assembling and Running a CCA Application

5

http://www.cca-forum.org/tutorials/#sources

framework, while the simple-gui.sh (simple-gui.bat in Windows) script in the CCA tools installation
launches the GUI.

The framework should be launched first, and must be told what port to listen on for the GUI connection:
utils/bocca-gui-backend.sh --port port_num. Typically, it can be any port number between 1025 and
65535 that doesn't conflict with another application (CCA or any other) wanting to use the same port. In
an organized tutorial, the likelihood of collisions is fairly high, so you will be assigned a port number in
that case. The script automatically initializes the framework with a palette consisting of all of the com-
ponents in the bocca project.

The simple-gui.sh command (simple-gui.bat for Windows) are used to launch the GUI. Though they
are provided as part of the CCA tools installation, you must have a copy of them, and the GUI's jar file
on your display machine, following the directions in Section B.2, “The Ccaffeine GUI”. To make the
connection, the script must be told both the hostname and the port number to connect to the framework
you just launched: simple-gui.sh --port port_num --host backend_host (equivalently for Win-
dows).

Tip

If you invoke the simple-gui.sh (simple-gui.bat) script without arguments, the GUI will
pop up a dialog box asking you to specify the hostname and port number to connect to.
Filling in these dialogs quickly gets tedious, so you're better off using the command line.
(In Windows, launch a Command Prompt window, and change directories to wherever
you put simple-gui.bat and the GUI jar file.) In both Windows and most Linux/unix
shells, you can simply use the Up Arrow key to recall the previous command to be ex-
ecuted again.

Tip

We have on occasion observed problems with the ccafe-gui interface hanging (most often
while populating the palette as the GUI starts up). This seems to happen less often with
Java version 1.4 than with more recent versions. If you're experiencing such problems, you
might try switching to the latest Java 1.4 release.

Note

Connections between the GUI and the framework can be tunneled through an ssh connec-
tion in order to pass through firewalls between the GUI host and the Ccaffeine host. For
more information, see Appendix A, Remote Access for the CCA Environment and in partic-
ular Section A.3, “Tunneling other Connections through SSH”.

In this exercise, you will need to execute $TUTORIAL_SRC/utils/bocca-gui-backend.sh --port
port_num in order to launch the back-end framework with the pre-built components. In later exercises,
you should be sure to invoke the utils/bocca-gui-backend.sh script that corresponds to the bocca
project you're working on. The simple-gui.sh --port port_num --host backend_host invocations
will remain the same throughout.

Other Ways to Launch the GUI and Ccaffeine

As your usage of the CCA becomes more sophisticated, you're likely to encounter situations
where the bocca-generated helper scripts don't do exactly what you want. For example, you may
need to use a different rc file to initialize the framework. Is is therefore worth mentioning a
couple of the underlying tools, which are part of the CCA tools distribution.

Assembling and Running a CCA Application

6

gui-backend.sh This command underlies utils/bocca-gui-backend.sh. The difference is
that gui-backend.sh requires an additional argument to specify the rc file
to initialize the framework, --ccafe-rc rc_file.

gui.sh This command is equivalent to simple-gui.sh, but can be used on a ma-
chine with the CCA tools installed without needing to worry about where
the GUI's jar file is.

2.1.3. Assembling and Running an Application Using the
GUI

For the purposes of this exercise, we will assume that you are working in and environment in which GUI
host and Ccaffeine host are separate machines. If they are the same, you can use utils/run-gui.sh as de-
scribed in Section 2.1.1, “Tools to Use when GUI host and Ccaffeine host are Identical” instead of the
first two steps, below.

1. Run $TUTORIAL_SRC/utils/bocca-gui-backend.sh --port port_num on the
Ccaffeine host using the appropriate port.

In the Ccaffeine host terminal window, you will see something like:

(Ccaffeine host)
my rank: -1, my pid: 9625
Type: Server

2. Run simple-gui.sh --port port_num --host backend_host (simple-
gui.bat on Windows) on the GUI host.

Once the GUI connects to Ccaffeine, Ccaffeine begins running the rc file it was invoked with. In
the GUI host terminal window, you first see some startup messages from the GUI itself, followed
by a series of messages as Ccaffeine processes the rc file and the GUI displays the results. These
are debugging messages and can largely be ignored.

In the Ccaffeine host terminal, you should see some additional messages as Ccaffeine processes the
rc file, like:

(Ccaffeine host)
CCAFFEINE configured with spec (0.8.2) and babel (1.0.4).

CCAFFEINE configured with classic (0.5.7).

CCAFFEINE configured without neo and neo components.
CmdLineClient parsing ...

CmdContextCCA::initRC: Found components/tests/test_gui_rc.
There are allegedly 11 classes in the component path

Finally, in the GUI host window, you should see some output associated with the GUI's initializa-
tion process, and the GUI itself should have appeared on your display, looking something like this:

Assembling and Running a CCA Application

7

Tip

The default layout has the palette area fairly narrow. You can click-and-drag on the
bar separating the palette and the arena to adjust the width.

Note

You may see additional components in your palette, as we try to expand the variety of
examples we provide in the tutorial-src.

As mentioned above, the test_gui_rc sets up the path and loads the framework's palette with a
set of available components. rc files are explained in detail in Section 2.2, “Running Ccaffeine Us-
ing an rc File”.

3. We will begin by instantiating a drivers.CXXDriver component. Click-and-drag the compon-
ent you want from the palette to the arena. When you release the mouse button in the arena, a dia-
log box will pop up prompting you to name this instance of the component. The default will be the
last part of the component's class name (i.e. CXXDriver for drivers.CXXDriver) with a nu-
merical suffix to insure the name is unique. The suffix starts at 0 and simply counts up according to
the number of instances of that component you've created in that session. You can, of course, enter
any instance name you like, as long as it is unique across all components in the arena, but for sim-
plicity, we will always accept the default value in this Guide.

4. For the first application, follow the same procedure to instantiate:

• drivers.CXXDriver,
• functions.PiFunction,
• integrators.MonteCarlo,
• randomgens.RandNumGenerator,

(you may notice some debugging messages in the GUI host terminal window as you do this), and
your GUI should look something like this:

Assembling and Running a CCA Application

8

Tip

You can drag components around the arena to arrange them as suits you -- just click
on the black area of the compoment and drag it to the new location. The positions
have no bearing on the operation of the GUI or your application.

5. The next step is to begin making connections between the ports of your components. Click-
and-release CXXDriver0's integrate uses port, then click-and-release MonteCarlo0's in-
tegrate provides port and a red line should be drawn between the two:

Assembling and Running a CCA Application

9

Tip

If you hover the cursor over a particular port on a component, a “tool tip” box will
pop up with the port's name and type based on the arguments to the addProvides-
Port or registerUsesPort calls in the component's setServices method.
This can be useful for double checking to make sure you're connecting matching
ports.

Also notice that when you hover over a particular port (either uses or provides),
matching ports of the opposite type (either provides or uses) will be highlighted.

Note

You can move components around even after their ports are connected -- the connec-
tions will automatically rearrange. There is no harm in connections crossing each oth-
er, nor in connections passing behind other components (though of course they may
make it harder to interpret the “wiring diagram” correctly).

6. Complete the first application by making the following connections:

• CXXDriver0's integrate to MonteCarlo0's integrate
• MonteCarlo0's function to PiFunction0's function
• MonteCarlo0's RandomGeneratorPort to RandNumGenerator0's RandomGener-

atorPort.

At this point, your GUI should look something like:

7. The application is now fully assembled and is ready to run. If you click-and-release the go button
on the CXXDriver0 component, you should see the result appear in the Ccaffeine host terminal,
“Value = 3.139160” (since Monte Carlo integration is based on random sampling, you will
not get exactly the same result every time you run it, but for this example, it should always be reas-
onbly close to pi) and the message “IN: ##specific go command successful” in the

Assembling and Running a CCA Application

10

GUI host terminal.

8. Next, we're going to use some of the other components to assemble a different application using the

• integrators.Simpson and
• functions.CubeFunction

components. Since they're already in the palette, you can instantiate them in the same way as Step
3.

Tip

As we've mentioned, wiring diagrams can become hard to interpret when they become
cluttered, as is the case with the screen shot above. To help interpret the diagram, re-
member the following:

• “Wires” only connect to the sides of ports -- on the left side of provides ports (on
the left side of the component), or on the right side of uses ports. Connections are
never made to the top or bottom of a component.

• The GUI's wire-drawing algorithm is aware only of the two components that are
being connected. It will make no attempt to avoid other components or other
wires. So wires can pass behind components without connecting to any of their
ports, and wires may overlap.

• If you're still uncertain how to interpret the connections try rearranging the com-
ponents slightly. Connections attached to the component will follow as you drag it
around, but others not associated with that component will remain unchanged.

9. Next, we break the port connections we don't need so we can reconnect to the new components.
Right-click on the integrate (either the user or the provider) and a dialog box will pop up ask-
ing you to confirm that you want to break the connection. (A bug in the GUI causes this dialog box

Assembling and Running a CCA Application

11

to appear twice sometimes. Just respond appropriately both times.) You will need to break the fol-
lowing connections:

• CXXDriver0's integrate to MonteCarlo0's integrate
• MonteCarlo0's function to PiFunction0's function

Whether or not MonteCarlo0 remains connected to RandNumGenerator0 is immaterial be-
cause neither component is connected to any other component in the arena and so will no be in-
volved when a disjoint assembly of components is executed.

Note

Step 8 and Step 9 could have been done in either order.

10. Assemble the new application by making the following connections:

• CXXDriver0's integrate to Simpson0's integrate
• Simpson0's function to PiFunction0's function

Click-and-release the go button on the CXXDriver0 component, you should see the result appear
in the Ccaffeine host terminal, “Value = 3.141593” and the message “IN: ##specific
go command successful” in the GUI host terminal.

11. Finally, create a third application by replacing PiFunction0 with CubeFunction0. When
you click on the go you should get “Value = 0.250000” in the Ccaffeine host terminal (with a
deterministic integrator, the result should be repeatable).

Assembling and Running a CCA Application

12

12. At this point, you should understand how to instantiate components, how to connect and disconnect
their ports, and how to execute the application with the go port. Feel free to use any and all of the
components available in the palette to experiment with other integration applications.

Note

Observe that as a user of CCA components, you have no idea what language each
component is implemented in. (Admittedly, the names of the drivers are suggestive of
the implementation language, but those names were chosen at the convenience of the
component developer, and they provide no guarantees regarding the components' im-
plementations.) The language interoperability features of Babel allow components to
be hooked together regardless of implementation language with complete transpar-
ency.

13. To politely exit the GUI, select File → Quit. This will terminate both the GUI and the backend
ccafe-client sessions.

Tip

If you've used the GUI to setup and start a long-running simulation, and you don't
want to leave the GUI running continuously, you can use the File → Detach option to
close the GUI but leave the backend running. However it is currently impossible to
reattach to a running session.

2.2. Running Ccaffeine Using an rc File
In practice, most people don't use the GUI all the time. And even die-hard GUI users will sometimes
need to modify the rc file that does the initialization. Ccaffeine will also accept commands interactively
or in the form of a script (the rc file). This capability is very useful when you simply want to run CCA-

Assembling and Running a CCA Application

13

based applications that you already know how to assemble. In this section, we will examine in detail an
rc file that does everything you did in the GUI in the previous section.

When we're not using the GUI, the Ccaffeine invocation is much simpler, and there is no need for the
helper scripts we used before (utils/bocca-gui-backend.sh or gui-backend.sh). For direct use, Ccaf-
feine can be invoked as ccafe-single or ccafe-batch, depending on whether you're using it in a single-
process (i.e. sequential) interactive situation, or in non-interactive situations, including parallel jobs.

1. Change directories to your WORKDIR or another place write in, so that we can capture the output of
running the $TUTORIAL_SRC/components/tests/task0.rc rc file.

Execute the command

ccafe-single --ccafe-rc $TUTORIAL_SRC/components/tests/task0.rc \
>& task0.out

(assuming you're using the csh or tcsh shells; if you're using the sh or bash shells, replace the out-
put redirection “>& task0.out” with “> task0.out 2>&1”).

The rc file is a simple script interpreted by the Ccaffeine framework. It allows components to be
instantiated and destroyed, and for ports to be connected and disconnected. The utils/
bocca-run-guibackend.sh (or utils/run-gui.sh) script you used in the previous procedure to
launch the framework automatically included a simpler rc file ($TUTORIAL_SRC/
components/tests/guitest.gen.rc) that merely sets the component search path and
makes the project's components available on the the palette, leaving you to actually instantiate and
connect up components in the GUI.

View the task0.out file satisfy yourself that the script ran. (Of course you can also view the
script itself if you want.) Below we'll work our way through each section of the script and the cor-
responding output, but it may help you to see the input and output in their entirety. The step num-
bers should correspond to the steps in the preceeding GUI procedure.

2. The beginning of the task0.rc script looks like this:

#!ccaffeine bootstrap file.
------- don't change anything ABOVE this line.-------------

Step 2

path
path set /home/csm/bernhold/proj/cca/tutorial/tutorial/src-acts07/components/lib
path

palette
repository get-global drivers.CXXDriver
repository get-global drivers.F90Driver
repository get-global functions.CubeFunction
repository get-global functions.LinearFunction
repository get-global functions.QuinticFunction
repository get-global functions.SquareFunction
repository get-global integrators.MonteCarlo
repository get-global integrators.Simpson
repository get-global integrators.Trapezoid
repository get-global randomgens.RandNumGenerator
palette

The rc file begins with a “magic” line (a structured comment) indicating that the script is meant to

Assembling and Running a CCA Application

14

be processed by Ccaffeine. Ccaffeine expect to find such a line at the beginning of all rc files.

Ccaffeine uses a “path” to determine where it should look for CCA components (specifically the
.cca files, which internally point to the actual libraries that comprise the component). The rc file
prints the path before and after setting the path for pedagogical reasons. In “real” scripts, you might
want to print the path out for debugging or documentation purposes.

Path-related commands in Ccaffeine include:

path Prints the current path.

path append Adds a directory to the end of the current path.

path init Sets the path from the value of the $CCA_COMPONENT_PATH environment
variable.

path prepend Adds a directory to the beginning of the current path.

path set Sets the path to the value provided.

Ccaffeine also has the concept of a palette of components from which applications can be as-
sembled. Unlike a typical unix shell, where putting an executable into your path means you can use
it directly, Ccaffeine has a two step process. Components in the path can be added to the palette us-
ing the command repository get-global class_name, where class_name is the component's
class name. This two step approach gives you a little more control when there are large numbers of
components in your path. However in this case, we've simply loaded all of the components in the
tutorial-src tree.

The palette commands before and after the block of repository commands is simply meant to il-
lustrate that the framework's palette starts empty, and ends up with the components you requested.
They aren't needed in a “real” script.

The output from these commands should look something like this:

CCAFFEINE configured with spec (0.8.2) and babel (1.0.4).

CCAFFEINE configured with classic (0.5.7).

CCAFFEINE configured without neo and neo components.
my rank: -1, my pid: 27566
Type: One Processor Interactive

CmdContextCCA::initRC: Found task0_rc.

pathBegin
pathEnd! empty path.

There are allegedly 11 classes in the component path

pathBegin
pathElement /home/csm/bernhold/proj/cca/tutorial/tutorial/src-acts07/components/lib
pathEnd

Assembling and Running a CCA Application

15

Components available:

Loaded drivers.CXXDriver NOW GLOBAL .

Loaded drivers.F90Driver NOW GLOBAL .

Loaded functions.CubeFunction NOW GLOBAL .

Loaded functions.LinearFunction NOW GLOBAL .

Loaded functions.QuinticFunction NOW GLOBAL .

Loaded functions.SquareFunction NOW GLOBAL .

Loaded integrators.MonteCarlo NOW GLOBAL .

Loaded integrators.Simpson NOW GLOBAL .

Loaded integrators.Trapezoid NOW GLOBAL .

Loaded randomgens.RandNumGenerator NOW GLOBAL .

Components available:
drivers.CXXDriver
drivers.F90Driver
functions.CubeFunction
functions.LinearFunction
functions.QuinticFunction
functions.SquareFunction
integrators.MonteCarlo
integrators.Simpson
integrators.Trapezoid
randomgens.RandNumGenerator

Note

rc files used to initialize the GUI should contain only the magic line, path and repos-
itory get-global commands. You can view $TUTORIAL_SRC/com-
ponents/tests/gui-setup.rc as an example.

3. Next we instantiate the components we're going to use to assemble our first application, to place
them in the arena:

Steps 3-4

instances
instantiate drivers.CXXDriver CXXDriver0
instantiate functions.PiFunction PiFunction0
instantiate integrators.MonteCarlo MonteCarlo0
instantiate randomgens.RandNumGenerator RandNumGenerator0
instances

The command syntax is instantiate class_name instance_name. (The plain instantiate
commands before and after are, once again, for pedagogical purposes, to list the contents of the
arena.) The component's class_name is set in the SIDL file where it is defined, and is also used

Assembling and Running a CCA Application

16

in the repository get-global command. The instance_name is chosen by the user, and must
simply be unique within the arena. You may remember that the GUI suggests a default in-
stance_name when prompting you for it, but that's a feature of the GUI, not the framework.
Here you have to enter it yourself. It happens that we've used the same thing that the GUI would
suggest.

The output from these commands should look something like this:

FRAMEWORK of type Ccaffeine-Support

CXXDriver0 of type drivers.CXXDriver
successfully instantiated

PiFunction0 of type functions.PiFunction
successfully instantiated

MonteCarlo0 of type integrators.MonteCarlo
successfully instantiated

RandNumGenerator0 of type randomgens.RandNumGenerator
successfully instantiated

CXXDriver0 of type drivers.CXXDriver
FRAMEWORK of type Ccaffeine-Support
MonteCarlo0 of type integrators.MonteCarlo
PiFunction0 of type functions.PiFunction
RandNumGenerator0 of type randomgens.RandNumGenerator

4. Now we need to connect up the ports on the components we've instantiated in order to assemble the
application:

Steps 5-6

display chain
display component MonteCarlo0
connect CXXDriver0 integrate MonteCarlo0 integrate
connect MonteCarlo0 function PiFunction0 function
connect MonteCarlo0 RandomGeneratorPort RandNumGenerator0 RandomGeneratorPort
display chain

The command syntax is connect user_component user_port provider_component
provider_port.

The display command provides various kinds of information about the arena and components
therein. display chain details the connections between components. display component compon-
ent_instance lists the uses and provides ports the component has registered.

The output from these commands should look something like this:

Component CXXDriver0 of type drivers.CXXDriver
Component FRAMEWORK of type Ccaffeine-Support
Component MonteCarlo0 of type integrators.MonteCarlo
Component PiFunction0 of type functions.PiFunction
Component RandNumGenerator0 of type randomgens.RandNumGenerator

Instance name: MonteCarlo0

Assembling and Running a CCA Application

17

Class name: integrators.MonteCarlo

UsesPorts registered for MonteCarlo0

0. Instance Name: function Class Name: function.FunctionPort
1. Instance Name: RandomGeneratorPort Class Name: randomgen.RandomGeneratorPort

ProvidesPorts registered for MonteCarlo0

Instance Name: integrate Class Name: integrator.IntegratorPort

CXXDriver0))))integrate---->integrate((((MonteCarlo0
connection made successfully

MonteCarlo0))))function---->function((((PiFunction0
connection made successfully

MonteCarlo0))))RandomGeneratorPort---->RandomGeneratorPort((((RandNumGenerator0
connection made successfully

Component CXXDriver0 of type drivers.CXXDriver
is using integrate connected to Port: integrate provided by component MonteCarlo0
Component FRAMEWORK of type Ccaffeine-Support
Component MonteCarlo0 of type integrators.MonteCarlo
is using function connected to Port: function provided by component PiFunction0
is using RandomGeneratorPort connected to Port: RandomGeneratorPort provided by component RandNumGenerator0
Component PiFunction0 of type functions.PiFunction
Component RandNumGenerator0 of type randomgens.RandNumGenerator

5. Now that we have a complete application, we can start it by invoking the driver's go:

Step 7

go CXXDriver0 go

The command syntax is go component_instance port_name.

The output from these commands should look something like this:

Value = 3.140205
##specific go command successful

6. Now we use commands we already know to complete the rest of the operations that we previously
performed using the GUI:

Step 8

instantiate integrators.Simpson Simpson0
instantiate functions.CubeFunction CubeFunction0

Step 9

disconnect CXXDriver0 integrate MonteCarlo0 integrate
disconnect MonteCarlo0 function PiFunction0 function

Assembling and Running a CCA Application

18

Step 10

connect CXXDriver0 integrate Simpson0 integrate
connect Simpson0 function PiFunction0 function
display chain
go CXXDriver0 go

Step 11

disconnect Simpson0 function PiFunction0 function
connect Simpson0 function CubeFunction0 function
display chain
go CXXDriver0 go

The output from these commands should look something like this:

Simpson0 of type integrators.Simpson
successfully instantiated

CubeFunction0 of type functions.CubeFunction
successfully instantiated

CXXDriver0))))integrate-\ \-integrate((((MonteCarlo0
connection broken successfully

MonteCarlo0))))function-\ \-function((((PiFunction0
connection broken successfully

CXXDriver0))))integrate---->integrate((((Simpson0
connection made successfully

Simpson0))))function---->function((((PiFunction0
connection made successfully

Component CXXDriver0 of type drivers.CXXDriver
is using integrate connected to Port: integrate provided by component Simpson0
Component CubeFunction0 of type functions.CubeFunction
Component FRAMEWORK of type Ccaffeine-Support
Component MonteCarlo0 of type integrators.MonteCarlo
is using RandomGeneratorPort connected to Port: RandomGeneratorPort provided by component RandNumGenerator0
Component PiFunction0 of type functions.PiFunction
Component RandNumGenerator0 of type randomgens.RandNumGenerator
Component Simpson0 of type integrators.Simpson
is using function connected to Port: function provided by component PiFunction0

Value = 3.141593
##specific go command successful

Simpson0))))function-\ \-function((((PiFunction0
connection broken successfully

Assembling and Running a CCA Application

19

Simpson0))))function---->function((((CubeFunction0
connection made successfully

Component CXXDriver0 of type drivers.CXXDriver
is using integrate connected to Port: integrate provided by component Simpson0
Component CubeFunction0 of type functions.CubeFunction
Component FRAMEWORK of type Ccaffeine-Support
Component MonteCarlo0 of type integrators.MonteCarlo
is using RandomGeneratorPort connected to Port: RandomGeneratorPort provided by component RandNumGenerator0
Component PiFunction0 of type functions.PiFunction
Component RandNumGenerator0 of type randomgens.RandNumGenerator
Component Simpson0 of type integrators.Simpson
is using function connected to Port: function provided by component CubeFunction0

Value = 0.250000
##specific go command successful

7. At the end of the rc files, it is important to remember to terminate the framework.

Step 13

quit

The output from these commands should look something like this:

bye!
exit

Warning

If your rc file ends without a quit command, Ccaffeine will leave you in interactive
mode rather than terminating and returning you to the shell prompt. If you make this
mistake a Control-c will interrupt Ccaffeine and return you to the shell prompt.

Feel free to copy $TUTORIAL_SRC/components/tests/task0.rc to your workspace, modify
it, and run it yourself.

2.3. Notes on More Advanced Usage of the GUI
There are a couple of other features of the GUI and its interaction with the Ccaffeine backend that are
worth mentioning.

• The rc file used in conjunction with a GUI session need not be limited to path and repository get-
global commands -- it is possible to include all Ccaffeine commands, such as in the script of Sec-
tion 2.2, “Running Ccaffeine Using an rc File”. The GUI will display all instantiated components,
and all connections between their ports. However, the GUI has no mechanism to place the compon-
ents intelligently in the arena, so it just puts them all on top of each other. You can, of course, drag
them into more reasonable positions.

Assembling and Running a CCA Application

20

• It is possible to save the visual state of the GUI in a “.bld” file using the Save or Save As... button.
The .bld file can be loaded into the GUI and replayed by launching it with the --buildFile
file.bld option.

The syntax of the .bld file is similar to that of the rc file, but they are not interchangeable. The
.bld file can contain commands to instantiate and destroy components and to connect and discon-
nect ports, as well as commands to move components within the arena, and it can only be inter-
preted by the GUI. The path and repository get-global commands must always be in the rc file,
which is interpreted only by the Ccaffeine backend. Also, Ccaffeine itself does not understand the
movement commands of the .bld file.

Assembling and Running a CCA Application

21

Chapter 3. Using Bocca: An
Application Generator for CCA
$Revision: 1.51 $
$Date: 2007/11/10 16:52:48 $

While the CCA specification allows you to create components "by hand", it is much quicker to use an
application generator that provides templated code for components and a build system. Naturally bocca
cannot create your implementation for you, but all of the glue code for multilanguage interoperability
and component interfaces in a CCA application is created and maintained with a few commands. The
advantage of this approach is that a lot of build and component defaults have been chosen for you. The
downside is that, while some customization is possible, the project directory and file structures are
largely predetermined.

3.1. Creating a Bocca Project
If your CCA environment is configured properly (Appendix B, Building the CCA Tools and TAU and
Setting Up Your Environment) then the bocca command is already in your command path and you are
ready to go. Find a safe place to begin your bocca project, such as your WORKDIR:

$ cd $WORKDIR

$

The first thing to do is to create a project directory within which all of your components and ports will
reside. Normally you would choose a relevant project name but for now we will just call it
myProject. Create the project directory now:

$ bocca create project myProject --language=LANG

The project was created successfully in /data/user1/myProject
$

Here LANG is the implementation language that your components will default to. Just choose the one of
c, cxx, or f90 with which you are most comfortable. (The default language can actually be any lan-
guage that bocca and Babel are configured to support, but currently this Guide includes detailed instruc-
tions for only C, C++, and F90.) If no language option is given, C++ will be used as the default project
language. Note that a project with a given default language can contain components implemented in any
Babel-supported language.

22

Now that the project is created, we see that bocca has created a lot of build scaffolding to support the
componentized application we will write. The first thing you notice is that bocca has created a directory:

$ ls

myProject
$

Feel free to poke around a bit:

$ ls myProject/

BOCCA configure install make.project.in ports
buildutils configure.in Makefile make.rules.user README
components external make.project make.vars.user utils
$

Before using a new bocca project or working with an existing project just checked out from a source
code repository, you will need to configure it for the details of your local environment. For a new project
this is easy: ./configure from within your new project directory.

$ cd myProject; ./configure

checking for bash... /bin/sh
checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
checking for openpty in -lutil... yes
checking for bocca... /home/baallan/cca/build/bocca/trunk/install/bin/bocca
c cxx f90 f77 python
configure: Configuring with languages: c cxx f90 f77 python
configure: Project source dir apparently /data/user1/myProject
configure: Using 1 processe(s) in calls to make.

Using Bocca: An Application Generator for
CCA

23

checking whether make sets $(MAKE)... yes
configure: creating ./config.status
config.status: creating make.project
config.status: creating buildutils/make.vars.common
config.status: creating utils/run-gui.sh
config.status: creating utils/bocca-gui-backend.sh
config.status: creating utils/myProject-config
config.status: creating utils/config-data
config.status: executing outmsg commands
$

3.2. Creating Ports and Components
Let's create a component. First make sure that your current working directory is inside the project direct-
ory:

$ pwd

/data/user1/myProject
$

It is important to be in the project directory (or its subdirectories) when you invoke bocca because it
picks up all of the context for your project from there (similar to CVS or Subversion). Go ahead and cre-
ate the component now:

$ bocca create component emptyComponent

Updating the cxx implementation of component myProject.emptyComponent ...
$

You will notice that this takes a little time and that bocca has selected myProject as the default pack-
age name for emptyComponent since no package name was specified when creating the component.
Bocca will default to the project name as the package name for both ports and components, unless a dif-
ferent default package name was specified when the project was created. Note we have named our com-
ponent emptyComponent because it has no uses nor provides ports and thus is rather uninteresting.

Using Bocca: An Application Generator for
CCA

24

Nonetheless all of the necessary make system scaffolding and code have been generated for the compon-
ent, including the setServices call. Here we use as an example the case where LANG is cxx:

$ ls components/myProject.emptyComponent/

BOCCA make.vars.user
glue myProject_emptyComponent_Impl.cxx
Makefile myProject_emptyComponent_Impl.hxx
make.rules.user myProject_emptyComponent_Impl.hxx.rej
$

Components created in Fortran, C, and Python will contain similar files in the respective language. In
the components directory a new directory, myProject.emptyComponent, has been created to
hold your component. And inside there is the code already generated for the component (again continu-
ing with LANG = cxx) in the files: myProject_emptyComponent_Impl.cxx, myPro-
ject_emptyComponent_Impl.hxx with some Babel glue code in the glue subdirectory. Note
the file ending in .rej named myProject_emptyComponent_Impl.hxx.rej. This file produced
by the bocca splicing process. It records code fragments that bocca discarded while generating myPro-
ject_emptyComponent_Impl.hxx and can usually be ignored and even deleted.

An Empty Component in Ccaffeine

Although the component you've created can't actually do anything useful at this point, it is a valid
component. You can build it and instantiate it in Ccaffeine if you like:

$ make

===
No SIDL files in external/sidl, skipping build for external
===

===
No SIDL files in ports/sidl, skipping build for ports
===

===
Building in components/clients/, languages: cxx
===
Building clients...

===
Building in components/, languages: cxx
===

[s] Building component myProject.emptyComponent:

Using Bocca: An Application Generator for
CCA

25

[s] using Babel to generate cxx implementation code from myProject.emptyComponent.sidl...
[s] compiling sources...
[s] creating component library: libmyProject.emptyComponent.la ...
[s] finished libtooling: components/myProject.emptyComponent/libmyProject.emptyComponent.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
Build summary:
SUCCESS building myProject.emptyComponent

To test instantiation of successfully built components, run 'make check'

################ Finished building everything #################
####### You can run some simple tests with 'make check' #######

$

(Your output should be substantially similar, but will at least have different paths.)

Now, you can run Ccaffeine and the GUI following the same procedure you used in Section 2.1,
“Using the GUI Front-End to Ccaffeine” and you should see something like this:

You can now instantiate the emptyComponent. Of course it lacks any uses or provides ports
and thus cannot be used for anything, but it is a full-fledged CCA component.

In order to have some exportable or importable functionality in a component we must have some uses
and provides ports. Bocca will also create the scaffolding and code for ports. Just as in the pre-built ap-
plication of Chapter 2, Assembling and Running a CCA Application we will want to create a
Function, an Integrator, and a Driver. Before we can do that we will have to create some ports
for these components to use and provide. We wish to create a FunctionPort and an Integrator-
Port:

$ bocca create port IntegratorPort

Using Bocca: An Application Generator for
CCA

26

Updating makefiles (for myProject.IntegratorPort)...
$

$ bocca create port FunctionPort

Updating makefiles (for myProject.FunctionPort)...
$

Notice that we have opted for the default package myProject that is created for us transparently for
all components and ports unless otherwise specified. Now, create a set of components similar to those
that you used in Chapter 2, Assembling and Running a CCA Application, specifying that they will
provide or use the appropriate ports:

$ bocca create component Function --provides=FunctionPort:thisFunction

Updating the cxx implementation of component myProject.Function ...
$

$ bocca create component Integrator --provides=IntegratorPort:integrate \
--uses=FunctionPort:integrateThis

$

$ bocca create component Driver --uses=IntegratorPort:integrate \
--go=run

$

Using Bocca: An Application Generator for
CCA

27

This last bocca create decorates our component with a CCA standard GoPort, which is not spe-
cified as part of this project. Since gov.cca.ports.GoPort is a part of the CCA specification,
bocca takes care of knowing where to find the SIDL definition of this port. The special --go option al-
lows bocca to generate a default go implementation which prefetches the uses ports so that all the user
needs to do for our example is add numerical code. In languages which are not object-oriented, this sub-
stantially reduces the errors in handling ports, exceptions, and memory deallocation.

Note

It is not necessary to know at component creation time all ports that will be used or
provided or other implementation details. Bocca provides various commands for changing
project entities, e.g., adding or removing uses and provides ports.

As we have defined a number of new things, make would be a good thing to do now:

$ make

===
No SIDL files in external/sidl, skipping build for external
===

===
Building in ports/, languages: cxx
===
Building ports...

[c] using Babel to generate cxx client code for myProject.FunctionPort...
[c] creating library: libmyProject.FunctionPort-cxx.la...
[c] using Babel to generate cxx client code for myProject.IntegratorPort...
[c] creating library: libmyProject.IntegratorPort-cxx.la...
===
Building in components/clients/, languages: cxx
===
Building clients...

===
Building in components/, languages: cxx
===

[s] Building component myProject.Driver:
[s] using Babel to generate cxx implementation code from myProject.Driver.sidl...
[s] compiling sources...
[s] creating component library: libmyProject.Driver.la ...
[s] finished libtooling: components/myProject.Driver/libmyProject.Driver.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.Function:
[s] using Babel to generate cxx implementation code from myProject.Function.sidl...
[s] compiling sources...
[s] creating component library: libmyProject.Function.la ...
[s] finished libtooling: components/myProject.Function/libmyProject.Function.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

Using Bocca: An Application Generator for
CCA

28

[s] Building component myProject.Integrator:
[s] using Babel to generate cxx implementation code from myProject.Integrator.sidl...
[s] compiling sources...
[s] creating component library: libmyProject.Integrator.la ...
[s] finished libtooling: components/myProject.Integrator/libmyProject.Integrator.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.emptyComponent: doing nothing -- library is up-to-date.

Build summary:
SUCCESS building myProject.Driver
SUCCESS building myProject.Function
SUCCESS building myProject.Integrator

To test instantiation of successfully built components, run 'make check'

################ Finished building everything #################
####### You can run some simple tests with 'make check' #######

$

Note that this operation can be very time-consuming when your project is managing many ports and
components with the fully supported set of Babel language bindings.

Running make check will test whether the components you've created can be instantiated successfully
in the Ccaffeine framework:

$ make check

make --no-print-directory --no-builtin-rules -C components check

Test library load and instantiation for the following languages: cxx
Running instantiation tests only
Test script: /data/user1/myProject/components/tests/instantiation.gen.rc
SUCCESS:
==> Instantiation tests passed for all built components (see /data/user1/myProject/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
$

If you were to run the GUI (Section 2.1, “Using the GUI Front-End to Ccaffeine”) or do the command-
line equivalent in Ccaffeine (Section 2.2, “Running Ccaffeine Using an rc File”), you would find that
the components are decorated with the ports you expect, and they can even be connected (an operation
of the framework, not of the components or the ports being connected). But of course they have not yet
been implemented, so attempting to run an application with these components would cause it to do noth-
ing.

3.3. Inserting Implementations into Bocca-

Using Bocca: An Application Generator for
CCA

29

Generated Components
So far, with very little work, we have generated what appears to be an application but is really just the
componentized shell of an application. In order to cause it to do something useful we have to add the im-
plementation. There are two places that we have to change things to make that happen: add methods to
the interface definitions (.sidl file) and then put the implementation code into the components in the
language chosen in Section 3.1, “ Creating a Bocca Project ”. Bocca manages the many files required
and produced by Babel, tracking each file's location so you do not need to.

How to edit and find files in bocca projects

Because bocca generates all the files in the project, it knows where they are and will help you ap-
ply your favorite editor to them. It is important to use bocca edit, because after you exit the editor
bocca regenerates all other source files that depend on the source file edited.

edit the sidl file of the symbol
$ bocca edit SIDL_SYMBOL

edit the header/module of the component
$ bocca edit -m SIDL_CLASS

edit the implementation file of the class or component
$ bocca edit -i SIDL_CLASS

edit the named method in the class or component if your editor supports +N
$ bocca edit -i SIDL_CLASS method

Replace edit with whereis in any of the above, and bocca prints out the path of the file that would
be edited without starting up an editor.

The environment variable BOCCA_EDITOR (and if that is not set, then EDITOR) controls what
editor gets invoked by bocca edit. Users of emacs may want to set BOCCA_EDITOR to "emacs -
nw" when editing on a remote cluster with slow or no X11 connections.

All emacs and vi versions support +N, which is used for specifying the initial position in the file
when a method name is specified. If your favorite editor does not support +N, omit the method
name and search for it in the opened file using your editor's search capability.

Bocca also has a way for you to tell it you've edited a file by some means other than bocca edit.

something was done to FunctionPort. Update its dependencies, if any.
$ bocca edit --touch FunctionPort

something was done to Driver code. Update its dependencies, if any.
$ bocca edit --touch -i Driver

If you do not tell bocca, you may find methods you just added to a .sidl file missing from the
implementation when you edit that.

3.3.1. Adding Methods to Ports

Using Bocca: An Application Generator for
CCA

30

First modify the SIDL files to create the gov.cca.Ports that are needed to import/export functional-
ity from/to the components. Remember to set the BOCCA_EDITOR environment variable to your favor-
ite editor, per How to edit and find files in bocca projects, if you do not like the default editor bocca
finds in your environment.

$ bocca edit IntegratorPort

// DO-NOT-DELETE bocca.splicer.begin(myProject.comment)

// Insert-UserCode-Here {myProject.comment} (Insert your package comments here)

// DO-NOT-DELETE bocca.splicer.end(myProject.comment)
package myProject version 0.0 {

// DO-NOT-DELETE bocca.splicer.begin(myProject.IntegratorPort.comment)

// Insert-UserCode-Here {myProject.IntegratorPort.comment} (Insert your port comments here)

// DO-NOT-DELETE bocca.splicer.end(myProject.IntegratorPort.comment)
interface IntegratorPort extends gov.cca.Port
{

// DO-NOT-DELETE bocca.splicer.begin(myProject.IntegratorPort.methods)

// Insert-UserCode-Here {myProject.IntegratorPort.methods} (Insert your port methods here)

// DO-NOT-DELETE bocca.splicer.end(myProject.IntegratorPort.methods)
}

}

Insert the integrate method:

// DO-NOT-DELETE bocca.splicer.begin(myProject.comment)

// Insert-UserCode-Here {myProject.comment} (Insert your package comments here)

// DO-NOT-DELETE bocca.splicer.end(myProject.comment)
package myProject version 0.0 {

// DO-NOT-DELETE bocca.splicer.begin(myProject.IntegratorPort.comment)

// Insert-UserCode-Here {myProject.IntegratorPort.comment} (Insert your port comments here)

// DO-NOT-DELETE bocca.splicer.end(myProject.IntegratorPort.comment)
interface IntegratorPort extends gov.cca.Port
{

// DO-NOT-DELETE bocca.splicer.begin(myProject.IntegratorPort.methods)

double integrate(in double lowBound, in double upBound, in int count);

Using Bocca: An Application Generator for
CCA

31

// DO-NOT-DELETE bocca.splicer.end(myProject.IntegratorPort.methods)
}

}

Quit the editor after you are done editing. bocca edit then finishes by updating the components that de-
pend on the port edited:

Updating makefiles (for myProject.IntegratorPort, myProject.Driver, myProject.Integrator)...
Using Babel to validate the SIDL for port myProject.IntegratorPort ...
Updating the cxx implementation of component myProject.Driver ...
Updating the cxx implementation of component myProject.Integrator ...
$

Next edit the file FunctionPort.sidl:

$ bocca edit FunctionPort

// DO-NOT-DELETE bocca.splicer.begin(myProject.comment)

// Insert-UserCode-Here {myProject.comment} (Insert your package comments here)

// DO-NOT-DELETE bocca.splicer.end(myProject.comment)
package myProject version 0.0 {

// DO-NOT-DELETE bocca.splicer.begin(myProject.FunctionPort.comment)

// Insert-UserCode-Here {myProject.FunctionPort.comment} (Insert your port comments here)

// DO-NOT-DELETE bocca.splicer.end(myProject.FunctionPort.comment)
interface FunctionPort extends gov.cca.Port
{

// DO-NOT-DELETE bocca.splicer.begin(myProject.FunctionPort.methods)

// Insert-UserCode-Here {myProject.FunctionPort.methods} (Insert your port methods here)

// DO-NOT-DELETE bocca.splicer.end(myProject.FunctionPort.methods)
}

}

Add two methods init and evaluate so that FunctionPort looks like this:

// DO-NOT-DELETE bocca.splicer.begin(myProject.comment)

Using Bocca: An Application Generator for
CCA

32

// Insert-UserCode-Here {myProject.comment} (Insert your package comments here)

// DO-NOT-DELETE bocca.splicer.end(myProject.comment)
package myProject version 0.0 {

// DO-NOT-DELETE bocca.splicer.begin(myProject.FunctionPort.comment)

// Insert-UserCode-Here {myProject.FunctionPort.comment} (Insert your port comments here)

// DO-NOT-DELETE bocca.splicer.end(myProject.FunctionPort.comment)
interface FunctionPort extends gov.cca.Port
{

// DO-NOT-DELETE bocca.splicer.begin(myProject.FunctionPort.methods)

void init(in array<double,1> params);
double evaluate(in double x);

// DO-NOT-DELETE bocca.splicer.end(myProject.FunctionPort.methods)
}

}

Again quit the editor and the dependent components are updated as indicated by this output from bocca
edit:

Updating makefiles (for myProject.FunctionPort, myProject.Integrator, myProject.Function)...
Using Babel to validate the SIDL for port myProject.FunctionPort ...
Updating the cxx implementation of component myProject.Integrator ...
Updating the cxx implementation of component myProject.Function ...
$

What we have done is place methods into the SIDL files in a language-independent way. When you type
make all of the the new method information is propagated to the language-dependent implementation
files. Of course the methods will be unimplemented but the components will build anyway. So let's do
that now:

$ make; make check

===
No SIDL files in external/sidl, skipping build for external
===

===
Building in ports/, languages: cxx

Using Bocca: An Application Generator for
CCA

33

===
Building ports...

[c] using Babel to generate cxx client code for myProject.FunctionPort...
[c] creating library: libmyProject.FunctionPort-cxx.la...
[c] using Babel to generate cxx client code for myProject.IntegratorPort...
[c] creating library: libmyProject.IntegratorPort-cxx.la...
===
Building in components/clients/, languages: cxx
===
Building clients...

===
Building in components/, languages: cxx
===

[s] Building component myProject.Driver:
[s] using Babel to generate cxx implementation code from myProject.Driver.sidl...
[s] compiling sources...
[s] creating component library: libmyProject.Driver.la ...
[s] finished libtooling: components/myProject.Driver/libmyProject.Driver.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.Function:
[s] using Babel to generate cxx implementation code from myProject.Function.sidl...
[s] compiling sources...
[s] creating component library: libmyProject.Function.la ...
[s] finished libtooling: components/myProject.Function/libmyProject.Function.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.Integrator:
[s] using Babel to generate cxx implementation code from myProject.Integrator.sidl...
[s] compiling sources...
[s] creating component library: libmyProject.Integrator.la ...
[s] finished libtooling: components/myProject.Integrator/libmyProject.Integrator.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.emptyComponent: doing nothing -- library is up-to-date.

Build summary:
SUCCESS building myProject.Driver
SUCCESS building myProject.Function
SUCCESS building myProject.Integrator

To test instantiation of successfully built components, run 'make check'

################ Finished building everything #################
####### You can run some simple tests with 'make check' #######

make --no-print-directory --no-builtin-rules -C components check

Test library load and instantiation for the following languages: cxx
Running instantiation tests only
Test script: /data/user1/myProject/components/tests/instantiation.gen.rc
SUCCESS:
==> Instantiation tests passed for all built components (see /data/user1/myProject/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
$

The methods you inserted in SIDL have now been inserted into your already generated components us-
ing the language you chose when you created the project or each component in Section 3.1, “ Creating a

Using Bocca: An Application Generator for
CCA

34

Bocca Project ”. At this point we are ready to insert the actual implementation into the bodies of these
methods. You must now jump to the particular language implementation you chose in Section 3.1, “
Creating a Bocca Project ”. There is (or soon will be) a section below for each language choice available
in bocca. While it is not surprising that we have to write code in a specific programming language to im-
plement a component's functionality, it is rather remarkable that an entire application skeleton can be
created, built, and run without writing code in a language other than SIDL.

3.4. Language-Specific Implementations of the
Function, Integrator, and Driver Components
3.4.1. C++ Implementation

Assumes you created the project with bocca create project myProject -
-language=cxx

Edit the evaluate and init methods in the implementation file (also known as "the impl") that
bocca has generated for you (by invoking Babel). Use the bocca edit -i to go directly to each method.

$ bocca edit -i Function evaluate

/**
* Method: evaluate[]
*/
double
myProject::Function_impl::evaluate_impl (
/* in */double x)

{
// DO-NOT-DELETE splicer.begin(myProject.Function.evaluate)
// Insert-Code-Here {myProject.Function.evaluate} (evaluate method)

// DO-DELETE-WHEN-IMPLEMENTING exception.begin()
/*
* This method has not been implemented
*/
::sidl::NotImplementedException ex = ::sidl::NotImplementedException::_create();
ex.setNote("This method has not been implemented");
ex.add(__FILE__, __LINE__, "evaluate");
throw ex;
// DO-DELETE-WHEN-IMPLEMENTING exception.end()

// DO-NOT-DELETE splicer.end(myProject.Function.evaluate)
}

As the comment suggests, this method is "not implemented", but some code has been inserted by Babel
to make sure an exception is thrown to inform the user if this method is called by mistake. Remove this
boilerplate exception code and substitute an implementation for the PiFunction (i.e., the integral
from 0 to 1 of 4/(1 + x²) is pi).

/**
* Method: evaluate[]
*/

Using Bocca: An Application Generator for
CCA

35

double
myProject::Function_impl::evaluate_impl (
/* in */double x)

{
// DO-NOT-DELETE splicer.begin(myProject.Function.evaluate)

return 4.0 / (1.0 + x * x);

// DO-NOT-DELETE splicer.end(myProject.Function.evaluate)
}

Now in the same file just above the evaluate method, find the second method for the Function-
Port init method:

/**
* Method: init[]
*/
void
myProject::Function_impl::init_impl (
/* in array<double> */::sidl::array<double> params)

{
// DO-NOT-DELETE splicer.begin(myProject.Function.init)

// Do nothing.

// DO-NOT-DELETE splicer.end(myProject.Function.init)
}

We don't have any initialization in this simple example, so we just eliminate the code that throws the ex-
ception when the method is executed.

After quitting the editor the state of the source code tree is updated if there are any dependencies on the
edited implementation. Usually there are no dependencies on the implementation file, so bocca does
very little after you exit the editor and all you see is the information from the edit command about what
file was edited.

Trying to edit file /data/user1/myProject/components/myProject.Function/myProject_Function_Impl.cxx
$

Similarly change integrate in Integrator with:

Using Bocca: An Application Generator for
CCA

36

$ bocca edit -i Integrator integrate

/**
* Method: integrate[]
*/
double
myProject::Integrator_impl::integrate_impl (
/* in */double lowBound,
/* in */double upBound,
/* in */int32_t count)

{
// DO-NOT-DELETE splicer.begin(myProject.Integrator.integrate)
// Insert-Code-Here {myProject.Integrator.integrate} (integrate method)

// DO-DELETE-WHEN-IMPLEMENTING exception.begin()
/*
* This method has not been implemented
*/
::sidl::NotImplementedException ex = ::sidl::NotImplementedException::_create();
ex.setNote("This method has not been implemented");
ex.add(__FILE__, __LINE__, "integrate");
throw ex;
// DO-DELETE-WHEN-IMPLEMENTING exception.end()

// DO-NOT-DELETE splicer.end(myProject.Integrator.integrate)
}

Remove this boilerplate exception code and insert an implementation of the Trapezoid rule for integra-
tion that uses the FunctionPort:

/**
* Method: integrate[]
*/
double
myProject::Integrator_impl::integrate_impl (
/* in */double lowBound,
/* in */double upBound,
/* in */int32_t count)

{
// DO-NOT-DELETE splicer.begin(myProject.Integrator.integrate)

myProject::FunctionPort integrateThis;
gov::cca::Port generalPort;

try {
generalPort = d_services.getPort("integrateThis");

} catch (::gov::cca::CCAException ex) {
// we cannot go on. add to the error report.
ex.add(__FILE__, __LINE__,

"integrateThis port not available in Integrator.integrate");
throw;

}

Using Bocca: An Application Generator for
CCA

37

integrateThis = ::babel_cast< myProject::FunctionPort >(generalPort);
if (integrateThis._is_nil()){
// we cannot go on. toss an exception after cleaning up.
try {
d_services.releasePort("integrateThis");

} catch (...) {
// suppress framework complaints; we're already handling an exception.

}
::sidl::SIDLException ex = ::sidl::SIDLException::_create();
ex.setNote("Error: integrateThis port is nil. Weird.");
ex.add(__FILE__, __LINE__, "integrators::Trapezoid_impl::integrate_impl");
throw ex;

}

double h = (upBound - lowBound) / count;
double retval = 0.0;
double sum = 0.0;
for (int i = 1; i <= count; i++){
sum += integrateThis.evaluate(lowBound + (i - 1) * h) +

integrateThis.evaluate(lowBound + i * h);
}
retval = h/2.0 * sum;
d_services.releasePort("integrateThis");
return retval;

// DO-NOT-DELETE splicer.end(myProject.Integrator.integrate)
}

We see the usual output when no other sources depend on the one just edited.

Trying to edit file /data/user1/myProject/components/myProject.Integrator/myProject_Integrator_Impl.cxx
$

Finally for the Driver component we have to implement the GoPort details to get things going.
Bocca will take you to the generated method, which looks like:

$ bocca edit -i Driver go

/**
*
* Execute some encapsulated functionality on the component.
* Return 0 if ok, -1 if internal error but component may be
* used further, and -2 if error so severe that component cannot
* be further used safely.
*/
int32_t
myProject::Driver_impl::go_impl ()

Using Bocca: An Application Generator for
CCA

38

{
// DO-NOT-DELETE splicer.begin(myProject.Driver.go)

// User editable portion is in the middle at the next Insert-UserCode-Here line.

// Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoProlog)
int bocca_status = 0;
// The user's code should set bocca_status 0 if computation proceeded ok.
// The user's code should set bocca_status -1 if computation failed but might
// succeed on another call to go(), e.g. when a required port is not yet connected.
// The user's code should set bocca_status -2 if the computation failed and can
// never succeed in a future call.
// The user's code should NOT use return in this function;
// Exceptions that are not caught in user code will be converted to status -2.

gov::cca::Port port;

myProject::IntegratorPort integrate; // nil if not fetched and cast successfully.
bool integrate_fetched = false; // True when releasePort is needed (even if cast fails).

// Use a myProject.IntegratorPort port with port name integrate
try{
port = this->d_services.getPort("integrate");

} catch (::gov::cca::CCAException ex) {
// we will continue with port nil (never successfully assigned) and set a flag.

#ifdef _BOCCA_STDERR
std::cerr << "myProject.Driver: Error calling getPort(\"integrate\") at "

<< __FILE__ << ":" << __LINE__ -5 << ": " << ex.getNote() << std::endl;
#endif // _BOCCA_STDERR

}
if (port._not_nil()) {
integrate_fetched = true; // even if the next cast fails, must release.
integrate = ::babel_cast< myProject::IntegratorPort >(port);
if (integrate._is_nil()) {

#ifdef _BOCCA_STDERR
std::cerr << "myProject.Driver: Error casting gov::cca::Port integrate to type myProject::IntegratorPort" << std::endl;

#endif //_BOCCA_STDERR

goto BOCCAEXIT; // we cannot correctly continue. clean up and leave.
}

}

// Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoProlog)

// When this try/catch block is rewritten by the user, we will not change it.
try {

// All port instances should be rechecked for ._not_nil before calling in user code.
// Not all ports need be connected in arbitrary use.
// The uses ports appear as local variables here named exactly as on the
// bocca commandline.

// Insert-UserCode-Here {myProject.Driver.go}

// REMOVE ME BLOCK.begin(myProject.Driver.go)

#ifdef _BOCCA_STDERR
std::cerr << "USER FORGOT TO FILL IN THEIR GO FUNCTION HERE." << std::endl;

#endif

Using Bocca: An Application Generator for
CCA

39

// REMOVE ME BLOCK.end(myProject.Driver.go)

}
// If unknown exceptions in the user code are tolerable and restart is ok, return -1 instead.
// -2 means the component is so confused that it and probably the application should be
// destroyed.
catch (sidl::BaseException ex) {
bocca_status = -2;
std::string enote = ex.getNote();

#ifdef _BOCCA_STDERR
std::cerr << "Exception in user go code: " << enote << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;;

#endif

}
catch (std::exception ex) {
bocca_status = -2;

#ifdef _BOCCA_STDERR
std::cerr << "C++ exception in user go code: " << ex.what() << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;

#endif

}
catch (...) {
bocca_status = -2;

#ifdef _BOCCA_STDERR
std::cerr << "Odd exception in user go code " << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;

#endif

}

BOCCAEXIT:; // target point for error and regular cleanup. do not delete.
// Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoEpilog)

// release integrate
if (integrate_fetched) {
integrate_fetched = false;
try{
this->d_services.releasePort("integrate");

} catch (::gov::cca::CCAException ex) {

#ifdef _BOCCA_STDERR
std::cerr << "myProject.Driver: Error calling releasePort(\"integrate\") at "

<< __FILE__ << ":" << __LINE__ -4 << ": " << ex.getNote() << std::endl;
#endif // _BOCCA_STDERR

}
// c++ port reference will be dropped when function exits, but we must tell framework.

}

return bocca_status;
// Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoEpilog)

// DO-NOT-DELETE splicer.end(myProject.Driver.go)
}

Using Bocca: An Application Generator for
CCA

40

For complex components with many ports (or even one port in languages which are not object-oriented),
the default go implementation is very handy. Because we have only one port to use in this C++ example,
we will delete the bocca default go implementation entirely. Bocca will not attempt to regenerate it once
deleted.

Delete everything between the DO-NOT-DELETE splicer directives and insert an implementation
of the GoPort method go as shown. The go function will be called by the framework when the com-
ponent's run button (the name of this particular GoPort instance) is pushed in the GUI. We will im-
plement that method to get a reference to the IntegratorPort that the Driver has been connected
to and use it to compute the integral:

/**
*
* Execute some encapsulated functionality on the component.
* Return 0 if ok, -1 if internal error but component may be
* used further, and -2 if error so severe that component cannot
* be further used safely.
*/
int32_t
myProject::Driver_impl::go_impl ()

{
// DO-NOT-DELETE splicer.begin(myProject.Driver.go)

double value;
int count = 100000;
double lowerBound = 0.0, upperBound = 1.0;

::myProject::IntegratorPort integrator;

// get the port ...
gov::cca::Port port = d_services.getPort("integrate");
integrator = babel_cast< ::myProject::IntegratorPort >(port);

if(integrator._is_nil()) {
std::cerr << "Weird error in casting integrate port." << std::endl;
d_services.releasePort("integrate");
return -2;

}
// operate on the port
value = integrator.integrate(lowerBound, upperBound, count);
std::cout << "Value = " << value << std::endl;

// release the port.
d_services.releasePort("integrate");
return 0;

// DO-NOT-DELETE splicer.end(myProject.Driver.go)
}

After quitting the editor the state of the source code tree is updated if there are any dependencies on the

Using Bocca: An Application Generator for
CCA

41

edited implementation. Usually there are no dependencies on the implementation file, so bocca does
very little after you exit the editor and all you see is the information from the edit command about what
file was edited.

Trying to edit file /data/user1/myProject/components/myProject.Driver/myProject_Driver_Impl.cxx
$

Now remake your project tree to finish the components:

$ make

===
No SIDL files in external/sidl, skipping build for external
===

===
Building in ports/, languages: cxx
===
Building ports...

===
Building in components/clients/, languages: cxx
===
Building clients...

===
Building in components/, languages: cxx
===

[s] Building component myProject.Driver:
[s] creating component library: libmyProject.Driver.la ...
[s] finished libtooling: components/myProject.Driver/libmyProject.Driver.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.Function:
[s] creating component library: libmyProject.Function.la ...
[s] finished libtooling: components/myProject.Function/libmyProject.Function.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.Integrator:
[s] creating component library: libmyProject.Integrator.la ...
[s] finished libtooling: components/myProject.Integrator/libmyProject.Integrator.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.emptyComponent: doing nothing -- library is up-to-date.

Build summary:

Using Bocca: An Application Generator for
CCA

42

SUCCESS building myProject.Driver
SUCCESS building myProject.Function
SUCCESS building myProject.Integrator

To test instantiation of successfully built components, run 'make check'

################ Finished building everything #################
####### You can run some simple tests with 'make check' #######

$

It is good practice to do a make check at this point:

$ make check

make --no-print-directory --no-builtin-rules -C components check

Test library load and instantiation for the following languages: cxx
Running instantiation tests only
Test script: /data/user1/myProject/components/tests/instantiation.gen.rc
SUCCESS:
==> Instantiation tests passed for all built components (see /data/user1/myProject/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
$

You should now be able to instantiate these components, assemble them into an application, and run the
application, following the same procedures as in Chapter 2, Assembling and Running a CCA
Application, and get a result that's reasonably close to pi.

3.4.2. Fortran9X Implementation
Assumes you created the project with bocca create project myProject -
-language=f90

You can now implement the evaluate method generated from the SIDL definition of the Func-
tionPort method evaluate. The bocca edit command will take you directly to the method in the
source file, skipping over the many details of generating portable object-oriented F90 code.

$ bocca edit -i Function evaluate

!
! Method: evaluate[]
!

recursive subroutine myProject_Function_evaluate_mi(self, x, retval, &
exception)
use sidl
use sidl_NotImplementedException

Using Bocca: An Application Generator for
CCA

43

use sidl_BaseInterface
use sidl_RuntimeException
use myProject_Function
use myProject_Function_impl
! DO-NOT-DELETE splicer.begin(myProject.Function.evaluate.use)
! Insert-Code-Here {myProject.Function.evaluate.use} (use statements)
! DO-NOT-DELETE splicer.end(myProject.Function.evaluate.use)
implicit none
type(myProject_Function_t) :: self ! in
real (kind=sidl_double) :: x ! in
real (kind=sidl_double) :: retval ! out
type(sidl_BaseInterface_t) :: exception ! out

! DO-NOT-DELETE splicer.begin(myProject.Function.evaluate)
! Insert-Code-Here {myProject.Function.evaluate} (evaluate method)

! DO-DELETE-WHEN-IMPLEMENTING exception.begin()
!
! This method has not been implemented
!
type(sidl_BaseInterface_t) :: throwaway
type(sidl_NotImplementedException_t) :: notImpl
call new(notImpl, exception)
call setNote(notImpl, 'Not Implemented', exception)
call cast(notImpl, exception,throwaway)
call deleteRef(notImpl,throwaway)
return

! DO-DELETE-WHEN-IMPLEMENTING exception.end()

! DO-NOT-DELETE splicer.end(myProject.Function.evaluate)
end subroutine myProject_Function_evaluate_mi

As the comment suggests, this method is "not implemented", but some code has been inserted by Babel
to make sure an exception is thrown to inform the user if this is called by mistake. Remove this boiler-
plate exception code and substitute an implementation for the PiFunction (i.e., the integral from 0 to
1 of 4/(1 + x²) is pi).

!
! Method: evaluate[]
!

recursive subroutine myProject_Function_evaluate_mi(self, x, retval, &
exception)
use sidl
use sidl_NotImplementedException
use sidl_BaseInterface
use sidl_RuntimeException
use myProject_Function
use myProject_Function_impl
! DO-NOT-DELETE splicer.begin(myProject.Function.evaluate.use)
! Insert-Code-Here {myProject.Function.evaluate.use} (use statements)
! DO-NOT-DELETE splicer.end(myProject.Function.evaluate.use)
implicit none
type(myProject_Function_t) :: self ! in
real (kind=sidl_double) :: x ! in
real (kind=sidl_double) :: retval ! out
type(sidl_BaseInterface_t) :: exception ! out

Using Bocca: An Application Generator for
CCA

44

! DO-NOT-DELETE splicer.begin(myProject.Function.evaluate)

! 4/(1+x^2)
retval = 4.0 / (1.0 + x*x)

! DO-NOT-DELETE splicer.end(myProject.Function.evaluate)
end subroutine myProject_Function_evaluate_mi

Now in the same file find the FunctionPort interface init method:

recursive subroutine myProject_Function_init_mi(self, params, exception)
use sidl
use sidl_NotImplementedException
use sidl_BaseInterface
use sidl_RuntimeException
use myProject_Function
use sidl_double_array
use myProject_Function_impl
! DO-NOT-DELETE splicer.begin(myProject.Function.init.use)
! Insert-Code-Here {myProject.Function.init.use} (use statements)
! DO-NOT-DELETE splicer.end(myProject.Function.init.use)
implicit none
type(myProject_Function_t) :: self ! in
type(sidl_double_1d) :: params ! in
type(sidl_BaseInterface_t) :: exception ! out

! DO-NOT-DELETE splicer.begin(myProject.Function.init)

! Do nothing.

! DO-NOT-DELETE splicer.end(myProject.Function.init)
end subroutine myProject_Function_init_mi

We don't have any initialization in this simple example, so we just eliminate the code that throws the ex-
ception when the method is executed.

After quitting the editor the state of the build tree is updated. Usually there are no source code depend-
encies on the implementation file, so bocca does nothing more than name the file that changed.

Trying to edit file /data/user1/myProject/components/myProject.Function/myProject_Function_Impl.F90
$

Using Bocca: An Application Generator for
CCA

45

Next implement Integrator's integrate method with bocca edit:

$ bocca edit -i Integrator integrate

!
! Method: integrate[]
!

recursive subroutine Integrat_integrate27jlju5gbk_mi(self, lowBound, upBound, &
count, retval, exception)
use sidl
use sidl_NotImplementedException
use sidl_BaseInterface
use sidl_RuntimeException
use myProject_Integrator
use myProject_Integrator_impl
! DO-NOT-DELETE splicer.begin(myProject.Integrator.integrate.use)
! Insert-Code-Here {myProject.Integrator.integrate.use} (use statements)
! DO-NOT-DELETE splicer.end(myProject.Integrator.integrate.use)
implicit none
type(myProject_Integrator_t) :: self ! in
real (kind=sidl_double) :: lowBound ! in
real (kind=sidl_double) :: upBound ! in
integer (kind=sidl_int) :: count ! in
real (kind=sidl_double) :: retval ! out
type(sidl_BaseInterface_t) :: exception ! out

! DO-NOT-DELETE splicer.begin(myProject.Integrator.integrate)
! Insert-Code-Here {myProject.Integrator.integrate} (integrate method)

! DO-DELETE-WHEN-IMPLEMENTING exception.begin()
!
! This method has not been implemented
!
type(sidl_BaseInterface_t) :: throwaway
type(sidl_NotImplementedException_t) :: notImpl
call new(notImpl, exception)
call setNote(notImpl, 'Not Implemented', exception)
call cast(notImpl, exception,throwaway)
call deleteRef(notImpl,throwaway)
return

! DO-DELETE-WHEN-IMPLEMENTING exception.end()

! DO-NOT-DELETE splicer.end(myProject.Integrator.integrate)
end subroutine Integrat_integrate27jlju5gbk_mi

Again remove this boilerplate exception code and insert an implementation of the Trapezoid rule for in-
tegration that uses the FunctionPort:

!
! Method: integrate[]
!

recursive subroutine Integrat_integrate27jlju5gbk_mi(self, lowBound, upBound, &

Using Bocca: An Application Generator for
CCA

46

count, retval, exception)
use sidl
use sidl_NotImplementedException
use sidl_BaseInterface
use sidl_RuntimeException
use myProject_Integrator
use myProject_Integrator_impl
! DO-NOT-DELETE splicer.begin(myProject.Integrator.integrate.use)

! the port types we need go here.
use gov_cca_Port
use myProject_FunctionPort

! DO-NOT-DELETE splicer.end(myProject.Integrator.integrate.use)
implicit none
type(myProject_Integrator_t) :: self ! in
real (kind=sidl_double) :: lowBound ! in
real (kind=sidl_double) :: upBound ! in
integer (kind=sidl_int) :: count ! in
real (kind=sidl_double) :: retval ! out
type(sidl_BaseInterface_t) :: exception ! out

! DO-NOT-DELETE splicer.begin(myProject.Integrator.integrate)

! local declarations. We follow the pattern generated for us in Driver.go()
type(gov_cca_Port_t) :: port
type(gov_cca_Services_t) :: services
type(SIDL_BaseInterface_t) :: throwaway
type(SIDL_BaseInterface_t) :: dumex
type(myProject_Integrator_wrap) :: dp
logical dr_port ! if dr_X true, the deleteRef(X) is needed before return.

type(myProject_FunctionPort_t) :: integrateThis__p
! integrateThis__p is non-null if specific uses port obtained.

logical integrateThis_fetched
! integrateThis_fetched true if releaseport is needed for this port.

! a small message catalog for exception reporting
character (LEN=*) errMsg00
character (LEN=*) errMsg0
character (LEN=*) errMsg1
character (LEN=*) errMsg2
character (LEN=*) errMsg3
character (LEN=*) errMsg4
parameter(errMsg00= &

'NULL d_services pointer in myProject.Integrator.integrate()')
parameter(errMsg0= &
'myProject.Integrator: Error go() getPort(integrateThis) failed.')

parameter(errMsg1= &
'myProject.Integrator: Error casting integrateThis to FunctionPort')

parameter(errMsg2= &
'myProject.Integrator: Error in deleteRef(port) while getting integrateThis')

parameter(errMsg3= &
'myProject.Integrator: Error calling releasePort(integrateThis).')

parameter(errMsg4= &
'myProject.Integrator: Error in deleteRef for port integrateThis.')

! numerical method variable, other than the call arguments:

Using Bocca: An Application Generator for
CCA

47

real (kind=sidl_double) :: h, fvalueleft, fvalueright, sum, left, right
integer i

BOCCA_EXTERNAL
! not crashing if something fails .eq. good bookkeeping and exception handling.
! start with initialization
call set_null(integrateThis__p)
integrateThis_fetched = .false.
call set_null(services)
call set_null(port)
call set_null(throwaway)
call set_null(dumex)
dr_port = .false.
call myProject_Integrator__get_data_m(self,dp);
services = dp%d_private_data%d_services
retval = -4.0

if (is_null(services)) then
call BOCCA_SIDL_THROW_F90(exception, errMsg00)

endif

! Use a myProject.FunctionPort port with port name integrateThis
call getPort(services,"integrateThis", port, exception)
BOCCA_SIDL_CHECK_F90(exception, errMsg0)

integrateThis_fetched = .true.
! even if the next cast fails, must releasePort per integrateThis_fetched.
call cast(port, integrateThis__p, exception)
BOCCA_SIDL_CHECK_F90(exception, errMsg1)

! done with the generic port pointer. drop it.
call deleteRef(port, exception)
call set_null(port)
BOCCA_SIDL_CHECK_F90(exception, errMsg2)

!! here's the numerical work

! the trapezoidal rule
h = (upBound - lowBound) / count
sum = 0.0
fvalueleft = 0.0
fvalueright = 0.0
do i = 1,count
left = lowBound + (i - 1) * h
call evaluate(integrateThis__p, left, fvalueleft, exception)
BOCCA_SIDL_CHECK_F90(exception, 'error calculating fvalueleft')

right = lowBound + i * h
call evaluate(integrateThis__p, right, fvalueright, exception)
BOCCA_SIDL_CHECK_F90(exception, 'error calculating fvalueright')

sum = sum + fvalueleft + fvalueright
enddo
retval = h/2.0 * sum;

!! the numerical work is done.

BOCCAEXIT continue ! target point for normal and error cleanup.

if (not_null(port)) then
call deleteRef(port,throwaway)
call checkException(self, throwaway, 'cleanup port error', .false., dumex)
call set_null(port)

endif

Using Bocca: An Application Generator for
CCA

48

! release integrateThis
if (integrateThis_fetched) then
integrateThis_fetched = .false.
call releasePort(services, 'integrateThis', throwaway)
call checkException(self, throwaway, errMsg3, .false., dumex)

if (not_null(integrateThis__p)) then
call deleteRef(integrateThis__p, throwaway)
call checkException(self, throwaway, errMsg4, .false., dumex)
call set_null(integrateThis__p)

endif

endif

! DO-NOT-DELETE splicer.end(myProject.Integrator.integrate)
end subroutine Integrat_integrate27jlju5gbk_mi

After quitting the editor the state of the source code tree is updated if there are any dependencies on the
edited implementation. Usually there are no dependencies on the implementation file, so bocca does
very little after you exit the editor and all you see is the information from the edit command about what
file was edited

Trying to edit file /data/user1/myProject/components/myProject.Integrator/myProject_Integrator_Impl.F90
$

How Babel Handles Fortran Symbol Length Limits

If you paid careful attention to the subroutine declaration in the code fragments for the integ-
rate above, you might have noticed that the subroutine's name looks a bit funny, for example:
recursive subroutine Integrat_integrate27jlju5gbk_mi(...

Because the full subroutine name would be longer than the 31 characters allowed by the Fortran
standard, Babel uses a hash function to generate one that's shorter, but still unique. These names
are generated on both the caller and callee side, so although you will see them when you fill out
the implementations of Fortran components, you won't need to type them (or remember them)
yourself. The hash function has been designed to “gracefully degrade” the original name, so that
you should have no problem recognizing the routine you need to edit (and the comments marking
the associated splicer blocks always have the full SIDL name).

We must now implement the GoPort to get things going. Finally implement the Driver component's
go function using bocca edit. The generated method with the object management logic looks like:

$ bocca edit -i Driver go

Using Bocca: An Application Generator for
CCA

49

!
! Method: go[]
!
! Execute some encapsulated functionality on the component.
! Return 0 if ok, -1 if internal error but component may be
! used further, and -2 if error so severe that component cannot
! be further used safely.
!

recursive subroutine myProject_Driver_go_mi(self, retval, exception)
use sidl
use sidl_NotImplementedException
use sidl_BaseInterface
use sidl_RuntimeException
use myProject_Driver
use myProject_Driver_impl
! DO-NOT-DELETE splicer.begin(myProject.Driver.go.use)

/* Bocca generated code. bocca.protected.begin(myProject.Driver.go.use) */
use gov_cca_Port
use myProject_IntegratorPort

/* Bocca generated code. bocca.protected.end(myProject.Driver.go.use) */

! DO-NOT-DELETE splicer.end(myProject.Driver.go.use)
implicit none
type(myProject_Driver_t) :: self ! in
integer (kind=sidl_int) :: retval ! out
type(sidl_BaseInterface_t) :: exception ! out

! DO-NOT-DELETE splicer.begin(myProject.Driver.go)

! Insert-User-Declarations-Here

! Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoProlog)

integer bocca_status
! The user's code should set bocca_status 0 if computation proceeded ok.
! The user's code should set bocca_status -1 if computation failed but might
! succeed on another call to go(), e.g. when a required port is not yet connected.
! The user's code should set bocca_status -2 if the computation failed and can
! never succeed in a future call.
! The user's code should NOT use return in this function;
! Exceptions that are not caught in user code will be converted to status -2.
!

type(gov_cca_Port_t) :: port
type(gov_cca_Services_t) :: services
type(SIDL_BaseInterface_t) :: throwaway
type(SIDL_BaseInterface_t) :: dumex
type(myProject_Driver_wrap) :: dp
logical dr_port ! if dr_X true, the deleteRef(X) is needed before return.

type(myProject_IntegratorPort_t) :: integrate__p ! non-null if specific uses port obtained.
logical integrate_fetched ! true if releaseport is needed for this port.
character (LEN=*) errMsg0_integrate
character (LEN=*) errMsg1_integrate
character (LEN=*) errMsg2_integrate
character (LEN=*) errMsg3_integrate
character (LEN=*) errMsg4_integrate

Using Bocca: An Application Generator for
CCA

50

parameter(errMsg0_integrate= &
'myProject.Driver: Error go() getPort(integrate) failed.')

parameter(errMsg1_integrate= &
'myProject.Driver: Error casting gov.cca.Port integrate to type myProject.IntegratorPort')

parameter(errMsg2_integrate= &
'myProject.Driver: Error in deleteRef(port) while getting integrate')

parameter(errMsg3_integrate= &
'myProject.Driver: Error calling releasePort(integrate). Continuing.')

parameter(errMsg4_integrate = &
'myProject.Driver: Error in deleteRef for port integrate. Continuing.')

BOCCA_EXTERNAL
! not crashing if something fails requires good bookkeeping and exception handling.
call set_null(services)
call set_null(port)
call set_null(throwaway)
call set_null(dumex)
dr_port = .false.
bocca_status = 0
call myProject_Driver__get_data_m(self,dp);
services = dp%d_private_data%d_services

if (is_null(services)) then
call BOCCA_SIDL_THROW_F90(exception, 'NULL d_services pointer in myProject.Driver.go()')

endif

/* Use a myProject.IntegratorPort port with port name integrate */
call getPort(services,"integrate", port, throwaway)
if (not_null(throwaway)) then
call set_null(port)
call checkException(self, throwaway, errMsg0_integrate, .false., dumex)
! we will continue with port null (never successfully assigned) and set a flag.

endif

call set_null(integrate__p)
integrate_fetched = .false.
if (not_null(port)) then
integrate_fetched = .true. ! even if the next cast fails, must releasePort.
call cast(port, integrate__p, exception)
BOCCA_SIDL_CHECK_F90(exception, errMsg1_integrate)
call deleteRef(port, exception)
call set_null(port)
BOCCA_SIDL_CHECK_F90(exception, errMsg2_integrate)

endif

/* Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoProlog) */

! When this block is rewritten by the user, we will not change it.
! All port instances should be rechecked for NULL before calling in user code.
! Not all ports need be connected in arbitrary use.
! The port instance names used in registerUsesPort appear as local variable
! names here with the suffix __p added.

! BEGIN REMOVE ME BLOCK
#ifdef _BOCCA_STDERR
write(*,*) 'USER FORGOT TO FILL IN THEIR FUNCTION myProject.Driver.go.'

#endif
! END REMOVE ME BLOCK

Using Bocca: An Application Generator for
CCA

51

! If unknown exceptions in the user code are tolerable and restart is ok, set bocca_status -1 instead.
! -2 means the component is so confused that it and probably the application should be
! destroyed.
!

BOCCAEXIT continue ! target point for normal and error cleanup. do not delete.
/* Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoEpilog) */

if (not_null(port)) then
call deleteRef(port,throwaway)
call checkException(self, throwaway, 'cleanup port error', .false., dumex)
call set_null(port)

endif

! release integrate
if (integrate_fetched) then
integrate_fetched = .false.
call releasePort(services, 'integrate', throwaway)
call checkException(self, throwaway, errMsg3_integrate, .false., dumex)

if (not_null(integrate__p)) then
call deleteRef(integrate__p, throwaway)
call checkException(self, throwaway, errMsg4_integrate, .false., dumex)
call set_null(integrate__p)

endif

endif

/* Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoEpilog) */

! Insert-User-Exception-Cleanup-Here

retval = bocca_status

! DO-NOT-DELETE splicer.end(myProject.Driver.go)
end subroutine myProject_Driver_go_mi

Find the REMOVE block within the go method implementation, delete it, and insert the numerical logic
needed to use the integrator.IntegratorPort port. Any required local variables should be in-
serted just before the boccaGoProlog protected block. As indicated in the code comments, each uses
port appears as a local variable with the name of the port followed by __p.

The go subroutine will be called by the framework when the component's run button (the name of this
particular GoPort instance) is pushed in the GUI. Bocca generates the default fetching of the Integ-
ratorPort that the Driver is connected to. We just have to use it to compute the integral and return
the proper value for bocca_status.

!
! Method: go[]
!
! Execute some encapsulated functionality on the component.
! Return 0 if ok, -1 if internal error but component may be
! used further, and -2 if error so severe that component cannot

Using Bocca: An Application Generator for
CCA

52

! be further used safely.
!

recursive subroutine myProject_Driver_go_mi(self, retval, exception)
use sidl
use sidl_NotImplementedException
use sidl_BaseInterface
use sidl_RuntimeException
use myProject_Driver
use myProject_Driver_impl
! DO-NOT-DELETE splicer.begin(myProject.Driver.go.use)

/* Bocca generated code. bocca.protected.begin(myProject.Driver.go.use) */
use gov_cca_Port
use myProject_IntegratorPort

/* Bocca generated code. bocca.protected.end(myProject.Driver.go.use) */

! DO-NOT-DELETE splicer.end(myProject.Driver.go.use)
implicit none
type(myProject_Driver_t) :: self ! in
integer (kind=sidl_int) :: retval ! out
type(sidl_BaseInterface_t) :: exception ! out

! DO-NOT-DELETE splicer.begin(myProject.Driver.go)

! local variables for integration
real (kind=sidl_double) :: lowBound
real (kind=sidl_double) :: upBound
integer (kind=sidl_int) :: count
real (kind=sidl_double) :: value

! Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoProlog)

integer bocca_status
! The user's code should set bocca_status 0 if computation proceeded ok.
! The user's code should set bocca_status -1 if computation failed but might
! succeed on another call to go(), e.g. when a required port is not yet connected.
! The user's code should set bocca_status -2 if the computation failed and can
! never succeed in a future call.
! The user's code should NOT use return in this function;
! Exceptions that are not caught in user code will be converted to status -2.
!

type(gov_cca_Port_t) :: port
type(gov_cca_Services_t) :: services
type(SIDL_BaseInterface_t) :: throwaway
type(SIDL_BaseInterface_t) :: dumex
type(myProject_Driver_wrap) :: dp
logical dr_port ! if dr_X true, the deleteRef(X) is needed before return.

type(myProject_IntegratorPort_t) :: integrate__p ! non-null if specific uses port obtained.
logical integrate_fetched ! true if releaseport is needed for this port.
character (LEN=*) errMsg0_integrate
character (LEN=*) errMsg1_integrate
character (LEN=*) errMsg2_integrate
character (LEN=*) errMsg3_integrate
character (LEN=*) errMsg4_integrate
parameter(errMsg0_integrate= &
'myProject.Driver: Error go() getPort(integrate) failed.')

parameter(errMsg1_integrate= &
'myProject.Driver: Error casting gov.cca.Port integrate to type myProject.IntegratorPort')

Using Bocca: An Application Generator for
CCA

53

parameter(errMsg2_integrate= &
'myProject.Driver: Error in deleteRef(port) while getting integrate')

parameter(errMsg3_integrate= &
'myProject.Driver: Error calling releasePort(integrate). Continuing.')

parameter(errMsg4_integrate = &
'myProject.Driver: Error in deleteRef for port integrate. Continuing.')

BOCCA_EXTERNAL
! not crashing if something fails requires good bookkeeping and exception handling.
call set_null(services)
call set_null(port)
call set_null(throwaway)
call set_null(dumex)
dr_port = .false.
bocca_status = 0
call myProject_Driver__get_data_m(self,dp);
services = dp%d_private_data%d_services

if (is_null(services)) then
call BOCCA_SIDL_THROW_F90(exception, 'NULL d_services pointer in myProject.Driver.go()')

endif
/* Use a myProject.IntegratorPort port with port name integrate */
call getPort(services,"integrate", port, throwaway)
if (not_null(throwaway)) then
call set_null(port)
call checkException(self, throwaway, errMsg0_integrate, .false., dumex)
! we will continue with port null (never successfully assigned) and set a flag.

endif

call set_null(integrate__p)
integrate_fetched = .false.
if (not_null(port)) then
integrate_fetched = .true. ! even if the next cast fails, must releasePort.
call cast(port, integrate__p, exception)
BOCCA_SIDL_CHECK_F90(exception, errMsg1_integrate)
call deleteRef(port, exception)
call set_null(port)
BOCCA_SIDL_CHECK_F90(exception, errMsg2_integrate)

endif

/* Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoProlog) */

! Initialize local variables
count = 100000
lowBound = 0.0
upBound = 1.0

if (not_null(integrate__p)) then
value = -1.0 ! nonsense number to confirm it is set

! operate on the port. if successful, set the status to 0 for ok.
bocca_status = -2
call integrate(integrate__p, lowBound, upBound, count, value, exception)
! jump to BOCCAEXIT if an error.
BOCCA_SIDL_CHECK_F90(exception,'Driver:go: problem calling integrate')
write(*,*) 'Value = ', value
bocca_status = 0

else
bocca_status = -1 ; ! integratorPort is not connected.
write(*,*) 'Driver: integrate port not connected. connect and try again'

endif

Using Bocca: An Application Generator for
CCA

54

BOCCAEXIT continue ! target point for normal and error cleanup. do not delete.
/* Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoEpilog) */

if (not_null(port)) then
call deleteRef(port,throwaway)
call checkException(self, throwaway, 'cleanup port error', .false., dumex)
call set_null(port)

endif

! release integrate
if (integrate_fetched) then
integrate_fetched = .false.
call releasePort(services, 'integrate', throwaway)
call checkException(self, throwaway, errMsg3_integrate, .false., dumex)

if (not_null(integrate__p)) then
call deleteRef(integrate__p, throwaway)
call checkException(self, throwaway, errMsg4_integrate, .false., dumex)
call set_null(integrate__p)

endif

endif

/* Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoEpilog) */

retval = bocca_status

! DO-NOT-DELETE splicer.end(myProject.Driver.go)
end subroutine myProject_Driver_go_mi

After quitting the editor the state of the build tree is updated if needed. Again in this case nothing else
needs updating.

Trying to edit file /data/user1/myProject/components/myProject.Driver/myProject_Driver_Impl.F90
$

Now remake your project tree to finish the components:

$ make

===
No SIDL files in external/sidl, skipping build for external
===

===
Building in ports/, languages: f90
===

Using Bocca: An Application Generator for
CCA

55

Building ports...

===
Building in components/clients/, languages: f90
===
Building clients...

===
Building in components/, languages: f90
===

[s] Building component myProject.Driver:
[s] creating component library: libmyProject.Driver.la ...
[s] finished libtooling: components/myProject.Driver/libmyProject.Driver.la ...
[s] creating component library: libmyProject.Driver.la ...
[s] finished libtooling: components/myProject.Driver/libmyProject.Driver.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.Function:
[s] creating component library: libmyProject.Function.la ...
[s] finished libtooling: components/myProject.Function/libmyProject.Function.la ...
[s] creating component library: libmyProject.Function.la ...
[s] finished libtooling: components/myProject.Function/libmyProject.Function.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.Integrator:
[s] creating component library: libmyProject.Integrator.la ...
[s] finished libtooling: components/myProject.Integrator/libmyProject.Integrator.la ...
[s] creating component library: libmyProject.Integrator.la ...
[s] finished libtooling: components/myProject.Integrator/libmyProject.Integrator.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.emptyComponent: doing nothing -- library is up-to-date.

Build summary:
SUCCESS building myProject.Driver
SUCCESS building myProject.Function
SUCCESS building myProject.Integrator

To test instantiation of successfully built components, run 'make check'

################ Finished building everything #################
####### You can run some simple tests with 'make check' #######

$

You should now be able to instantiate these components, assemble them into an application, and run the
application, following the same procedures as in Chapter 2, Assembling and Running a CCA
Application, and get a result that's reasonably close to pi.

3.4.3. C Implementation
Assumes you created the project with bocca create project myProject -
-language=c

Edit the evaluate and init methods in the implementation file (also known as "the impl") that

Using Bocca: An Application Generator for
CCA

56

bocca has generated for you (by invoking Babel). Use the bocca edit -i to go directly to each method.

$ bocca edit -i Function evaluate

/*
* Method: evaluate[]
*/

#undef __FUNC__
#define __FUNC__ "impl_myProject_Function_evaluate"

#ifdef __cplusplus
extern "C"
#endif
double
impl_myProject_Function_evaluate(
/* in */ myProject_Function self,
/* in */ double x,
/* out */ sidl_BaseInterface *_ex)

{
*_ex = 0;
{
/* DO-NOT-DELETE splicer.begin(myProject.Function.evaluate) */
/* Insert-Code-Here {myProject.Function.evaluate} (evaluate method) */

/* DO-DELETE-WHEN-IMPLEMENTING exception.begin() */
/*
* This method has not been implemented.
*/
SIDL_THROW(*_ex, sidl_NotImplementedException, "This method has not been implemented");

EXIT:;
/* DO-DELETE-WHEN-IMPLEMENTING exception.end() */

/* DO-NOT-DELETE splicer.end(myProject.Function.evaluate) */
}

}

As the comment suggests this method is "not implemented", but some code has been inserted by Babel
to make sure an exception is thrown to inform the user if this method is called by mistake. Remove this
boilerplate exception code and substitute an implementation for the PiFunction (i.e., the integral
from 0 to 1 of 4/(1 + x²) is pi).

/*
* Method: evaluate[]
*/

#undef __FUNC__
#define __FUNC__ "impl_myProject_Function_evaluate"

#ifdef __cplusplus
extern "C"
#endif
double
impl_myProject_Function_evaluate(

Using Bocca: An Application Generator for
CCA

57

/* in */ myProject_Function self,
/* in */ double x,
/* out */ sidl_BaseInterface *_ex)

{
*_ex = 0;
{
/* DO-NOT-DELETE splicer.begin(myProject.Function.evaluate) */

return 4.0 / (1.0 + x * x);

/* DO-NOT-DELETE splicer.end(myProject.Function.evaluate) */
}

}

Now in the same file just above the evaluate method, find the second method for the Function-
Port init method:

/*
* Method: init[]
*/

#undef __FUNC__
#define __FUNC__ "impl_myProject_Function_init"

#ifdef __cplusplus
extern "C"
#endif
void
impl_myProject_Function_init(
/* in */ myProject_Function self,
/* in array<double> */ struct sidl_double__array* params,
/* out */ sidl_BaseInterface *_ex)

{
*_ex = 0;
{
/* DO-NOT-DELETE splicer.begin(myProject.Function.init) */

/* nothing to do. */

/* DO-NOT-DELETE splicer.end(myProject.Function.init) */
}

}

We don't have any initialization for this simple example, so we just eliminate the code that throws the
exception for running the method.

After quitting the editor the state of the source code tree is updated if there are any dependencies on the
edited implementation. Usually there are no dependencies on the implementation file, so bocca does
very little after you exit the editor and all you see is the information from the edit command about what
file was edited.

Using Bocca: An Application Generator for
CCA

58

Trying to edit file /data/user1/myProject/components/myProject.Function/myProject_Function_Impl.c
$

Similarly change integrate in Integrator with:

$ bocca edit -i Integrator integrate

/*
* Method: integrate[]
*/

#undef __FUNC__
#define __FUNC__ "impl_myProject_Integrator_integrate"

#ifdef __cplusplus
extern "C"
#endif
double
impl_myProject_Integrator_integrate(
/* in */ myProject_Integrator self,
/* in */ double lowBound,
/* in */ double upBound,
/* in */ int32_t count,
/* out */ sidl_BaseInterface *_ex)

{
*_ex = 0;
{
/* DO-NOT-DELETE splicer.begin(myProject.Integrator.integrate) */
/* Insert-Code-Here {myProject.Integrator.integrate} (integrate method) */

/* DO-DELETE-WHEN-IMPLEMENTING exception.begin() */
/*
* This method has not been implemented.
*/
SIDL_THROW(*_ex, sidl_NotImplementedException, "This method has not been implemented");

EXIT:;
/* DO-DELETE-WHEN-IMPLEMENTING exception.end() */

/* DO-NOT-DELETE splicer.end(myProject.Integrator.integrate) */
}

}

Remove this boilerplate exception code and insert an implementation of the Trapezoid rule for integra-
tion that uses the FunctionPort:

/*
* Method: integrate[]
*/

Using Bocca: An Application Generator for
CCA

59

#undef __FUNC__
#define __FUNC__ "impl_myProject_Integrator_integrate"

#ifdef __cplusplus
extern "C"
#endif
double
impl_myProject_Integrator_integrate(
/* in */ myProject_Integrator self,
/* in */ double lowBound,
/* in */ double upBound,
/* in */ int32_t count,
/* out */ sidl_BaseInterface *_ex)

{
*_ex = 0;
{
/* DO-NOT-DELETE splicer.begin(myProject.Integrator.integrate) */

gov_cca_Port port = NULL;
gov_cca_Services services = NULL;
sidl_BaseInterface throwaway_excpt = NULL;
sidl_BaseInterface dummy_excpt = NULL;
struct myProject_Integrator__data *pd = NULL;
const char *errMsg = NULL;
double retval = 0.0;

myProject_FunctionPort integrateThis = NULL;
/* integrateThis non-null if specific uses port obtained. */

int integrateThis_fetched = FALSE;
/* integrateThis_fetched true if releaseport is needed for this port. */

pd = myProject_Integrator__get_data(self);
if (pd == NULL) {
SIDL_THROW(*_ex, sidl_SIDLException,
"NULL object data pointer in myProject.Integrator.integrate()");

}
services = pd->d_services;
if (services == NULL) {
SIDL_THROW(*_ex, sidl_SIDLException,
"NULL pd->d_services pointer in myProject.Integrator.integrate()");

}

/* Use a myProject.IntegratorPort port with port name integrateThis */
port =
gov_cca_Services_getPort(services,"integrateThis", _ex); SIDL_CHECK(*_ex);

integrateThis_fetched = TRUE;
/* even if the next cast fails, must releasePort. */

errMsg="myProject.Integrator: Error casting integrateThis to FunctionPort";
integrateThis = gov_cca_Services__cast2(port,

"myProject.FunctionPort",
_ex); SIDL_CHECK(*_ex);

gov_cca_Port_deleteRef(port, _ex); port = NULL; SIDL_CHECK(*_ex);

{
double h;
double sum = 0.0;
double left, right, fvalueleft, fvalueright;
int i;

h = (upBound - lowBound) / (1.0*count);

Using Bocca: An Application Generator for
CCA

60

printf("Evaluating from %g to %g by %d\n",lowBound ,upBound, count);
for (i = 1; i <= count; i++){

left = lowBound + (i - 1) * h;
fvalueleft = myProject_FunctionPort_evaluate(integrateThis,

left,_ex); SIDL_CHECK(*_ex);

right = lowBound + i * h;
fvalueright = myProject_FunctionPort_evaluate(integrateThis,

right,_ex); SIDL_CHECK(*_ex);

sum += (fvalueleft + fvalueright);
}
retval = h * sum/2.0;
printf("IP returning %g\n",retval);

}
EXIT:; /* target point for normal and error cleanup. do not delete. */

/* release integrate */
if (integrateThis_fetched) {
integrateThis_fetched = FALSE;
gov_cca_Services_releasePort(services,"integrateThis",&throwaway_excpt);
if (throwaway_excpt != NULL) {
errMsg= "myProject.Integrator: Error calling"

" releasePort(\"integrate\"). Continuing.";
myProject_Integrator_checkException(self, throwaway_excpt, errMsg,

FALSE, &dummy_excpt);
}
if (integrateThis != NULL) {
myProject_FunctionPort_deleteRef(integrateThis, &throwaway_excpt);
errMsg = "Error in myProject_FunctionPort_deleteRef"

" for myProject.Function port integrateThis";
myProject_Integrator_checkException(self, throwaway_excpt, errMsg,

FALSE, &dummy_excpt);
integrateThis = NULL;

}
}

return retval;

/* DO-NOT-DELETE splicer.end(myProject.Integrator.integrate) */
}

}

We see the usual output when no other sources depend on the one just edited.

Trying to edit file /data/user1/myProject/components/myProject.Integrator/myProject_Integrator_Impl.c
$

Finally for the Driver component we must implement the GoPort details to get things going. Bocca
will take you to the generated method, which looks like:

Using Bocca: An Application Generator for
CCA

61

$ bocca edit -i Driver go

/*
*
* Execute some encapsulated functionality on the component.
* Return 0 if ok, -1 if internal error but component may be
* used further, and -2 if error so severe that component cannot
* be further used safely.
*/

#undef __FUNC__
#define __FUNC__ "impl_myProject_Driver_go"

#ifdef __cplusplus
extern "C"
#endif
int32_t
impl_myProject_Driver_go(
/* in */ myProject_Driver self,
/* out */ sidl_BaseInterface *_ex)

{
*_ex = 0;
{
/* DO-NOT-DELETE splicer.begin(myProject.Driver.go) */

/* User action portion is in the middle at the next Insert-UserCode-Here line. */

/* Insert-User-Declarations-Here */

/* Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoProlog) */

int bocca_status = 0;
/* The user's code should set bocca_status 0 if computation proceeded ok.
// The user's code should set bocca_status -1 if computation failed but might
// succeed on another call to go(), e.g. when a required port is not yet connected.
// The user's code should set bocca_status -2 if the computation failed and can
// never succeed in a future call.
// The user's code should NOT use return in this function;
// Exceptions that are not caught in user code will be converted to status -2.
*/

gov_cca_Port port = NULL;
gov_cca_Services services = NULL;
sidl_BaseInterface throwaway_excpt = NULL;
sidl_BaseInterface dummy_excpt = NULL;
struct myProject_Driver__data *pd = NULL;
const char *errMsg = NULL;

myProject_IntegratorPort integrate = NULL; /* non-null if specific uses port obtained. */
int integrate_fetched = FALSE; /* true if releaseport is needed for this port. */

pd = myProject_Driver__get_data(self);
if (pd == NULL) {
SIDL_THROW(*_ex, sidl_SIDLException, "NULL object data pointer in myProject.Driver.go()");

}
services = pd->d_services;
if (services == NULL) {
SIDL_THROW(*_ex, sidl_SIDLException, "NULL pd->d_services pointer in myProject.Driver.go()");

}

Using Bocca: An Application Generator for
CCA

62

/* Use a myProject.IntegratorPort port with port name integrate */
port = gov_cca_Services_getPort(services,"integrate", &throwaway_excpt);
if (throwaway_excpt != NULL) {
port = NULL;
errMsg="go() getPort(integrate) failed.";
myProject_Driver_checkException(self, throwaway_excpt, errMsg, FALSE, &dummy_excpt);
/* we will continue with port NULL (never successfully assigned) and set a flag. */
BOCCA_FPRINTF(stderr, "myProject.Driver: Error calling getPort(\"integrate\") at %s:%d. Continuing.\n",

__FILE__ , __LINE__ -8);
}

if (port != NULL) {
integrate_fetched = TRUE; /* even if the next cast fails, must releasePort. */
errMsg="myProject.Driver: Error casting gov.cca.Port integrate to type myProject.IntegratorPort";
integrate = myProject_IntegratorPort__cast(port, _ex); SIDL_CHECK(*_ex);
gov_cca_Port_deleteRef(port,_ex); port = NULL; SIDL_CHECK(*_ex);

}

/* Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoProlog) */

/* When this block is rewritten by the user, we will not change it.
All port instances should be rechecked for NULL before calling in user code.
Not all ports need be connected in arbitrary use.
The port instance names used in registerUsesPort appear as local variable
names here.
'return' should not be used here; set bocca_status instead.

*/

/* Insert-UserCode-Here {myProject.Driver.go} */

/* BEGIN REMOVE ME BLOCK */
BOCCA_FPRINTF(stderr, "USER FORGOT TO FILL IN THEIR GO FUNCTION %s:%d.\n",__FILE__,__LINE__);
/* END REMOVE ME BLOCK */

/* If unknown exceptions in the user code are tolerable and restart is ok, set bocca_status -1 instead.
-2 means the component is so confused that it and probably the component or application should be
destroyed.

*/

EXIT:; /* target point for normal and error cleanup. do not delete. */
/* Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoEpilog) */

/* release integrate */
if (integrate_fetched) {
integrate_fetched = FALSE;
gov_cca_Services_releasePort(services,"integrate",&throwaway_excpt);
if (throwaway_excpt != NULL) {
errMsg= "myProject.Driver: Error calling releasePort(\"integrate\"). Continuing.";
myProject_Driver_checkException(self, throwaway_excpt, errMsg, FALSE, &dummy_excpt);

}
if (integrate != NULL) {
myProject_IntegratorPort_deleteRef(integrate, &throwaway_excpt);
errMsg = "Error in myProject_IntegratorPort_deleteRef for myProject.Driver port integrate";
myProject_Driver_checkException(self, throwaway_excpt, errMsg, FALSE, &dummy_excpt);
integrate = NULL;

}
}

/* Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoEpilog) */

Using Bocca: An Application Generator for
CCA

63

/* Insert-User-Exception-Cleanup-Here */

return bocca_status;

/* DO-NOT-DELETE splicer.end(myProject.Driver.go) */
}

}

Find the REMOVE block within the go method implementation, delete it, and insert the numerical logic
needed to use the integrator.IntegratorPort port. Local variables needed are put in the same
place with the code. As indicated in the code comments, each uses port appears as a local variable with
the name of the port.

The go subroutine will be called by the framework when the component's run button (the name of this
particular GoPort instance) is pushed in the GUI. Bocca generates the default fetching of the Integ-
ratorPort that the Driver is connected to. We just have to use it to compute the integral and return
the proper value for bocca_status.

/*
*
* Execute some encapsulated functionality on the component.
* Return 0 if ok, -1 if internal error but component may be
* used further, and -2 if error so severe that component cannot
* be further used safely.
*/

#undef __FUNC__
#define __FUNC__ "impl_myProject_Driver_go"

#ifdef __cplusplus
extern "C"
#endif
int32_t
impl_myProject_Driver_go(
/* in */ myProject_Driver self,
/* out */ sidl_BaseInterface *_ex)

{
*_ex = 0;
{
/* DO-NOT-DELETE splicer.begin(myProject.Driver.go) */

/* Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoProlog) */

int bocca_status = 0;
/* The user's code should set bocca_status 0 if computation proceeded ok.
// The user's code should set bocca_status -1 if computation failed but might
// succeed on another call to go(), e.g. when a required port is not yet connected.
// The user's code should set bocca_status -2 if the computation failed and can
// never succeed in a future call.
// The user's code should NOT use return in this function;
// Exceptions that are not caught in user code will be converted to status -2.
*/

Using Bocca: An Application Generator for
CCA

64

gov_cca_Port port = NULL;
gov_cca_Services services = NULL;
sidl_BaseInterface throwaway_excpt = NULL;
sidl_BaseInterface dummy_excpt = NULL;
struct myProject_Driver__data *pd = NULL;
const char *errMsg = NULL;

myProject_IntegratorPort integrate = NULL; /* non-null if specific uses port obtained. */
int integrate_fetched = FALSE; /* true if releaseport is needed for this port. */

pd = myProject_Driver__get_data(self);
if (pd == NULL) {
SIDL_THROW(*_ex, sidl_SIDLException, "NULL object data pointer in myProject.Driver.go()");

}
services = pd->d_services;
if (services == NULL) {
SIDL_THROW(*_ex, sidl_SIDLException, "NULL pd->d_services pointer in myProject.Driver.go()");

}

/* Use a myProject.IntegratorPort port with port name integrate */
port = gov_cca_Services_getPort(services,"integrate", &throwaway_excpt);
if (throwaway_excpt != NULL) {
port = NULL;
errMsg="go() getPort(integrate) failed.";
myProject_Driver_checkException(self, throwaway_excpt, errMsg, FALSE, &dummy_excpt);
/* we will continue with port NULL (never successfully assigned) and set a flag. */
BOCCA_FPRINTF(stderr, "myProject.Driver: Error calling getPort(\"integrate\") at %s:%d. Continuing.\n",

__FILE__ , __LINE__ -8);
}

if (port != NULL) {
integrate_fetched = TRUE; /* even if the next cast fails, must releasePort. */
errMsg="myProject.Driver: Error casting gov.cca.Port integrate to type myProject.IntegratorPort";
integrate = myProject_IntegratorPort__cast(port, _ex); SIDL_CHECK(*_ex);
gov_cca_Port_deleteRef(port,_ex); port = NULL; SIDL_CHECK(*_ex);

}

/* Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoProlog) */

/* When this block is rewritten by the user, we will not change it.
All port instances should be rechecked for NULL before calling in user code.
Not all ports need be connected in arbitrary use.
The port instance names used in registerUsesPort appear as local variable
names here.
'return' should not be used here; set bocca_status instead.

*/

if (integrate == NULL) {
bocca_status = -1; /* not connected. skip computation. */

} else {
int count = 100000;
double value = -4;
double lowerBound = 0.0;
double upperBound = 1.0;
fprintf(stdout, "Initvalue = %g\n", value);
value = myProject_IntegratorPort_integrate(integrate, lowerBound, upperBound,

count, _ex); SIDL_CHECK(*_ex);
fprintf(stdout, "Value = %g\n", value);

Using Bocca: An Application Generator for
CCA

65

fflush(stdout);
}

/* If unknown exceptions in the user code are tolerable and restart is ok, set bocca_status -1 instead.
-2 means the component is so confused that it and probably the component or application should be
destroyed.

*/

EXIT:; /* target point for normal and error cleanup. do not delete. */
/* Bocca generated code. bocca.protected.begin(myProject.Driver.go:boccaGoEpilog) */

/* release integrate */
if (integrate_fetched) {
integrate_fetched = FALSE;
gov_cca_Services_releasePort(services,"integrate",&throwaway_excpt);
if (throwaway_excpt != NULL) {
errMsg= "myProject.Driver: Error calling releasePort(\"integrate\"). Continuing.";
myProject_Driver_checkException(self, throwaway_excpt, errMsg, FALSE, &dummy_excpt);

}
if (integrate != NULL) {
myProject_IntegratorPort_deleteRef(integrate, &throwaway_excpt);
errMsg = "Error in myProject_IntegratorPort_deleteRef for myProject.Driver port integrate";
myProject_Driver_checkException(self, throwaway_excpt, errMsg, FALSE, &dummy_excpt);
integrate = NULL;

}
}

/* Bocca generated code. bocca.protected.end(myProject.Driver.go:boccaGoEpilog) */

/* Insert-User-Exception-Cleanup-Here */

return bocca_status;

/* DO-NOT-DELETE splicer.end(myProject.Driver.go) */
}

}

After quitting the editor the state of the source code tree is updated if there are any dependencies on the
edited implementation. Usually there are no dependencies on the implementation file, so bocca does
very little after you exit the editor and all you see is the information from the edit command about what
file was edited.

Trying to edit file /data/user1/myProject/components/myProject.Driver/myProject_Driver_Impl.c
$

Now remake your project tree to finish the components:

Using Bocca: An Application Generator for
CCA

66

$ make

===
No SIDL files in external/sidl, skipping build for external
===

===
Building in ports/, languages: c
===
Building ports...

===
Building in components/clients/, languages: c
===
Building clients...

===
Building in components/, languages: c
===

[s] Building component myProject.Driver:
[s] creating component library: libmyProject.Driver.la ...
[s] finished libtooling: components/myProject.Driver/libmyProject.Driver.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.Function:
[s] creating component library: libmyProject.Function.la ...
[s] finished libtooling: components/myProject.Function/libmyProject.Function.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.Integrator:
[s] creating component library: libmyProject.Integrator.la ...
[s] finished libtooling: components/myProject.Integrator/libmyProject.Integrator.la ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building component myProject.emptyComponent: doing nothing -- library is up-to-date.

Build summary:
SUCCESS building myProject.Driver
SUCCESS building myProject.Function
SUCCESS building myProject.Integrator

To test instantiation of successfully built components, run 'make check'

################ Finished building everything #################
####### You can run some simple tests with 'make check' #######

$

It is good practice to do a make check at this point:

$ make check

Using Bocca: An Application Generator for
CCA

67

make --no-print-directory --no-builtin-rules -C components check

Test library load and instantiation for the following languages: c
Running instantiation tests only
Test script: /data/user1/myProject/components/tests/instantiation.gen.rc
SUCCESS:
==> Instantiation tests passed for all built components (see /data/user1/myProject/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
$

You should now be able to instantiate these components, assemble them into an application, and run the
application, following the same procedures as in Chapter 2, Assembling and Running a CCA
Application, and get a result that's reasonably close to pi.

Using Bocca: An Application Generator for
CCA

68

Chapter 4. Using TAU to Monitor the
Performance of Components
$Revision: 1.20 $
$Date: 2007/11/10 13:27:30 $

In this exercise, you will use the TAU performance observation tools to automatically generate a proxy
component that monitors all of the method invocations on a port allowing you to track their performance
information. While this approach won't provide all of the performance details of what is going on inside
each component, it gives you a very simple way to begin analyzing the performance of a CCA-based ap-
plication in order to identify which components might have performance issues.

We will start by create a proxy component for the integrator.IntegratorPort. Note that you
only need to have completed Chapter 3, Using Bocca: An Application Generator for CCA in order to
follow these instructions. Though the proxy will be implemented in C++, it can be used as a proxy for
components implemented in any language.

4.1. Creating the Proxy Component

• Create the proxy component for the Integrator Port using bocca

$ bocca create component IntegratorProxy --language=cxx \
--provides=IntegratorPort:IntegratorPortProvide \
--uses=IntegratorPort:IntegratorPortUse \
--uses=Performance.Measurement:measurement:$TAU_CMPT_ROOT/ports/Performance-1.7.3/Performance.sidl
$ make

Updating the cxx implementation of component myProject.IntegratorProxy ...
$

This will give us a new component, called IntegratorProxy that implements the integrat-
or.IntegratorPort.

4.2. Using the proxy generator

1. In the components/myProject.IntegratorProxy directory, invoke the proxy generator

$ cd components/myProject.IntegratorProxy
$ $TAU_CMPT_ROOT/bin/tau_babel_pg -f myProject_IntegratorProxy_Impl.cxx \
-h myProject_IntegratorPort.hxx -p IntegratorPort \
-t myProject.IntegratorPort

69

The usage of the proxy generator is as follows:

Usage: tau_babel_pg <filename> -h <header file> -p <port name> \
-t <port type> [-f] [-m]

The -h option specifies the header file that needs to be included to use the port.

The -p option specifies the name of the port. The generated proxy will have two ports named with
the port name given appended with “Provide” and “Use” to distinguish them.

The -t option specifies the C++ type of the port. It can be found by examining the appropriate
header file.

The -f option forces overwrite of the _Impl.cc and file _Impl.hh files.

The -m generates a MasterMind based proxy (not covered in this tutorial)

2. You can open myProject_IntegratorProxy_Impl.cxx and look at the code that the
proxy generator inserted between the splicer blocks to get a feel for what is really going on.

3. Now build the proxy

$ cd ../..
$ make

4.3. Using the proxy component

1. First, add the TAU performance component to the CCA path

$ cp $TAU_CMPT_ROOT/components/TauPerformance-1.7.3/TauMeasurement.cca \
install/share/cca

2. Next, add the following commands to construct the component assembly with the proxy component
in place

Open components/tests/guitest.gen.rc, and add the following lines to the end of the
file.

repository get-global TauPerformance.TauMeasurement

create TauPerformance.TauMeasurement tau
create myProject.Driver driver
create myProject.Function function

Using TAU to Monitor the Performance of
Components

70

create myProject.Integrator integrator
create myProject.IntegratorProxy IntegratorProxy

connect driver integrate IntegratorProxy IntegratorPortProvide
connect IntegratorProxy MeasurementPort tau MeasurementPort
connect IntegratorProxy IntegratorPortUse integrator integrate
connect integrator integrateThis function thisFunction

3. Now run the application with the Ccaffeine GUI or using the command-line interface by following
the instructions in Section 2.1, “Using the GUI Front-End to Ccaffeine”.

You should see something like this:

Run the assembly by clicking the green "Run" button.

4. Now look in the local directory and you should file a file called profile.0.0.0. This file con-
tains profile data for the last run. View it by executing pprof and you should get output similar to
this:

Reading Profile files in profile.*

NODE 0;CONTEXT 0;THREAD 0:
--
%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call
--

Using TAU to Monitor the Performance of
Components

71

100.0 26 26 3 0 8826 \
IntegratorProxy::integrate double (in */double, in */double, in */int32_t)

Users are encouraged to visit and read the documentation for TAU available at ht-
tp://www.cs.uoregon.edu/research/paracomp/tau/tautools/.

Using TAU to Monitor the Performance of
Components

72

http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

Chapter 5. Understanding arrays and
component state
$Revision: 1.11 $
$Date: 2007/09/24 18:10:42 $

In this exercise, you will develop a component that uses Babel arrays as arguments in the ports that the
component provides. Specifically, this exercise will introduce and use the following concepts and arti-
facts

• Creating, changing and accessing “normal” SIDL arrays.

• Using “raw” SIDL arrays.

• Using object (component) state to store arbitrary data types (including arrays).

Note

This exercise is self-contained. Components and ports explained and developed here do not
rely on components and/or ports used in the numerical integration exercises.

5.1. Introduction
In the first part of this exercise, we present the details of two components that work together to evaluate
a series of simple linear matrix operations. One component serves as the driver, while the other provides
the LinearOp port. The specification of this port is found in the file $TUTORIAL_SRC/
ports/sidl/arrayop.LinearOp.sidl, partially reproduced here for easy reference

...

/** This port can be used to evaluate a matrix operation of the form
* of the form
* R = Sum[i=1, N] {Alpha_i A_i v_i} + Sum[j=1, N] {Beta_j v_j}}
* Where:
* alpha_i, Beta_j Double scalar
* A_i Double array of size [m, n]
* v_i, v_j Vector of size [n]
* A_i v_j Matrix vector multiplication
*/

interface LinearOp extends gov.cca.Port
{

/** Initialize (or Re-Initialize) internal state in preparation
* for accumulation.
*/

void init();

/** Evaluate Acc = Acc + alpha A x, where
* Acc The internal accumulator maintained by implementors
* of this interface
* return the result in vector y (of size m)
*/

int mulMatVec (in double alpha,
in rarray<double, 2> A(m, n),

73

in rarray<double, 1> x(n),
inout rarray<double, 1> y(m),
in int m,
in int n);

/** Evaluate Acc = Acc + beta v, where
* Acc The internal accumulator maintained by implementors
* of this interface
* return the result in vector y (of size m)
*/

int addVec (in double beta,
in array<double, 1> v,
out array<double, 1> r);

/** Get result of linear operators
*

int getResult (inout rarray<double, 1> r(m),
in int m);

}

...

Note

• The port methods mulMatVec and getResult use SIDL raw arrays (also referred
to as r-arrays), which are designed to simplify implementation in Fortran dialects
(especially Fortran77). Raw arrays are assumed to adhere to column-major memory
layout, with zero-based indexing. Further details of raw SIDL arrays can be found in
the Babel User Guide [http://www.llnl.gov/CASC/components/software.html].

• The port method addVec uses the “normal” SIDL array class. This class allows access
to arrays through accessor functions. There are also provisions that allow access to the
underlying array memory for more efficient operations. Refer to the Babel User Guide
[http://www.llnl.gov/CASC/components/software.html] for more details on normal
SIDL arrays.

The tutorial source contains fully implemented three components that provide the LinearOp port. The
components F90ArrayOp, F77ArrayOp, and CArrayOp can be found at $TUTORIAL_SRC/
components/{arrayOps.F90ArrayOp, arrayOps.F77ArrayOp, array-
Ops.CArrayOp. In addition, a driver component that uses the LinearOp port can be found at
$TUTORIAL_SRC/components/arrayDrivers.CDriver.

In the following sections, we will present some of the aspects of using SIDL arrays, using the code in
the driver and the three arrayOps components as examples. You will then be asked to implement a
component that provides a NonLinearOp port and a driver, using the aforementioned four components
as a template.

5.2. The CDriver Component
The SIDL specification for the CDriver component can be found in the file $TUTORIAL_SRC/
components/sidl/arrayDrivers.CDriver.sidl. The implementation of this component
(in the C programming language) can be found at $TUTORIAL_SRC/compon-
ents/arrayDrivers.CDriver/ in the two files arrayDrivers_CDriver_Impl.c and

Understanding arrays and component state

74

http://www.llnl.gov/CASC/components/software.html
http://www.llnl.gov/CASC/components/software.html

arrayDrivers_CDriver_Impl.h. Component implementation details include details of compon-
ent/framework interaction that should be now familiar, and will not be discussed further in this exercise.
We will focus on the handling of different types of SIDL arrays in the go method.

5.2.1. Using SIDL Raw Arrays
Raw arrays (and vectors) are used as arguments in the call to mulMatVec. Note that multidimensional
SIDL raw arrays are always assumed to use column-major storage. This requirement necessitates special
treatment when calling methods that use SIDL raw arrays as arguments from languages that follow a de-
fault raw-major array storage order (C and C++). The caller may choose to alter the memory layout of
the array argument throughout its entire lifetime, or alternatively perform a matrix transpose operation
on “native” arrays before and after every call to a SIDL method that uses raw arrays. In the example
presented here, we have chosen to adopt column-major storage throughout the lifetime of the raw array
argument A, as shown in the initialization code shown below

/* _ _ _ _ _ _
* | 1.0 4.0 | | 1.0 | | 3.0 |
* A = | 2.0 5.0 | v1 = | 2.0 | sda1 = | 4.0 |
* | 3.0 6.0 | - - | 5.0 |
* - - - -
*
* Note that A needs to be stored in column-major order to make
* the call using SIDL raw arrays
*/
value = 0.0;
for (i = 0; i <= m; i++){
for (j = 0; j <= n; j++){
A[i*n+j] = (value += 1.0);

}
}

When making a call to a SIDL method that has SIDL raw arrays arguments, the dimensions of those ar-
rays must be explicitly included in the argument list in the SIDL specification. No special “wrapping” of
native arrays is needed to make a call using SIDL raw arrays arguments. This can be seen in the call to
the mulMatVec method.

retval = arrayop_LinearOp_mulMatVec(linopPort, alpha, A, v1, y, m , n, &throwaway_excpt);
if (retval != 0){
fprintf(stderr, "Error:: %s:%d: Error in call to mulMatVec() \n",

__FILE__, __LINE__);
return(-1);

}

The requirement to use column-major memory layout is one of the restrictions imposed by Babel to al-
low for the use of raw arrays. See the Babel User Guide
[http://www.llnl.gov/CASC/components/software.html] for the complete list.

5.2.2. Using SIDL Normal Arrays
SIDL “normal” arrays are implemented in the Babel runtime, with bindings in all Babel supported lan-
guages. SIDL normal arrays provided a more flexible array representation, with the ability to directly ac-
cess the underlying array memory in languages that support this capability (C, C++, F90, and F77). In
Python, there are situations where arrays must be copied when passing in and out, but direct access is
used wherever the Numerical Python package will allow. In Java, arrays are accessed using the Java
Native Interface. More information on SIDL normal arrays can be found in the Babel User Guide
[http://www.llnl.gov/CASC/components/software.html].

Understanding arrays and component state

75

http://www.llnl.gov/CASC/components/software.html
http://www.llnl.gov/CASC/components/software.html

In this exercise, the method addVec uses SIDL normal arrays (sda1, and sda2). The SIDL specifica-
tion of the addVec method designates sda1 as an input argument, therefore it needs to be created
(more specifically, associated with memory) on the caller side before the call is made. The Babel
runtime provides array manipulation bindings in Babel supported languages (except Python, which uses
Numeric Python arrays). The one-dimensional, SIDL double array sda1 is created using the follow-
ing code

sda1 = sidl_double__array_create1d(m);
if (!sda1){

fprintf(stderr, "Error:: %s:%d: Error creating sda1.\n",
__FILE__, __LINE__);

return(-1);
}

The Babel runtime C binding contains macros that allow direct access to underlying SIDL array memory
and properties (dimensions, strides, etc.), without having to go through the standard set() and get()
methods. One such macro is used in this example to access the underlying memory of SIDL array sda1

sda1_data = sidlArrayAddr1(sda1, 0);
for (value =0.0, i = 0; i <= m; i++){

sda1_data[i] = (double) i + 3.0 ;
}

Other macros are used in the loop that prints the result returned in the SIDL out array sda2, after the
call to addVec.

printf("Result2 = ");
for (i = sidlLower(sda2, 0); i <= sidlUpper(sda2, 0); i++){

printf("%.2f ", sidlArrayElem1(sda2,i));
}
printf("\n");

Direct access to underlying SIDL array memory is also available in the Babel SIDL array binding in
F77, F90, and C++. Example of such use is available in the discussion in Section 5.3, “Linear Array Op-
erations Components”.

5.3. Linear Array Operations Components
In this section, we present some of the implementation details of (non-driver) components that provide
ports with SIDL arrays as arguments. The tutorial source contains implementation of three components,
CArrayOp, F77ArrayOp, and F90ArrayOp, implemented in C, F77, and F90 respectively.

5.3.1. The CArrayOp Component
Code for the CArrayOp component can be found in the directory $TUTORIAL_SRC/
components/arrayOps.CArrayOp/, in the two Impl files arrayOps_CArrayOp_Impl.c
and arrayOps_CArrayOp_Impl.h. Private component state is represented by entries in the
struct arrayOps_CArrayOp__data in the header file arrayOps_CArrayOp_Impl.h

struct arrayOps_CArrayOp__data {
...
...
double *myVector;
int myVecLen;
/* DO-NOT-DELETE splicer.end(arrayOps.CArrayOp._data) */

Understanding arrays and component state

76

};

Private component data is initialized and associated with the component instance in the bocca-generated
component constructor method impl_arrayOps_CArrayOp__ctor

struct arrayOps_CArrayOp__data *dptr =
(struct arrayOps_CArrayOp__data*)malloc(sizeof(struct arrayOps_CArrayOp__data));

if (dptr) {
memset(dptr, 0, sizeof(struct arrayOps_CArrayOp__data));

}
arrayOps_CArrayOp__set_data(self, dptr);

Note the use of the built-in method arrayOps_CArrayOp__set_data to associate the newly al-
located struct with this component instance. A corresponding method, array-
Ops_CArrayOp__get_data is used to access this private data.

The method impl_arrayOps_CArrayOp_mulMatVec uses SIDL raw arrays (array A, and vectors
x and y). Multi-dimension SIDL raw arrays are assumed to be stored in column-major order, as shown
in the code to multiply array A and vector x

for (i= 0; i <= m; i++){
y[i] = 0.0;
for (j = 0 ; j <= n; j++){
y[i] += alpha * A[j*m + i] * x[j]; /* Raw array A is column-major */

}
pd->myVector[i] += y[i];
y[i] = pd->myVector[i];

}

The method impl_arrayOps_CArrayOp_addVec uses the more flexible SIDL normal arrays.
SIDL normal arrays are represented in C using a struct sidl_XXX__array, where XXX is the ac-
tual type of array elements. In this example, the SIDL out normal array *r is created (and underlying
memory allocated) in the call

*r = sidl_double__array_create1d(n);

Direct access to a SIDL normal array's underlying memory is acheived via the C macro sidlArray-
Addr1 (for 1-dimensional arrays *r and v).

Note

When implementing a method that has SIDL normal arrays as arguments, it should not be
assumed that the array is contiguous in memory (stride=1). SIDL normal arrays allow for
different strides in all dimensions. As such, the correct code for vector addition has the
form

vstride = sidlStride(v, 0);
for (i = 0; i <= n; i++){

rdata[i] = pd->myVector[i] += beta * vdata[i*vstride];
}

No stride is used when accessing the vector r since it is created inside the addVec routine
with a stride=1 (implied in the call to sidl_double__array_create1d).

Understanding arrays and component state

77

5.3.2. The F77ArrayOp Component
Code for the F77ArrayOp component can be found in the directory $TUTORIAL_SRC/
components/arrayOps.F77ArrayOp/, in Impl file arrayOps_f77ArrayOp_Impl.f.
Private component state is represented by entries an an array of SIDL opaque types. It is the responsib-
ility of the programmer to ensure consistency of the treatment of entries in this array across method calls
(this is similar to the way entries into common blocks are manipulated). Code for the creation and
initialization of the private component state can be found in the component constructor method array-
Ops_F77ArrayOp__ctor_fi.

tmp = 0
itmp = 0

call sidl_int__array_create1d_f(1, intArray)
if (intArray .ne. 0) then

call sidl_opaque__array_set1_f(stateArray, 0, tmp)
call sidl_int__array_set1_f(intArray, 0, itmp)
call sidl_opaque__array_set1_f(stateArray, 1, intArray)
call sidl_opaque__array_set1_f(stateArray, 2, tmp)

else
. . .

The SIDL built-in method arrayOps_F77ArrayOp__set_data_f is used to associate the newly
created SIDL opaque array with this instance of the component. The method array-
Ops_F77ArrayOp__get_data_f is used to retrieve this private data for further manipulation.

The method arrayOps_F77ArrayOp_mulMatVec_fi uses SIDL raw arrays arguments. In F77
implementation, SIDL raw arrays appear as regular F77 arrays, with zero-based indexing. The compon-
ent uses the SIDL normal array accVector to store the running sum of the linear matrix operations.
Note that this enables the dynamic sizing of this vector at runtime to match the dimensions of the array
and vector arguments. Direct access to the underlying memory for SIDL normal arrays is done through
the sidl_double__array_access_f method (for arrays of SIDL type double). This method
computes uses a reference array (nativeVec) of size one, and computes the offset (refindex) that
needs to be added to indices into nativeVec to access memory associated with SIDL normal array
accVector.

call sidl_double__array_access_f(accVector, nativeVec,
$ lower, upper, stride, refindex)
do i = 0, m-1

y(i) = nativeVec(refindex + i)
do j = 0, n-1

y(i) = y(i) + alpha * A(i, j) * x(j)
end do
y(i) = y(i) + nativeVec(refindex + i)
nativeVec(refindex + i) = y(i)

end do

Accesssing entries in a normal SIDL array can also be done through accessor subroutine calls. In the
case of arrays of SIDL type double, the accessor subroutines are sidl_opaque__array_set1_f
and sidl_opaque__array_get1_f (for single dimensional arrays).

if (accVector .eq. 0) then
call sidl_double__array_create1d_f(m, accVector)
call sidl_int__array_set1_f(intArray, 0, m)
call sidl_opaque__array_set1_f(stateArray, 2, accVector)
dblTmp = 0.0
do i = 0, m-1

Understanding arrays and component state

78

call sidl_double__array_set1_f(accVector, i, dblTmp)
end do

else
. . .

Note

When implementing a method that has SIDL normal arrays as arguments, it should not be
assumed that the array is contiguous in memory (stride=1). SIDL normal arrays allow for
different strides in all dimensions. As such, the correct code for vector addition in addVec
has the form

do i = 0, m-1
nativeR(refindexR + i) = nativeVec(refindex + i) +

$ beta * nativeV(refindexV +i*strideV(1))
nativeVec(refindex + i) = nativeR(refindexR + i)

end do

No stride is used when accessing the array r since it is created inside the addVec routine
with a stride=1 (implied in the call to sidl_double__array_create1d_f).

5.3.3. The F90ArrayOp Component
Code for the F90ArrayOp component can be found in the directory $TUTORIAL_SRC/
components/arrayOps.F90ArrayOp, in the Impl files array-
Ops_F90ArrayOp_Impl.F90and arrayOps_F90ArrayOp_Mod.F90. Private component state
is represented by the type arrayOps_F90ArrayOp_priv in the file array-
Ops_F90ArrayOp_Mod.F90

type arrayOps_F90ArrayOp_priv
sequence

! DO-NOT-DELETE splicer.begin(arrayOps.F90ArrayOp.private_data)

! Bocca generated code. bocca.protected.begin(arrayOps.F90ArrayOp.private_data)
! Handle to framework Services object
type(gov_cca_Services_t) :: d_services

! Bocca generated code. bocca.protected.end(arrayOps.F90ArrayOp.private_data)

real (selected_real_kind(15, 307)), dimension(:), pointer :: myVectorP
integer (selected_int_kind(9)) :: myVecLen

! DO-NOT-DELETE splicer.end(arrayOps.F90ArrayOp.private_data)
end type arrayOps_F90ArrayOp_priv

The constructor subroutine arrayOps_F90ArrayOp__ctor_mi contains the bocca-generated code
for the allocation and initialization of the private data associated with this component instance

type(arrayOps_F90ArrayOp_wrap) :: dp
! Allocate memory and initialize
allocate(dp%d_private_data)
call set_null(dp%d_private_data%d_services)
dp%d_private_data%myVectorP => NULL()
call arrayOps_F90ArrayOp__set_data_m(self, dp)

The call to the built-in method arrayOps_F90ArrayOp__set_data_m associates the newly cre-
ated structure pointed to via dp with this instance of the component. The corresponding method ar-

Understanding arrays and component state

79

rayOps_F90ArrayOp__get_data_m is used to retrieve this private data for further processing.

The subroutine that implements the mulMatVec method uses SIDL raw arrays (note that the name of
this subroutine is altered by Babel to accomodate F90 identifier length restrictions). SIDL raw arrays
manifest themselves in F90 implementations as regular F90 arrays that use zero-based indexing.

real (selected_real_kind(15, 307)), dimension(0:m-1, 0:n-1) :: A ! in
real (selected_real_kind(15, 307)), dimension(0:n-1) :: x ! in
real (selected_real_kind(15, 307)), dimension(0:m-1) :: y ! inout

The subroutine that implements the addVec method uses SIDl normal arrays. SIDL normal arrays are
represented as user defined types, with a pointer data member (d_datathat points to an F90 array
built on top of the underlying SIDL array memory. While access to SIDL normal array entries can be
achieved via accessor subroutines (set and get - defined for all native SIDL types and user defined
classes and interfaces), it is more convenient (and efficient) to access those entries directly via the
d_data pointer.

vdata => v%d_data
rdata => r%d_data
rdata = pd%myVectorP + beta * vdata
pd%myVectorP = rdata

Note

When implementing a method that has SIDL normal arrays as arguments, it should not be
assumed that the array is contiguous in memory (stride=1). SIDL normal arrays allow for
different strides in all dimensions. The Babel runtime build the correct F90 array descriptor
(dope vector) that correctly reflects the strides used to create the SIDL array.

5.4. Assignment: NonLinearOp Component
and Driver

In this section, you will use the LinearOp components and driver described earlier as a template to de-
velop a driver and a component that provides the NonLinearOp port. The specification of this port can
be found in the SIDL file $TUTORIAL_SRC/ports/sidl/arrayop.NonLinearOp.sidl, and
is repeated here for convenience.

/** This port can be used to evaluate a linear matrix operation
* of the form
* R = Sum[i=1, N] {Alpha_i log(A_i)} + Sum[j=1, N] {Beta_j A_j .* M_j}}
* Where:
* alpha_i, Beta_j Double scalar
* A_i, M_j Double array of size [m, n]
* log(A_i) Elementwise log (base 10) of matrix A_i
* A_j .* M_j Elementwise multiplication of A_j and M_j
*/
interface NonLinearOp extends gov.cca.Port
{

/** Initialize (or Re-Initialize) internal state in preparation
* for accumulation.
*/

void init();

Understanding arrays and component state

80

/** Evaluate Acc = Acc + alpha log(A) where
* log(A) Elementwise log (base 10) of array A
* Acc The internal accumulator maintained by implementors
* of this interafce
* return the result in array R
*/

int logMat (in double alpha,
in rarray<double, 2> A(m, n),
inout rarray<double, 2> R(m, n),
in int m,
in int n);

/** Evaluate Acc = Acc + beta A .* M, where
* .* denotes elementwise multiplications of arrays
* Acc the internal accumulator maintained by implementors
* of this interafce
* return the result in array R
*/

int mulMatMat (in double beta,
in array<double, 2> A,
in array<double, 2> M,
out array<, 2> R);

/** Get result of nonlinear operation accumulation.
*

int getResult (inout rarray<double, 2> R(m, n),
in int m,
in int n);

}

Note that you can continue to work in the project directory created earlier, or you can create a new
project just for this exercise, since it does not rely on any of the components developed earlier in the tu-
torial.

1. Create NonLinearOp port

Use bocca to create your own version of the NonLinearOp port specification by importing the
existing definition from $TUTORIAL_SRC. This can be done using the command

bocca create port arrayop.NonLinearOp \
--import-sidl=arrayop.NonLinearOp:$TUTORIAL_SRC/ports/sidl/arrayop.NonLinearOp.sidl

2. Create arrayOps.NonLinearOp component

Next you will create a component that provides the NonLinearOp port using the bocca command

bocca create component arrayOps.NonLinearOp \
--provides=arrayop.NonLinearOp:NonLinearPort --lang=LANG

where LANG is your development language of choice from the list of languages supported by Ba-
bel.

3. Create arrayDrivers.NLinearDriver component

In this step, you will use bocca to create a driver for the arrayDrivers.NLinearDriver
component, using the command

Understanding arrays and component state

81

bocca create component arrayDrivers.NLinearDriver \
--provides=gov.cca.ports.GoPort:Go \
--uses=arrayop.NonLinearOp:NonLinearPort --lang=LANG

where LANG is your development language of choice for the driver.

4. Edit components implementation file(s)

Edit the newly generated Impl files to implement the methods in the newly created driver com-
ponent (in the directory components/arrayDrivers.NLinearDriver) and the nonlinear
matrix operation component (in the directory components/arrayOps.NonLinearOp). Build
the new components (by running make in the top level directory of your project (this will also
build the required port code for the languages you use).

5. Running the New NonLinearOp Component Application

You can run the application using the technique you used in Chapter 2, Assembling and Running a
CCA Application.

Understanding arrays and component state

82

Appendix A. Remote Access for the
CCA Environment

$Revision: 1.6 $
$Date: 2007/11/09 18:18:11 $

There is really nothing special about using the CCA environment on a remote system compared to any
other tools routinely used in technical computing. But there are a few things you can do that might make
it more convenient to work remotely. So here are some notes intended to point you to the appropriate
places in the manuals for the software you're using.

A.1. Commandline Access
Everything associated with the CCA can be done using only commandline access to the remote system.
The primary tool for this kind of access at present is the Secure Shell protocol, SSH. Both free and com-
mercial implementations of ssh are widely available. Among the most common are OpenSSH
[http://www.openssh.org] for Linux(-like) systems and PuTTY
[http://www.chiark.greenend.org.uk/~sgtatham/putty/] for Windows. When we describe specifically how
to do something with an SSH client, we will describe it for these two packages. However we won't be
using any unusual capabilities of SSH, so most other implementions probably have an equivalent.

A.2. Graphical Access using X11
Your remote CCA environment will be on a Linux(-like) system (because at present, the CCA tools do
not run directly on Windows), in which graphical tools (such as text editors, debuggers, performance
tools, etc.) typically use the X11 environment. If you wish to use these graphical tools remotely, you'll
need an X11 environment on your local system. This is standard on most Linux(-like) systems. On Win-
dows, you will probably have to install an X11 server.

Warning

Running X11 tools remotely can be annoyingly slow, especially over a long-haul connec-
tion or a slow network. You may prefer to stick to commandline tools.

Most SSH clients are capable of forwarding X11 traffic through your SSH session. If this option is
available to you, it is probably the most convenient and definitely the most secure way of running X11
tools remotely. (It is possible for the administrator of the remote system to configure the SSH server to
prevent X11 forwarding, but we try to insure that this is not the case on the systems we use for organ-
ized tutorials.)

A.2.1. OpenSSH
In most cases, SSH will forward X11 traffic by default, so the simplest thing is to go ahead and try it. To
explicitly enable X11 forwarding use the -X option to ssh. If you want to disable it for some reason (for
instance, it is too slow for your taste and you have a tendency to inadvertently start up graphical tools in-
stead of commandline ones), then use the -x option.

A.2.2. PuTTY
In PuTTY, there is a checkbox to Enable X11 forwarding on the Connection → SSH → Tunnels config-
uration page.

83

http://www.openssh.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/

A.3. Tunneling other Connections through SSH
Similar to X11 forwarding, most SSH clients have the ability to tunnel other network connections
through an SSH session, also known as port forwarding. Tunnels connect a port on your local system to
a port on a remote system, so that you can make a connection to the port on your local system and, via
the tunnel, it will be forwarded to the designated port of the remote system. (Other tunneling setups are
possible, but we do not use them in this Guide.) The remote system could be the system you SSH into,
or a system reachable from the system you SSH into. The two primary uses for tunnels in the context of
the CCA are working on clusters where internal nodes don't have direct access to the external network,
and making connections through firewalls, for example to run the GUI (of course the firewall must pass
the SSH connection that carries the tunnel).

An important thing to note about tunneling is that the port numbers on both ends of the tunnel must be
made explicit. Only one application at a time can listen on a port, so port numbers on both ends of the
tunnel must be selected to avoid conflicts. Assuming you're the only user on your local system, you must
select non-privileged port numbers (1025-65565) that don't conflict with each other, or with any servers
or other applications that might already be using ports on your system. In the examples below, we use
port 2022 on the localhost side of a tunnel for an SSH connection. The same rules apply to the ports
on the remote system. If you're sharing the system on which you're running the exercises, you'll need to
be sure to select ports not being used by other users. Though statistically, the chances of a collision are
relatively small, we avoid such problems in organized tutorials by assigning each user a port number to
use for the Ccaffeine GUI (in the examples below, we use port 3314). If you're working on your own
and are encountering problems finding a free port, the netstat (netstat -a -t -u on Linux-like systems, or
netstat -a at the Windows command prompt) can give you a list of the ports currently in use.

A.3.1. Tunneling with OpenSSH
The -L localPort:remoteHost:remotePort option to ssh is used to setup tunnels. The fol-
lowing are examples of some tunneling arrangements that might be useful in a CCA context:

• Establishing an SSH connection to the head node of a cluster which will forward SSH connections to
an internal node. Then using the tunnel to make a direct connection to the internal node:

ssh -L 2022:clusterInternalNode:22 clusterHeadNode
ssh -p 2022 localhost

• Establishing an SSH connection to a firewalled machine which will forward connections from the
Ccaffeine GUI running locally to the Ccaffeine framework backend running remotely:

ssh -L 3314:remoteHost:3314 remoteHost
simple-gui.sh --port 3314 --host localhost

• Establishing tunnels to an internal node of a cluster for both SSH and Ccaffeine GUI connections:

ssh -L 2022:clusterInternalNode:22 \
-L 3314:clusterInternalNode:3314 clusterHeadNode

which can be used precisely as in the preceeding examples.

A.3.2. Tunneling with PuTTY
In PuTTY, tunnels are specified on the Connection → SSH → Tunnels configuration page. To configure
a tunnel, you need to go to the Add new forwarded port section of the page. Source port is the port on
your local system that you will connect to in order to use the tunnel. In the OpenSSH instructions above,

Remote Access for the CCA Environment

84

it is labeled localPort and is the first part of the argument of the -L option. In PuTTY, the Destina-
tion field is remotHost:remotePort, or the second and third pieces of the OpenSSH -L argument.
The Local button should always be checked (meaning that the tunnel will be setup to forward from your
local system to the destination system).

Tip

You might want to take advantage of PuTTY's ability to save “sessions” to save and easily
reuse complicated (or tedious) SSH configurations, particularly those including multiple
tunnels.

In order to use a tunnel once it is setup, you simply enter give the application localhost and the ap-
propriate port number to connect to. To initiate a tunneled SSH session with PuTTY, you would enter
this information in the Session → Host Name and Session → Port fields. In the examples given earlier
for OpenSSH (Section A.3.1, “Tunneling with OpenSSH”), a connection to localhost port 2022
would give you an ssh connection to directly to clusterInternalNode. And the Ccaffeine GUI would be
invoked in the same way as above (modulo unix vs. Windows details in the command itself).

Remote Access for the CCA Environment

85

Appendix B. Building the CCA Tools
and TAU and Setting Up Your
Environment

$Revision: 1.24 $
$Date: 2007/11/07 00:59:13 $

The primary tools you'll be using are the Ccaffeine CCA framework [http://www.cca-forum.org/ccafe/]
and the Babel language interoperability tool [http://www.llnl.gov/CASC/components/babel.html]. This
section provides brief instructions on how to download and install a distribution of these tools (named,
creatively enough, “cca-tools”) that has been tested for compatibility with the tutorial code.

Caution

These tools are still under development as we extend their capabilities. Consequently, it is
possible to find numerous releases and snapshots of the individual tools, any given com-
bination of which may not have been tested for compatibility. Don't use the individual tool
distributions unless you've got a particular reason, usually based on direct conversations
with their developers. The latest version of the “cca-tools” package is the recommended
distribution for routine use and will provide you with a matched set of tools that will work
together properly.

The TAU performance observation tools [http://www.cs.uoregon.edu/research/paracomp/tau/tautools/]
can be used in conjunction with the CCA to provide simple instrumentation and monitoring at the level
of component interfaces (and of course it can be used to instrument a component internally just like any
other piece of code). If you wish to use TAU it will also be necessary for you to install it on your sys-
tem.

B.1. The CCA Tools
B.1.1. System Requirements

Note

We strongly recommend using a Linux platform to work through these exercises, since this
is currently the most extensively tested and most easily supported platform for the CCA
tools. If this is not possible, or you have a specific need to use another platform while
working through these exercises, please contact us at <help@cca-forum.org> to dis-
cuss the best way to proceed. We're also interested to hear what platforms you would like
to run your CCA applications on in the longer term in order to help us focus our porting
and testing efforts.

The requirements to build the CCA tools on Linux platforms are listed below. Requirements for other
platforms will vary somewhat.

• gcc >= 3.2

• Java Software Development Kit >= 1.4. The java and javac commands must be in your execution
path.

86

http://www.cca-forum.org/ccafe/
http://www.llnl.gov/CASC/components/babel.html
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

Note

We have on occasion observed problems with the ccafe-gui interface hanging (most of-
ten while populating the palette as the GUI starts up). This seems to happen less often
with version 1.4 than with more recent versions.

• A connection to the internet. (A network connection is required both to download the code cca-tools
package and during the build process.)

• Python >= 2.3 built with --enable-shared (on platforms that support shared libraries), and Numeric-
al Python (NumPy). If you have multiple versions of Python installed and prefer to have a version in
your execution path that does not meet the criteria above, you should set the PYTHON environment
variable to point to a suitable version for the CCA tools prior to configuring them. You can check
the python version with python -V.

Additional Optional Software. There are also a number of other packages which are not required in
order to build the CCA tools, but can be used if present (and may be required in order to obtain certain
functionality). If you want to use them, they should be installed before you begin to install the CCA
tools.

• MPI: recent versions of MPICH are known to work. At present, the automatic configuration tools do
not handle other MPI implementations, and Ccaffeine has not yet been extensively tested against
other implementations.

Note

At present, there are no exercises that require MPI.

• Fortran 90: A variety of Fortran 90 compilers are supported. Because Babel needs to know about the
format of the array descriptors used internally by the compiler, the CCA tools will have to be con-
figured with both the path to the compiler and information about which compiler it is. Here is the list
of currently supported compilers and the associated labels recognized by the CCA tools configura-
tion script.

Compiler CCA Tools “VENDOR” Label

Absoft Absoft

HP Compaq Fortran Alpha

Cray Fortran Cray

GNU gFortran GNU

IBM XL Fortran IBMXL

Intel v8 Intel

Intel v7 Intel_7

Lahey Lahey

NAG NAG

SGI MIPS Pro MIPSpro

SUN Solaris SUNWspro

You should have the compiler in your execution path, and any relevant .so libraries in your

Building the CCA Tools and TAU and Setting
Up Your Environment

87

LD_LIBRARY_PATH. These are required to properly configure the CCA tools package.

• GNU autotools >= 2.59; >= 2.60 recommended. These are not required by the CCA tools them-
selves, but would be needed if your development activities require adding to the basic configure
script generated by bocca.

B.1.2. Downloading and Building the CCA Tools Package

1. The latest version of the CCA Tools package can be found at ht-
tp://www.cca-forum.org/tutorials/#sources with a filename of the form
cca-tools-version.tar.gz.

2. Untar the cca-tools tar ball some place that is convenient to build and follow the instructions in the
README to build it.

The CCA tools build procedure has been tested on a variety of systems with a range of different config-
uration options, and it works the majority of the time. However it is possible your platform or configura-
tion requirements will confuse it, and it will not build properly for you. If this happens, please contact us
at <help@cca-forum.org> with the output of your attempt to configure and build the package, and
any pertinent information about your system. We want to help you get a working CCA environment and
improve the packaging of the tools for future users.

B.2. The Ccaffeine GUI
The Ccaffeine front-end GUI is part of the CCA tools distribution you installed above. But if you're run-
ning the exercises on a remote system and want to use the GUI (it is not required to complete the exer-
cises), you will need to download and setup the GUI on your local system before you can use it. (It will
work over an X11 connection to the remote system, if you have one, but we tend to find performance of
Java tools like the GUI unacceptable and generally recommend running it locally and connecting to the
remote system via an SSH tunnel, as described in Section A.3, “Tunneling other Connections through
SSH”.)

B.2.1. System Requirements
These requirements apply to both Linux-like and Windows systems.

• Java Software Development Kit >= 1.4. The java command must be in your execution path.

B.2.2. Downloading and Setting Up the GUI

1. To use the GUI on your local system, you will need to download the ccafe-gui.jar and the
convenience script to run it. The script to download depends on which operating system you're loc-
al system is running. For Linux-like systems, it is simple-gui.sh, and for Windows systems, it
is simple-gui.bat. The files could be copied (using scp) from the CCA tools installation on
the remote system (in the $CCA_TOOLS_ROOT/lib subdirectory), or (probably more conveni-
ently) downloaded from http://www.cca-forum.org/tutorials/#sources.

Building the CCA Tools and TAU and Setting
Up Your Environment

88

http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources

2. The scripts expect to be located in the same directory as the jar file. Instructions for using the
scripts can be found in Section 2.1, “Using the GUI Front-End to Ccaffeine”.

B.3. Downloading and Installing TAU
Note

Note that TAU is not currently used in any of the exercises (we're working on changing
that). Everything in this Guide will work fine without it.

1. The latest version of the TAU Portable Profiling package can be found at ht-
tp://www.cs.uoregon.edu/research/paracomp/tau/tautools/. Also needed for the CCA environment
is the Performance component, available at ht-
tp://www.cs.uoregon.edu/research/paracomp/proj/tau/cca/.

2. Untar the tau_version.tar.gz file in a convenient place.

3. Next, configure TAU with ./configure options. You can specify an installation prefix with
the -prefix=TAU_ROOT option (the default is use the directory in which you build TAU). There
are many other configuration options available (type ./configure -help for a complete list).

Note

In these exercises, MPI is not needed, but if you want to build TAU with it, you'll
need to use the -mpiinc and -mpilib options. Also, for these exercises, TAU
does not need to be compiled with Fortran support. Fortran support would be required
to work with Fortran code you directly instrument. In these exercises, you will be us-
ing TAU via a the TAU performance component, which is written in C++.

4. Build TAU using make install

5. Untar the performance-version.tar.gz file someplace convenient to build.

6. Configure the performance component using ./configure -ccafe=CCA_TOOLS_ROOT -
taumakefile=TAU_ROOT/include/Makefile -without-classic -
without-proxygen -ccatk=TAU_CMPT_ROOT. CCA_TOOLS_ROOT and TAU_ROOT are
the installation roots for the CCA tools and TAU that you specified in previous steps.
TAU_CMPT_ROOT is the directory into which you want the performance component tools in-
stalled.

7. Build the performance component using make ; make install

B.4. Setting Up Your Login Environment
Once the CCA tools (and TAU, if needed) have been built, you will need to setup your login environ-
ment so that the appropriate commands are added to your execution path, and libraries are added to your
LD_LIBRARY_PATH.

Building the CCA Tools and TAU and Setting
Up Your Environment

89

http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/proj/tau/cca/
http://www.cs.uoregon.edu/research/paracomp/proj/tau/cca/

Wherever you installed the tools above, we will use the following notation in this section:

CCA_TOOLS_ROOT The fully qualified path to where the CCA tools were installed (the --prefix
directory, or the default ./local expanded to be complete paths, rather than
relative)

TAU_ROOT The fully qualified path to TAU's install directory (the -prefix directory)

TAU_CMPT_ROOT The fully qualified path to the TAU performance component (the -ccatk dir-
ectory).

Then the following commands should work, depending on which shell you use:

csh, tcsh and Related Shells.

set path=(CCA_TOOLS_ROOT/bin TAU_ROOT \
TAU_CMPT_ROOT $path)

setenv LD_LIBRARY_PATH CCA_TOOLS_ROOT/lib:$LD_LIBRARY_PATH

bash, ksh, sh and Related Shells.

export PATH=CCA_TOOLS_ROOT/bin:TAU_ROOT:TAU_CMPT_ROOT:$PATH
export LD_LIBRARY_PATH=CCA_TOOLS_ROOT/lib:$LD_LIBRARY_PATH

These commands could be added to your own login files ($HOME/.cshrc or $HOME/.profile),
put in a file somewhere else and sourced in your login files (this is the approach we use in the organized
tutorials), or, if appropriate, added to the system login setup by your system administrator.

Tip

If you're a participant in an organized tutorial, we've already prepared a login file with
these commands, and others needed for the tutorial, which you simply source in your login
file. Specific instructions on how to set this up should have been provided to you along
with your tutorial account information.

If you are using Python, you also need to set your PYTHONPATH environment variable to include the
locations of Python modules associated with the CCA tools and the tutorial itself.

csh, tcsh and Related Shells.

setenv PYTHONPATH CCA_TOOLS_ROOT/lib/python2.3/site-packages/:\
$TUTORIAL_SRC/ports/lib/python:\
$TUTORIAL_SRC/components/lib/python

bash, ksh, sh and Related Shells.

export
PYTHONPATH=CCA_TOOLS_ROOT/lib/python2.3/site-packages/:\
$TUTORIAL_SRC/ports/lib/python:\
$TUTORIAL_SRC/components/lib/python

Building the CCA Tools and TAU and Setting
Up Your Environment

90

Unfortunately, because of the way Python works, you will have to modify the PYTHONPATH any time
you add new Python components to your application.

Building the CCA Tools and TAU and Setting
Up Your Environment

91

Appendix C. Building the Tutorial Code
Tree

$Revision: 1.3 $
$Date: 2007/11/09 22:55:30 $

The file tutorial-src-version.tar.gz at http://www.cca-forum.org/tutorials/#sources has the
full code for all of the components created in this Guide as well as a number of others. These compon-
ents are used in Chapter 2, Assembling and Running a CCA Application (once the they are built) to give
you some experience working with existing components. In later chapters, the code itself can serve as a
model and a reference for the components you're writing.

Note

At the time this particular version of the Hands-On Guide was generated, the version
was 0.5.3_rc1. If there's a more recent version available, you should probably use it, but
you should also look for a more current version of this Guide to go with it. Both should
have the same base version number (i.e. 0.5.3) perhaps with different release numbers.
Take the highest available release number. Note too that because both the CCA tools and
the tutorial code are evolving over time, you should make sure to use the version of the
CCA tools distribution that is recommended for the particular tutorial version you're work-
ing with.

If you're participating in an organized tutorial, we will have built the tutorial-src tree for you in
advance in a common location, whereas if you're working through these exercises on your own, you'll
need to build it yourself.

Tip

Make sure you've setup your login environment per Section B.4, “Setting Up Your Login
Environment”. To complete the procedures in this section, you will need to have Babel and
Ccaffeine in your execution path, and your LD_LIBRARY_PATH.

1. Download the file you need from the location above.

2. Untar the file in a convenient place with tar zxf tutorial-src-version.tar.gz.
When it completes, change directories into the new code tree.

3. Run ./configure to configure the tree for the build location.

4. Run bocca config --update to make bocca aware that the tree has changed location.

5. The code tree includes components written in C, C++, F90, F77, Python, and Java. You may need
to configure the code tree according to the languages you have available (dependent on how the
CCA tools were built in Appendix B, Building the CCA Tools and TAU and Setting Up Your Envir-
onment). Run ./configure --with-languages="c cxx f77 f90 java python"
using the appropriate space-separated list of languages for your environment. The default is to in-
clude the languages for which Babel was configured when the CCA tools were installed (see Ap-
pendix B, Building the CCA Tools and TAU and Setting Up Your Environment).

6. Once the tree is configured, type make to build it. This step may take several minutes. At the end
of the build output, you should see a list of components that were successfully built, such as:

92

http://www.cca-forum.org/tutorials/#sources

SUCCESS building drivers.PYDriver

and when it finally completes, you should see this message:

################ Finished building everything #################
####### You can run some simple tests with 'make check' #######

If the build terminates with an error message instead, please ask for assistance.

7. Once the build is complete, you can type make check to perform a basic check that the compon-
ent have been built correctly. This is a convenience of the Makefile system generated by bocca
that tries to instantiate each component within the Ccaffeine framework. This provides a basic
check that the software you've built are “well-formed” CCA components. You should see a mes-
sage like this, along with a couple of lines of output from make itself:

Test library load and instantiation for the following languages: c cxx f90 f77 python java
Running instantiation tests only
Test script: tutorial-src/components/tests/test_rc
==> Instantiation tests passed for all built components (see tutorial-src/components/tests/test_rc.log).
make[1]: Leaving directory `tutorial-src/components'

Building the Tutorial Code Tree

93

Appendix D. License (Creative
Commons Attribution 2.5)

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN
AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE
RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS
AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in
which the Work in its entirety in unmodified form, along with a number of other contributions,
constituting separate and independent works in themselves, are assembled into a collective
whole. A work that constitutes a Collective Work will not be considered a Derivative Work
(as defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-
existing works, such as a translation, musical arrangement, dramatization, fictionalization, mo-
tion picture version, sound recording, art reproduction, abridgment, condensation, or any other
form in which the Work may be recast, transformed, or adapted, except that a work that con-
stitutes a Collective Work will not be considered a Derivative Work for the purpose of this Li-
cense. For the avoidance of doubt, where the Work is a musical composition or sound record-
ing, the synchronization of the Work in timed-relation with a moving image ("synching") will
be considered a Derivative Work for the purpose of this License.

c. "Licensor" means the individual or entity that offers the Work under the terms of this Li-
cense.

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previ-
ously violated the terms of this License with respect to the Work, or who has received express
permission from the Licensor to exercise rights under this License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising
from fair use, first sale or other limitations on the exclusive rights of the copyright owner under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) li-
cense to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to re-
produce the Work as incorporated in the Collective Works;

b. to create and reproduce Derivative Works;

c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform pub-

94

licly by means of a digital audio transmission the Work including as incorporated in Collective
Works;

d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform pub-
licly by means of a digital audio transmission Derivative Works.

e. For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to
collect, whether individually or via a performance rights society (e.g. ASCAP, BMI,
SESAC), royalties for the public performance or public digital performance (e.g. web-
cast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to col-
lect, whether individually or via a music rights agency or designated agent (e.g. Harry
Fox Agency), royalties for any phonorecord You create from the Work ("cover version")
and distribute, subject to the compulsory license created by 17 USC Section 115 of the
US Copyright Act (or the equivalent in other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is
a sound recording, Licensor waives the exclusive right to collect, whether individually or via a
performance-rights society (e.g. SoundExchange), royalties for the public digital performance
(e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114
of the US Copyright Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter de-
vised. The above rights include the right to make such modifications as are technically necessary to
exercise the rights in other media and formats. All rights not expressly granted by Licensor are
hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by
the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work
only under the terms of this License, and You must include a copy of, or the Uniform Re-
source Identifier for, this License with every copy or phonorecord of the Work You distribute,
publicly display, publicly perform, or publicly digitally perform. You may not offer or impose
any terms on the Work that alter or restrict the terms of this License or the recipients' exercise
of the rights granted hereunder. You may not sublicense the Work. You must keep intact all
notices that refer to this License and to the disclaimer of warranties. You may not distribute,
publicly display, publicly perform, or publicly digitally perform the Work with any technolo-
gical measures that control access or use of the Work in a manner inconsistent with the terms
of this License Agreement. The above applies to the Work as incorporated in a Collective
Work, but this does not require the Collective Work apart from the Work itself to be made
subject to the terms of this License. If You create a Collective Work, upon notice from any Li-
censor You must, to the extent practicable, remove from the Collective Work any credit as re-
quired by clause 4(b), as requested. If You create a Derivative Work, upon notice from any Li-
censor You must, to the extent practicable, remove from the Derivative Work any credit as re-
quired by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or
any Derivative Works or Collective Works, You must keep intact all copyright notices for the
Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author
and/or Licensor designate another party or parties (e.g. a sponsor institute, publishing entity,
journal) for attribution in Licensor's copyright notice, terms of service or by other reasonable
means, the name of such party or parties; the title of the Work if supplied; to the extent reason-

License (Creative Commons Attribution 2.5)

95

ably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associ-
ated with the Work, unless such URI does not refer to the copyright notice or licensing in-
formation for the Work; and in the case of a Derivative Work, a credit identifying the use of
the Work in the Derivative Work (e.g., "French translation of the Work by Original Author,"
or "Screenplay based on original Work by Original Author"). Such credit may be implemented
in any reasonable manner; provided, however, that in the case of a Derivative Work or Col-
lective Work, at a minimum such credit will appear where any other comparable authorship
credit appears and in a manner at least as prominent as such other comparable authorship cred-
it.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LI-
CENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY
OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MER-
CHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR
THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY
NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by
You of the terms of this License. Individuals or entities who have received Derivative Works
or Collective Works from You under this License, however, will not have their licenses ter-
minated provided such individuals or entities remain in full compliance with those licenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the dura-
tion of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves
the right to release the Work under different license terms or to stop distributing the Work at
any time; provided, however that any such election will not serve to withdraw this License (or
any other license that has been, or is required to be, granted under the terms of this License),
and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Li-
censor offers to the recipient a license to the Work on the same terms and conditions as the li-
cense granted to You under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to
the recipient a license to the original Work on the same terms and conditions as the license
granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not
affect the validity or enforceability of the remainder of the terms of this License, and without
further action by the parties to this agreement, such provision shall be reformed to the minim-
um extent necessary to make such provision valid and enforceable.

License (Creative Commons Attribution 2.5)

96

d. No term or provision of this License shall be deemed waived and no breach consented to un-
less such waiver or consent shall be in writing and signed by the party to be charged with such
waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work li-
censed here. There are no understandings, agreements or representations with respect to the
Work not specified here. Licensor shall not be bound by any additional provisions that may
appear in any communication from You. This License may not be modified without the mutu-
al written agreement of the Licensor and You.

Additional Information. For more information about the Creative Commons and this license, please
see their web site, http://creativecommons.org.

Requested Attribution. CCA Forum Tutorial Working Group, A Hands-On Guide to the Common
Component Architecture, version 0.5.3_rc1, 2007, http://www.cca-forum.org/tutorials/.

Or in BibTeX format:

@Manual{hog-cca:0.5.3_rc1,
title = {A Hands-On Guide to the Common Component Architecture},
author = {The Common Component Architecture Forum Tutorial

Working Group},
edition = {0.5.3_rc1},
year = 2007,
note = {http://www.cca-forum.org/tutorials/}

}

License (Creative Commons Attribution 2.5)

97

http://creativecommons.org
http://www.cca-forum.org/tutorials/

	A Hands-On Guide to the Common Component Architecture
	Table of Contents
	Preface
	1. Help us Improve this Guide
	2. Finding the Latest Version of the CCA Hands-On Exercises
	3. Typographic Conventions
	4. File and Directory Naming Conventions
	5. Acknowledgments

	Chapter 1. Introduction
	1.1. The CCA Software Environment
	1.2. Where to Go from Here

	Chapter 2. Assembling and Running a CCA Application
	2.1. Using the GUI Front-End to Ccaffeine
	2.1.1. Tools to Use when GUI host and Ccaffeine host are Identical
	2.1.2. Tools to Use when GUI host and Ccaffeine host are Separate
	2.1.3. Assembling and Running an Application Using the GUI

	2.2. Running Ccaffeine Using an rc File
	2.3. Notes on More Advanced Usage of the GUI

	Chapter 3. Using Bocca: An Application Generator for CCA
	3.1. Creating a Bocca Project
	3.2. Creating Ports and Components
	3.3. Inserting Implementations into Bocca-Generated Components
	3.3.1. Adding Methods to Ports

	3.4. Language-Specific Implementations of the Function, Integrator, and Driver Components
	3.4.1. C++ Implementation
	3.4.2. Fortran9X Implementation
	3.4.3. C Implementation

	Chapter 4. Using TAU to Monitor the Performance of Components
	4.1. Creating the Proxy Component
	4.2. Using the proxy generator
	4.3. Using the proxy component

	Chapter 5. Understanding arrays and component state
	5.1. Introduction
	5.2. The CDriver Component
	5.2.1. Using SIDL Raw Arrays
	5.2.2. Using SIDL Normal Arrays

	5.3. Linear Array Operations Components
	5.3.1. The CArrayOp Component
	5.3.2. The F77ArrayOp Component
	5.3.3. The F90ArrayOp Component

	5.4. Assignment: NonLinearOp Component and Driver

	Appendix A. Remote Access for the CCA Environment
	A.1. Commandline Access
	A.2. Graphical Access using X11
	A.2.1. OpenSSH
	A.2.2. PuTTY

	A.3. Tunneling other Connections through SSH
	A.3.1. Tunneling with OpenSSH
	A.3.2. Tunneling with PuTTY

	Appendix B. Building the CCA Tools and TAU and Setting Up Your Environment
	B.1. The CCA Tools
	B.1.1. System Requirements
	B.1.2. Downloading and Building the CCA Tools Package

	B.2. The Ccaffeine GUI
	B.2.1. System Requirements
	B.2.2. Downloading and Setting Up the GUI

	B.3. Downloading and Installing TAU
	B.4. Setting Up Your Login Environment

	Appendix C. Building the Tutorial Code Tree
	Appendix D. License (Creative Commons Attribution 2.5)

