
Common Component Architecture Tutorial

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

1This work is licensed under a Creative Commons Attribution 2.5 License

Welcome to the
Common Component Architecture

Tutorial
ACTS Collection Workshop

22 August 2008

CCA
Common Component Architecture

2

Licensing Information
• This tutorial is distributed under the Creative Commons

Attribution 2.5 License
– http://creativecommons.org/licenses/by/2.5/

• In summary, you are free:
– to copy, distribute, display, and perform the work
– to make derivative works
– to make commercial use of the work

• Under the following conditions:
– Attribution. You must attribute the work in the manner specified by

the author or licensor.
• For any reuse or distribution, you must make clear to others the

license terms of this work.
• Any of these conditions can be waived if you get permission

from the copyright holder.
• Your fair use and other rights are in no way affected by the

above.
• Requested reference:

– CCA Forum Tutorial Working Group, Common Component
Architecture Tutorial, 2008, http://www.cca-forum.org/tutorials/

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

3

About the Printed Notes

• The printed version of these presentations
includes additional slides marked
“Supplementary material for handouts”

• Additional material to address questions
sometimes raised, or provide more detail on a
topic

• We are happy to discuss this material if asked

Supplementary material for handouts

CCA
Common Component Architecture

4

Introductions

• Rob Armstrong (Sandia National Laboratories)

• Benjamin Allan (Sandia National Laboratories)

• David E. Bernholdt (Oak Ridge National Laboratory)

• Tom Epperly (Lawrence Livermore National Laboratory)

• Jaideep Ray (Sandia National Laboratories)

• Sameer Shende (U. Oregon)

Common Component Architecture Tutorial

CCA
Common Component Architecture

5

Agenda & Table of Contents

Adjourn17:00

Lunch12:30-13:30

Ben Allan, SNL
and the CCA team

Hands-On
Guide

Hands-On14:00-16:30

Break16:30-17:00

Jaideep Ray, SNL109Closing
Jaideep Ray, SNL84Approaches & Experience

David Bernholdt, ORNL7Introduction to Babel and the CCA

Ben Allan, SNLCan it be that Easy? A Quick
Demonstration

13:30-14:00

Tom Epperly, LLNL58The Primary Tools

David Bernholdt, ORNL1Welcome11:00-12:30
PresenterSlide No.TitleTime

CCA
Common Component Architecture

6

Who We Are: The Common Component
Architecture (CCA) Forum

• Combination of standards body and user group for the CCA
• Define specifications for high-performance scientific components

& frameworks
• Promote and facilitate development of tools for component-based

software development, components, and component applications
• Open membership, quarterly meetings…

General mailing list: cca-forum@cca-forum.org
Web: http://www.cca-forum.org/

• Center for Technology for Advanced Scientific Component
Software (TASCS)
– Funded by the US DOE SciDAC program
– Core development team for CCA technologies

Common Component Architecture Tutorial

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

7This work is licensed under a Creative Commons Attribution 2.5 License

Introduction to HPC Component
Software

CCA
Common Component Architecture

8

Managing Code Complexity

Some Common Situations:
• Your code is so large and complex it has become fragile and

hard to keep running
• You have a simple code, and you want to extend its capabilities

– rationally
• You want to develop a computational “toolkit”

– Many modules that can be assembled in different ways to perform
different scientific calculations

– Gives users w/o programming experience access to a flexible tool
for simulation

– Gives users w/o HPC experience access to HPC-ready software

How CCA Can Help:
• Components help you think about software in manageable

chunks that interact only in well-defined ways
• Components provide a “plug-and-play” environment that allows

easy, flexible application assembly

Common Component Architecture Tutorial

CCA
Common Component Architecture

9

Example: Computational Facility for
Reacting Flow Science (CFRFS)

• A toolkit to perform
simulations of unsteady
flames

• Solve the Navier-Stokes
with detailed chemistry
– Various mechanisms

up to ~50 species, 300
reactions

– Structured adaptive
mesh refinement

• CFRFS today:
– 61 components
– 7 external libraries
– 9 contributors

“Wiring diagram” for a typical CFRFS
simulation, utilizing 12 components.

CCA tools used: Ccaffeine, and
ccafe-gui
Languages: C, C++, F77

CCA
Common Component Architecture

10

Helping Groups Work with Software
Some Common Situations:
• Many (geographically distributed) developers creating

a large software system
– Hard to coordinate, different parts of the software don’t work

together as required
• Groups of developers with different specialties
• Forming communities to standardize interfaces or

share code
How CCA Can Help:
• Components are natural units for

– Expressing software architecture
– Individuals or small groups to develop
– Encapsulating particular expertise

• Some component models (including CCA) provide
tools to help you think about the interface separately
from the implementation

Common Component Architecture Tutorial

CCA
Common Component Architecture

11

Schematic of CCA-based molecular
structure determination quantum
chemistry application.

Components based on: MPQC,
NWChem (quantum chem.), TAO
(optimization), Global Arrays, PETSc
(parallel linear algebra)
CCA tools used: Babel, Ccaffeine,
and ccafe-gui
Languages: C, C++, F77, Python

Example: Quantum Chemistry
• Integrated state-of-the-art

optimization technology
into two quantum
chemistry packages to
explore effectiveness in
chemistry applications

• Geographically distributed
expertise:
– California - chemistry
– Illinois - optimization
– Washington – chemistry,

parallel data management
• Effective collaboration

with minimal face-to-face
interaction

CCA
Common Component Architecture

12

Language Interoperability

Some Common Situations:
• Need to use existing code or libraries written in

multiple languages in the same application?
• Want to allow others to access your library from

multiple languages?
• Technical or sociological reasons for wanting to use

multiple languages in your application?

How CCA Can Help:
• Some component models (including CCA) allow

transparent mixing of languages
• Babel (CCA’s language interop. tool) can be used

separately from other component concepts

Common Component Architecture Tutorial

CCA
Common Component Architecture

13

Examples

hypre
• High performance

preconditioners and linear
solvers

• Library written in C
• Babel-generated object-

oriented interfaces
provided in C, C++, Fortran

LAPACK07
• Update to LAPACK linear

algebra library
– To be released 2007
– Library written in F77, F95

• Will use Babel-generated
interfaces for: C, C++,
F77, F95, Java, Python

• Possibly also ScaLAPACK
(distributed version)

CCA tools used: Babel, Chasm

“I implemented a Babel-based interface for the hypre library of linear
equation solvers. The Babel interface was straightforward to write and
gave us interfaces to several languages for less effort than it would take
to interface to a single language.”

-- Jeff Painter, LLNL. 2 June 2003

CCA
Common Component Architecture

14

Coupling Codes
Some Common Situations:
• Your application makes use of numerous third-party libraries

– Some of which interact (version dependencies)
• You want to develop a simulation in which your code is coupled

with others
– They weren’t designed with this coupling in mind
– They must remain usable separately too
– They are all under continual development, individually
– They’re all parallel and need to exchange data frequently

How CCA Can Help:
• Components are isolated from one another

– Interactions via well-defined interfaces
– An application can include multiple versions of a component

• Components can be composed flexibly, hierarchically
– Standalone application as one assembly, coupled simulation as

another
• CCA can be used in SPMD, MPMD, and distributed styles of

parallel computing
• CCA is developing technology to facilitate data and functional

coupling of parallel applications

Common Component Architecture Tutorial

CCA
Common Component Architecture

15

Example: Integrated Fusion Simulation
• Proof-of-principle of using

CCA for integrated whole-
device modeling needed
for the ITER fusion reactor

• Couples radio frequency
(RF) heating of plasma
with transport modeling

• Coarse-grain
encapsulation of pre-
existing programs

• Follow-on plans for RF,
transport, and magneto-
hydrodynamics

“Wiring diagram” for integrated fusion
simulation.

Components based on: AORSA,
Houlberg’s transport library
New components: Driver, State
CCA tools used: Babel, Chasm,
Ccaffeine, ccafe-gui
Languages: C++, F90, Python

CCA
Common Component Architecture

16

What are Components?

• No universally accepted definition in computer
science research, but key features include…

• A unit of software development/deployment/reuse
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use
– Can be developed independently of other components

• Interacts with the outside world only through well-
defined interfaces
– Implementation is opaque to the outside world

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces

Common Component Architecture Tutorial

CCA
Common Component Architecture

17

What is a Component Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which components are composed to

form an application and executed (framework)
– The rights and responsibilities of the framework

CCA
Common Component Architecture

18

A Simple Example:
Numerical Integration Components

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Interoperable components
(provide same interfaces)

•

Common Component Architecture Tutorial

CCA
Common Component Architecture

19

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Provided Components

Hides compexity: Driver
doesn’t care that
MonteCarloIntegrator
needs a random
number generator

CCA
Common Component Architecture

20

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Common Component Architecture Tutorial

CCA
Common Component Architecture

21

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA
Common Component Architecture

22

LowLowHighHighSupport for specific workflows
and information flows

Low (but
growing)

HighMediumLowBreadth of current “ecosystem”
for “plugins”

HighMediumMediumLowEase of experimentation
High (reuse
can reduce)

HighMediumLowAmount of new code required
to create a complete simulation

HighMediumLow-MediumLowEase of incorporation of
outside code (code reuse)

HighMediumLowLowEase of coupling simulations

HighHighMediumLowUser-level extensibility

HighHighMediumLowFlexibility w.r.t. workflow and
information flow

Component
-Based

Library
-Based

Simulation
Frameworks

Monolithic
Simulation

Code

Characteristics

Comparison of Application
Development Approaches

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

23

Be Aware: “Framework” Describes
Many Things

• Currently in scientific computing, this term means different things to
different people

• Basic software composition environment
– Examples: CCA, CORBA Component Model, …

• An environment facilitating development of applications in a particular
scientific domain (i.e. fusion, computational chemistry, …)
– Example: Earth System Modeling Framework, http://www.esmf.ucar.edu
– Example: Computational Facility for Reacting Flow Science,

http://cfrfs.ca.sandia.gov
• An environment for managing complex workflows needed to carry out

calculations
– Example: Kepler: http://kepler-project.org

• Integrated data analysis and visualization environments (IDAVEs)

• Lines are often fuzzy
– Example: Cactus, http://www.cactuscode.org

• Others types of frameworks could be built based on a basic software
composition environment

Supplementary material for handouts

CCA
Common Component Architecture

24

Relationships:
Components, Objects, and Libraries

• Components are typically discussed as objects or
collections of objects
– Interfaces generally designed in OO terms, but…
– Component internals need not be OO
– OO languages are not required

• Component environments can enforce the use of
published interfaces (prevent access to internals)
– Libraries can not

• It is possible to load several instances (versions) of a
component in a single application
– Impossible with libraries

• Components must include some code to interface
with the framework/component environment
– Libraries and objects do not

Common Component Architecture Tutorial

CCA
Common Component Architecture

25

What is the CCA?

• Component-based software engineering has been
developed in other areas of computing
– Especially business and internet
– Examples: CORBA Component Model, COM, Enterprise

JavaBeans

• Many of the needs are similar to those in HPC scientific
computing

• But scientific computing imposes special requirements
not common elsewhere

• CCA is a component environment specially designed to
meet the needs of HPC scientific computing

CCA
Common Component Architecture

26

Special Needs of Scientific HPC

• Support for legacy software
– How much change required for component environment?

• Performance is important
– What overheads are imposed by the component

environment?
• Both parallel and distributed computing are important

– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

Common Component Architecture Tutorial

CCA
Common Component Architecture

27

CCA: Concept and Practice

• In the following slides, we explain important concepts
of component-based software from the CCA
perspective

• We also sketch how these concepts are manifested in
code (full details in the Hands-On)

• The CCA Specification is the mapping between
concept and code
– A standard established by the CCA Forum
– Expressed in the Scientific Interface Definition Language

(SIDL) for language neutrality (syntax similar to Java)
– SIDL can be translated into bindings for specific programming

languages using, e.g., the Babel language interoperability tool

CCA
Common Component Architecture

28

CCA Concepts: Components

• A component encapsulates some computational
functionality

• Components provide/use one or more interfaces
– A component with no interfaces is formally okay, but isn’t very

interesting or useful

• In SIDL, a component is a class that implements
(inherits from) gov.cca.Component
– This means it must implement the setServices method to

tell framework what ports this component will provide and use
– gov.cca.Component is defined in the CCA specification

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

Common Component Architecture Tutorial

CCA
Common Component Architecture

29

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports
– A port expresses some computational functionality
– In Fortran, a port is a bunch of subroutines or a module
– In OO languages, a port is an abstract class or interface

• Ports and connections between them are a
procedural (caller/callee) relationship, not dataflow!
– e.g., FunctionPort could contain a method like
evaluate(in Arg, out Result) with data flowing both
ways

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

30

CCA Concepts: Provides and Uses Ports

• Components may provide ports – implement the
class or subroutines of the port ()
– Providing a port implies certain inheritance relationships

between the component and the abstract definition of the
interface (more details shortly)

– A component can provide multiple ports
• Different “views” of the same functionality, or
• Related pieces of functionality

• Components may use ports – call methods or
subroutines in the port ()
– Use of ports is just like calling a method normally except for

a little additional work due to the “componentness” (more
details shortly)

– No inheritance relationship implied between caller and callee
– A component can use multiple ports

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

“Provides” Port

“Uses” Port

Common Component Architecture Tutorial

CCA
Common Component Architecture

31

package integrators {
interface IntegratorPort

{
double integrate(…};

} }

package integrators {
class Midpoint

{

} }

Components and Ports (in SIDL)
•••

package gov.cca {
interface Component {
void setServices(…);

} }

package gov.cca {
interface Port {

} }

gov.cca.Component,
integrator.IntegratorPort

double integrate(…);
void setServices(…);

implements

extends gov.cca.Port
FunctionPort

MidpointIntegrator

IntegratorPort

= Inheritance

SIDL inheritance
keywords

Key:

CCA
Common Component Architecture

32

Components and Ports (in UML)

= Inheritance

<<interface>>
gov.cca.Port

<<interface>>
gov.cca.Component

setServices(services: gov.cca.Services)

Midpoint

<<interface>>
integrator.IntegratorPort

integrate(lowBound: double,
upBound: double, count: int): double

Class for Midpoint
Integrator component

A component must
implement the CCA
spec’s component
interface

A component must
implement the
port(s) it provides

A port must extend
the CCA spec’s port
interface

•••

SIDL keywords

FunctionPort

MidpointIntegrator

IntegratorPort

Key:

•

Note that only the provides ports
appear in the component’s inheritance
hierarchy. Uses ports do not.

•Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

33

Using Ports

• Calling methods on a port you use requires that you first
obtain a “handle” for the port
– Done by invoking getPort() on the user’s
gov.cca.Services object

– Free up handle by invoking releasePort() when done with
port

• Best practice is to bracket actual port usage as closely
as possible without using getPort(), releasePort()
too frequently
– Can be expensive operations, especially in distributed

computing contexts
– Performance is in tension with dynamism

• can’t “re-wire” a ports that is “in use”

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

34

Where Do Ports Come From?
• Most ports are designed and implemented by

users of CCA
– May be specific to an application or used more

broadly (i.e. community-wide)

• The CCA specification defines a small number
of ports
– Most are services CCA frameworks must provide for

use by components
– Some are intended for users to implement in their

components, and have a special meaning
recognized by the framework

• E.g. gov.cca.ports.GoPort provides a very simple
protocol to start execution of component-based applications

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

35

Interfaces are an Investment
• The larger the community, the greater the time &

effort required to obtain agreement
– Equally true in component and non-component

environments
• MPI 1.0 (well understood at the start) took 8 months, meeting

every six weeks
• MPI 2.0 (not well understood at the start) took 1.5 years,

meeting every six weeks
– Convenient communities are often “project” and “scientific

domain”

• Formality of “standards” process varies

• Biggerstaff’s Rule of Threes
– Must look at at least three systems to understand what is

common (reusable)
– Reusable software requires three times the effort of usable

software
– Payback only after third release

Supplementary material for handouts

CCA
Common Component Architecture

36

CCA Concepts:
Frameworks

• The framework provides the means to “hold” components and
compose them into applications

• Frameworks allow connection of ports without exposing
component implementation details

• Frameworks provide a small set of standard services to
components
– Framework services are CCA ports, just like on components
– Additional (non-standard) services can also be offered
– Components can register ports as services using the

ServiceProvider port

• Currently: specific frameworks are specialized for specific
computing models (parallel, distributed, etc.)

• Future: better integration and interoperability of frameworks

Common Component Architecture Tutorial

CCA
Common Component Architecture

37

Components Must Keep Frameworks Informed

• Components must tell the framework about the ports
they are providing and using
– Framework will not allow connections to ports it isn’t aware of

• Register them using methods on the component’s
gov.cca.Services object
– addProvidesPort() and removeProvidesPort()
– registerUsesPort() and unregisterUsesPort()
– All are defined in the CCA specification

• Ports are usually registered in the component’s
setServices() method
– Can also be added/removed dynamically during execution

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

38

CCA Concepts: Language Interoperability
• Scientific software is increasingly

diverse in use of programming
languages

• In a component environment,
users should not care what
language a component is
implemented in

• “Point-to-point” solutions to
language interoperability are not
suitable for a component
environment

• The Babel language
interoperability tool provides a
common solution for all
supported languages

• Scientific Interface Definition
Language provides language-
neutral way of expressing
interfaces

C

C++

f77

f90

Python

Java

C

C++

f77

f90/95

Python

Java

More on
Babel later!

Common Component Architecture Tutorial

CCA
Common Component Architecture

39

Coding in a CCA Environment

Port
Definitions

(SIDL)

Component
Definition (SIDL)

Component
source
code

Application
(component assembly)

CCA Framework

Compiled Components
(object libraries)

Babel compiler
(SIDL→language)

Language
compiler & linker

Generated
language code

Babel runtime library &
Chasm F90 array library

More details in the
Primary Tools module

Key:

Generated codeCCA Tools

Standard Tools Object libraries

User code

••••Supplementary material for handouts

CCA
Common Component Architecture

40

CCA Supports Parallelism -- by
“Staying Out of the Way” of it

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Each process loaded with the
same set of components wired
the same way

••••

Any parallel programming
environments that can be mixed
outside of CCA can be mixed inside

Common Component Architecture Tutorial

CCA
Common Component Architecture

41

• Simulation composed of multiple SCMD sub-tasks

• Usage Scenarios:
– Model coupling (e.g. Atmosphere/Ocean)
– General multi-physics applications
– Software licensing issues

• i.e. limited number of instances

• Approaches
– Run single parallel framework

• Driver component that partitions processes and builds rest of
application as appropriate (through BuilderService)

– Run multiple parallel frameworks
• Link through specialized communications components
• Link as components (through AbstractFramework service)

“Multiple-Component Multiple-Data”
Applications in CCA

OceanAtmosphere Land
Driver

Coupler

Processors

Supplementary material for handouts

CCA
Common Component Architecture

42

Components only on
process group B Group B

MCMD Within A Single Framework

Components on all
processes

Application driver & MCMD
support component

P0 P1 P2 P3

Framework

Components only on
process group A

Group A

See example in the Using CCA
module (multilevel parallelism
in quantum chemistry)

••••Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

43

“Direct Connection” Details

• Directly connected components are in the same
address space
– Data can be passed by reference instead of copying
– Just like “traditional” programs
– Framework involved in connecting components, but not

invocations on ports

• Cost of “CCAness” in a direct connect environment is
one level of indirection on calls between components
– Equivalent to a C++ virtual function call: lookup function

location, invoke it
– Overhead is on the invocation only (i.e. latency), not the total

execution time
– Cost equivalent of ~2.8 F77 or C function calls
– ~48 ns vs 17 ns on 500 MHz Pentium III Linux box

Supplementary material for handouts

CCA
Common Component Architecture

44

Maintaining HPC Performance
• The performance of your

application is as important to
us as it is to you

• The CCA is designed to provide maximum
performance
– But the best we can do is to make your code perform no

worse, unless we give easy access to new algorithms.

• Facts:
– Measured overheads per function call are low
– Most overheads easily amortized by doing enough work per

call
– Other changes made during componentization may also

have performance impacts
– Awareness of costs of abstraction and language

interoperability facilitates design for high performance

More about
performance in notes

Common Component Architecture Tutorial

CCA
Common Component Architecture

45

• Lois Curfman McInnes,et al. Parallel PDE-Based
Simulations Using the Common Component
Architecture. In Are Magnus Bruaset, Petter Bjorstad,
and Aslak Tveito, editors, Numerical Solution of PDEs
on Parallel Computers. Springer-Verlag, 2005. Invited
chapter, in press.

• S. Benson, et al. Using the GA and TAO Toolkits for
Solving Large-Scale Optimization Problems on
Parallel Computers. Technical report ANL/MCS-
P1084-0903, Argonne National Laboratory, September
2003.

• Boyana Norris, et al. Parallel Components for PDEs
and Optimization: Some Issues and Experiences.
Parallel Computing, 28:1811--1831, 2002.

• David E. Bernholdt, et al. A Component Architecture
for High-Performance Computing. In Proceedings of
the Workshop on Performance Optimization via High-
Level Languages and Libraries (POHLL-02), 2002.

Some Performance Results
and References

Maximum 0.2% overhead for CCA vs
native C++ code for parallel molecular
dynamics up to 170 CPUs

Aggregate time for linear solver
component in unconstrained minimization
problem w/ PETSc

Supplementary material for handouts

CCA
Common Component Architecture

46

Advanced CCA Concepts

• Leveraging the component environment to provide
additional capabilities to software developers

• The Proxy Component pattern (Hands-On, papers)

• Component lifecycle (tutorial notes, Hands-On)

• Components can be dynamic (papers)

• Improving the quality of component software (papers)

• Support for advanced parallel/high-performance
computing (papers)

Brief introductions only, but more
info is available – just ask us!

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

47

The Proxy Component Pattern
• A “proxy” component can be

inserted between the user and
provider of a port without either
being aware of it (non-invasive)

• Proxy can observe or act on all
invocations of the interface

• Similar to aspect-oriented
programming

• For many purposes, proxies can
be generated automatically from
SIDL definition of the port

Sample uses for proxy components:
• Performance: instrumentation of

method calls
• Debugging: execution tracing,

watching data values
• Testing: Capture/replay

Performance Monitoring with TAU

Component1

Component2Component1

Component2Proxy for
Component2

MasterMind
(database)

TAU
(measure-

ment)

Before:

After:

CCA
Common Component Architecture

48

Component Lifecycle

• Composition Phase (assembling application)
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase (running application)
– Code in components uses functions provided by another

component

• Decomposition Phase (termination of application)
– Connections between component interfaces may be broken
– Component may be destroyed

In an application, individual components may be in
different phases at different times

Steps may be under human or software control

Additional
material
in notes

Common Component Architecture Tutorial

CCA
Common Component Architecture

49

Component’s View of Instantiation
• Framework calls component’s

constructor
• Component initializes internal

data, etc.
– Knows nothing outside itself

• Framework calls component’s
setServices
– Passes setServices an object

representing everything “outside”
– setServices declares ports

component uses and provides
• Component still knows nothing

outside itself
– But Services object provides the

means of communication w/
framework

• Framework now knows how to
“decorate” component and how it
might connect with others

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

MonteCarloIntegrator

Integrator code

Framework interaction code
constructor setServices destructor

CCA.Services
provides IntegratorPort

uses FunctionPort,
RandomGeneratorPort

Supplementary material for handouts

CCA
Common Component Architecture

50

Component’s View
of Connection

• Framework puts info
about provider into user
component’s Services
object
– MonteCarloIntegrator’s

Services object is aware
of connection

– NonlinearFunction is not!

• MCI’s integrator code
cannot yet call functions
on FunctionPort

NonlinearFunction

Function code

CCA.Services
provides FunctionPort

Framework interaction code
MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

51

Component’s View of Using a Port

MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

• User calls getPort to obtain
(handle for) port from Services
– Finally user code can “see”

provider
• Cast port to expected type

– OO programming concept
– Insures type safety
– Helps enforce declared

interface
• Call methods on port

– e.g.
sum = sum + function->evaluate(x)

• Call releasePort

Supplementary material for handouts

CCA
Common Component Architecture

52

Dynamic Component Assemblies

• gov.cca.BuilderService allows programmatic
composition of components
– Components can be instantiated/destroyed, and

connected/disconnected under program control

Sample uses of BuilderService:
• Python “driver” script which can assemble and control

an application
– i.e. MCMD climate model

• Adaptation to changing conditions
– Swap components in and out to give better performance,

numerical accuracy, convergence rates, etc.
– TASCS project “Computational Quality of Service” activity

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

53

package vector version 1.0 {
class Utils { …

static double norm(in array<double> u,
in double tol,
in int badLevel)

require /* Preconditions */
not_null : u != null;
u_is_1d : dimen(u) == 1;
non_negative_tolerance : tol >= 0.0;

ensure /* Postconditions */
no_side_effects : is pure;
non_negative_result : result >= 0.0;
nearEqual(result, 0.0, tol)

iff isZero(u, tol);

… }
}

Enhancing Software Quality
• Current component architectures define syntax of
interfaces

• Extend interface to include semantics (behavior) for
more complete definition

–“Design by contract”
–Help ensure

component
performs correctly

–Help ensure
component
is used correctly

• Selective enforcement
to control impact

• TASCS project
“Software Quality and
Verification” activity

Supplementary material for handouts

CCA
Common Component Architecture

54

Supporting Emerging HPC Hardware
Environments

• CCA does not dictate a specific approach to parallelism
• Different approaches and tools can be provided via components and

custom frameworks
Examples…
• Uintah Computational Framework (Utah) provides a multi-threaded

parallel execution environment based on task graphs
– Specialized to certain structured adaptive mesh refinement problems

• TASCS developing services to manage groups of parallel
components/tasks (MCMD)

Also…
• TASCS developing support for heterogeneous processor environments

– FPGAs, GP-GPUs, accelerators, and other co-processors
– Accelerator code encapsulated as components, interacting w/ components

on primary processors
• Integration of fault tolerance capabilities with CCA under development

(CIFTS-TASCS collaboration)

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

55

Is CCA for You?
• Much of what CCA does can be done without such tools if

you have sufficient discipline
– The larger a group, the harder it becomes to impose the necessary

discipline
• Projects may use different aspects of the CCA

– CCA is not monolithic – use what you need
– Few projects use all features of the CCA… initially

• Evaluate what your project needs against CCA’s
capabilities
– Other groups’ criteria probably differ from yours
– CCA continues to evolve, so earlier evaluations may be out of date

• Evaluate CCA against other ways of obtaining the desired
capabilities

• Suggested starting point:
– CCA tutorial “hands-on” exercises

CCA
Common Component Architecture

56

Take an Evolutionary Approach

• The CCA is designed to allow selective use and
incremental adoption

• “SIDLize” interfaces incrementally
– Start with essential interfaces
– Remember, only externally exposed interfaces need to be

Babelized

• Componentize at successively finer granularities
– Start with whole application as one component

• Basic feel for components without “ripping apart” your app.
– Subdivide into finer-grain components as appropriate

• Code reuse opportunities
• Plans for code evolution

Common Component Architecture Tutorial

CCA
Common Component Architecture

57

View it as an Investment

• CCA is a long-term investment in your software
– Like most software engineering approaches

• There is a cost to adopt

• The payback is longer term

• Remember Biggerstaff’s Rule of Threes
– Look at three systems, requires three times the effort,

payback after third release

Supplementary material for handouts

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

58This work is licensed under a Creative Commons Attribution 2.5 License

The Primary Tools

Common Component Architecture Tutorial

CCA
Common Component Architecture

59

The tools

• Bocca – project environment
• Ccaffeine – framework
• SIDL – interoperability language
• Babel – HPC language binding generator
• CCA – specification for components,

frameworks

CCA
Common Component Architecture

60

Tools Module Overview

• CCA Development Environment

• Frameworks

• Language interoperability tools

Component A

Babel Chasm

CCA/Frameworks

Component B

CCA IDE

Common Component Architecture Tutorial

CCA
Common Component Architecture

61

Bocca Development Environment

• Provides a text-based, portable environment
– Create or import SIDL and CCA based codes.
– Automatic build system maintenance.
– Easy to adopt or abandon while preserving code, build.

• No GUI required.

• Still in the early beta stage of development
– Being tested by managing the tutorial source and a

regression test suite.
– Basis for common CCA toolkit installation.
– Manages components in all Babel-supported languages (C,

C++, Fortran, Java, Python).

CCA
Common Component Architecture

62

Bocca Creates Skeletons for CCA

• Including ports and interfaces
– Give the SIDL name and an empty port or interface is created.

• Including components and classes
– Give the name and an empty component or class is created.
– Some extra options: the component uses/provides ports,

implemented interfaces or extended classes
• Including build system

– For all ports/components in the project
– Implemented in any CCA supported language

• Create applications with Ccaffeine GUI (today)
• Including application composition (coming soon)

Common Component Architecture Tutorial

CCA
Common Component Architecture

63

Bocca Example
create an empty but buildable CCA skeleton
bocca create project myproj
cd myproj
./configure

bocca create port myJob
bocca create component myWorker –provides=myJob:job1

fill in public functionality
bocca edit port myJob

fill in implementation
bocca edit component –i myWorker

compile application
make

CCA
Common Component Architecture

64

Tools Module Overview

• CCA Interactive Development Environment

• Frameworks

• Language interoperability tools

Component A

Babel Chasm

CCA/Frameworks

Component B

CCA IDE

Common Component Architecture Tutorial

CCA
Common Component Architecture

65

Ccaffeine is a Direct-Connect,
Parallel-Friendly Framework

• Supports SIDL/Babel components
– Conforms to latest CCA specification (0.8)
– Also supports legacy CCA specification (0.5)

• Any C++ allowed with C and Fortran by C++ wrappers

• Provides command-line and GUI for composition
– Scripting supports batch mode for SPMD
– MPMD/SPMD custom drivers in any Babel language

Supported on Linux, AIX, OSX and is portable to modern UNIXes.Supported on Linux, AIX, OSX and is portable to modern UNIXes.

CCA
Common Component Architecture

66

Ccaffeine GUI
• Process

– User input is broadcast SPMD-wise from Java.
– Changes occur in GUI after the C++ framework replies.
– If your components are computing, GUI changes are blocked.

• Components interact through port connections
– provide ports implement class or subroutines
– use ports call methods or subroutines in the port.
– Links denote caller/callee relationship not data flow

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

“Provides” Port

“Uses” Port

OptionalOptional

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

67

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

User Connects Ports

• Can only connect uses &
provides
– Not uses/uses
– Not provides/provides

• Ports connected by type not
name
– Port names must be unique

within a component
– Types must match across

components
• Framework puts info about

provider of port into using
component’s Services object

CCA
Common Component Architecture

68

create Driver Driver
create LinearFunction LinearFunction
create MonteCarloIntegrator MonteCarloIntegrator

• Components are code + XML metadata
• Using metadata, a Palette of available components is constructed.
• Components are instantiated by user action (i.e. by dragging from

Palette into Arena).
• Framework calls

component’s constructor,
then setServices

Building an Application (1 of 2)

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

69

1. Click Configure port to
start parameter input
dialogue.

3. Click Go port to start
the application.

2. For each connection:
click a uses port
then click a provides port
to establish a connection.

Right-clicking a connection line breaks the connection -- enabling component substitution.Right-clicking a connection line breaks the connection -- enabling component substitution.

Building an Application (2 of 2)

Supplementary material for handouts

CCA
Common Component Architecture

70

Tools Module Overview

Component A

Babel Chasm

CCA/Frameworks

Component B

CCA IDE

• CCA Interactive Development Environment

• Frameworks

• Language interoperability tools

Common Component Architecture Tutorial

CCA
Common Component Architecture

71

SIDL Facilitates Scientific
Programming Language Interoperability
• Programming language-neutral interface descriptions
• Native support for basic scientific data types

– Complex numbers
– Multi-dimensional, multi-strided arrays

• Automatic object-oriented wrapper generation
• Usable standalone or in CCA environment

Supported on Linux, AIX, works on OSX, catamount;
C (ANSI C), C++ (GCC), F77 (g77, Sun f77), F90 (Intel, Lahey, GNU, Absoft, PGI), Java (1.4)

Supported on Linux, AIX, works on OSX, catamount;
C (ANSI C), C++ (GCC), F77 (g77, Sun f77), F90 (Intel, Lahey, GNU, Absoft, PGI), Java (1.4)

C

C++

f77

f90

Python

Java

vs.
C

C++

f77

f90

Python

Java

Babel

CCA
Common Component Architecture

72

Clients in any supported language can access
components in any other language

IOR = Intermediate Object Representation

Skeletons

Implementations

IORs

Component
(any supported language)

C
Stubs

C++
Stubs

F77
Stubs

F90
Stubs

Java
Stubs

Python
Stubs

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

73

The SIDL File that defines the
“greetings.English” type

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

package greetings version 1.0 {

interface Hello {

void setName(in string name);

string sayIt ();

}

class English implements-all Hello { }

}

CCA
Common Component Architecture

74

Handout Material: Code Notes

Packages contain user-defined types and are used to reduce
naming collisions. Packages can be nested.
Packages can be versioned. User defined types must be
nested inside a versioned package and gain the same version
number as the innermost versioned package
SIDL has a inheritance model similar to Java and Objective C.
Classes can inherit multiple interfaces, but at most one
implementation (other class).
An interface describes an API, but doesn’t name the
implementation.
Note that arguments have mode, type, and name. Mode can
be one of “in”, “out”, and “inout”. These SIDL modes have
slightly different semantics than Fortran90 “intents”.
This class generates English greetings. One could imagine a
strategy for internationalization that uses the Hello interface
everywhere, but loads in English, French, or whatever classes
based on user’s preference.

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

75

Working Code: “Hello World” in F90
Using a Babel Type

program helloclient

use greetings_English

use sidl_BaseInterface

implicit none

type(greetings_English_t) :: obj

type(sidl_BaseInterface_t):: exc

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj, exc)

call setName(obj, name, exc)

call sayIt(obj, msg, exc)

call deleteRef(obj, exc)
print *, msg

end program helloclient

program helloclient

use greetings_English

use sidl_BaseInterface

implicit none

type(greetings_English_t) :: obj

type(sidl_BaseInterface_t):: exc

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj, exc)

call setName(obj, name, exc)

call sayIt(obj, msg, exc)

call deleteRef(obj, exc)
print *, msg

end program helloclient

••

CCA
Common Component Architecture

76

Handout Material: Code Notes

Use statement for the greetings.English type
Use statement for the sidl.BaseInterface type
Obj is a F90 derived type we get from the using statement, note the
“_t” extension that prevents it from colliding with the using statement.
Exc is used to hold exceptions thrown by methods
In C/C++ examples, this variable would be initialized by a the
command-line variable “argv[1]”, but its trickier to do portably in F90
and too long, so I just initialize the name to “World”.
Obj is not yet initialized. The Babel idiom in F90 is to call new() to
initialize the Babel type. In other languages its _create(). NOTE:
good code would add error checking.
setName() puts data into the obj. It sets its state.
sayIt() returns the entire greeting including the aforementioned name.
deleteRef() is a subroutine that all Babel types inherit from a parent
class. All Babel objects are reference counted. When there are no
more outstanding references, the object is told to clean up after itself.

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

77

Working Code: “Hello World” in F90
Using a Babel Type

program helloclient

use greetings_English

use sidl_BaseInterface

implicit none

type(greetings_English_t) :: obj

type(sidl_BaseInterface_t):: exc

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj, exc)

call setName(obj, name, exc)

call sayIt(obj, msg, exc)

call deleteRef(obj, exc)
print *, msg

end program helloclient

program helloclient

use greetings_English

use sidl_BaseInterface

implicit none

type(greetings_English_t) :: obj

type(sidl_BaseInterface_t):: exc

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj, exc)

call setName(obj, name, exc)

call sayIt(obj, msg, exc)

call deleteRef(obj, exc)
print *, msg

end program helloclient

These subroutines
were specified in the
SIDL.

These subroutines
were specified in the
SIDL.

Other basic subroutines
are “built in” to all Babel
types.

Other basic subroutines
are “built in” to all Babel
types.

••

Looks like a native
F90 derived type
Looks like a native
F90 derived type

CCA
Common Component Architecture

78

program helloclient

use greetings_English

use sidl_BaseInterface

implicit none

type(greetings_English_t) :: obj

type(sidl_BaseInterface_t):: exc

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj, exc)

call setName(obj, name, exc)

call sayIt(obj, msg, exc)

call deleteRef(obj, exc)
print *, msg

end program helloclient

program helloclient

use greetings_English

use sidl_BaseInterface

implicit none

type(greetings_English_t) :: obj

type(sidl_BaseInterface_t):: exc

character (len=80) :: msg

character (len=20) :: name

name=’World’

call new(obj, exc)

call setName(obj, name, exc)

call sayIt(obj, msg, exc)

call deleteRef(obj, exc)
print *, msg

end program helloclient

Question: What language is “obj” really
implemented in?

••

Answer: Can’t Know!

With Babel, it could be C,
C++, Python, Java, Fortran77,
or Fortran90/95

In fact, it could change on
different runs without
recompiling this code!

Common Component Architecture Tutorial

CCA
Common Component Architecture

79

CCA uses Babel for high-performance
n-way language interoperabilty

Each one of these red lines, is
potentially a bridge between two
languages. No telling which
language your component will be
connected to when you write it.

CCA
Common Component Architecture

80

Implementation Details Must be Filled in
Between Splicer Blocks

string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

Common Component Architecture Tutorial

CCA
Common Component Architecture

81

CCA uses SIDL to specify APIs and Type
Hierarchy for Frameworks, Services,

Components, & Ports

• A CCA framework must
– implement gov.cca.AbstractFramework,
– provide a gov.cca.ports.BuilderService,
– etc.

• A CCA port must
– be a SIDL interface extending gov.cca.Port

• A CCA component must
– be a SIDL class implementing
gov.cca.Component

The CCA Specification is a SIDL file.

CCA
Common Component Architecture

82

How to write a
Babelized CCA Component (1/2)

1. Define “Ports” in SIDL
– CCA Port =

• a SIDL Interface
• extends gov.cca.Port

package functions version 1.0 {
interface Function extends gov.cca.Port {

double evaluate(in double x);
}

}

package functions version 1.0 {
interface Function extends gov.cca.Port {

double evaluate(in double x);
}

}

Common Component Architecture Tutorial

CCA
Common Component Architecture

83

How to write a
Babelized CCA Component (2/2)

2. Define “Components” that implement those Ports
– CCA Component =

• SIDL Class
• implements gov.cca.Component (and any provided ports)

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

84This work is licensed under a Creative Commons Attribution 2.5 License

Using bocca:
Approaches & Experience

Common Component Architecture Tutorial

CCA
Common Component Architecture

85

Components in the Small:
Impacts within a Project

Benefits include:
• Rapid testing, debugging, and benchmarking
• Wrapped legacy portions need not be reimplemented or

reverified
• Interface change effects across components are clear

and usually automatically found by compilers if
overlooked

• Object-orientation made simpler for C and Fortran
• Support for implementation-hiding discipline
• Coordination of independent workers while separating

concerns (scientific specialty, development style, etc.)
• Work of transient contributors remains as well-defined,

lasting components

CCA
Common Component Architecture

86

Components in the Large:
Connecting Multiple Projects

Benefits include:
• SIDL can be used to facilitate the interface consensus

processes
• Different sub-projects do not have to agree on one

implementation language
• Developers who never meet in person have an excellent

chance of code integration working on the first try
Costs include:
• Consensus can be expensive to obtain
• Writing code for others to use is more difficult than writing

it just for yourself

Common Component Architecture Tutorial

CCA
Common Component Architecture

87

Application Decomposition Strategies
• Conceptually decompose the

application into
– cutting-edge areas (less stable)

and
– areas that can employ existing

component-based libraries
(more stable)

• Decompose each area into
components for
– physics
– mathematics
– data management
as dictated by the application;

sketch a typical component
layout

• Many components will encapsulate
algorithmic logic only, with little or
no private data

• Most HPC applications will have a
central data abstraction that
provides data memory management
and parallel communication

• In a multilanguage application, all
I/O may need to be isolated into
components written in a single
common language (file based I/O
should not be affected)

• Component boundaries (and port
interfaces) may be set to isolate
proprietary code or difficult
contributors

CCA
Common Component Architecture

88

Interface Design: Technical Factors

• Do we make a single large port look like the underlying
library or divide functions into groups on separate ports?

• Should a function with many optional arguments be split
into several alternative functions with simpler usage?

• Do we make the ports more general than the existing code?

• Do we require the ports to work across languages?
Across networks?
– If not, gains in efficiency or coding ease might be had
– If so, memory management and I/O challenges may arise

Common Component Architecture Tutorial

CCA
Common Component Architecture

89

Interface Design: Social Factors
(Defining Ports to Wrap Existing Code)

• Will the port hide just one implementation, or will there
need to be plug compatibility with other implementations?
From other teams?

• Who defines the interface and maintains it?
1. Project dictator? (Fast…)
2. The owner of the legacy functionality? (Slow, if not you…)
3. A standards committee? (Really slow…)

• How many iterations of redefining the ports will the
customers tolerate?

CCA
Common Component Architecture

90

Implementation Issues in Wrapping

• Do we split large libraries into several components?
– Splitting is difficult to do if global variables or common blocks are

widely used.

• Do we expect more than one implementation instance of
a port in a single run-time?
– If not, interface contracts may include global side effects

• Do we integrate the wrapper code in the existing code’s
development and build processes?
– If not, how do we ensure build consistency and on-going

wrapper support?

• Code bases with large interfaces need automated
wrapping tools
– E.g., see Chasm info in the Tools module of the tutorial

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

91

Benefits of Wrapping Code Using CCA

• Setting a language-neutral interface definition (SIDL)
can greatly clarify design discussions

• Provides a chance to reorganize the interface and hide
globals

• Allows testing of alternate versions if doing performance
studies

• Allows easy “experimentation” with new algorithms

• Software discipline is enforced, not optional

• Implementation decisions (to split libraries, etc) can be
easily revised over time if interfaces remain constant
(possibly with the addition of new interfaces)

Supplementary material for handouts

CCA
Common Component Architecture

92

Interface Design for New Code
• Write SIDL for each connection (port) in the sketched

component layout

• If two ports must always be used together, consider
merging them

• Review SIDL drafts for near-duplication of ports

• Avoid creating interface contracts that require using
hidden global data

• Consider exporting tuning and/or configuration
parameter inputs as a port

• All the design issues from wrapping existing code
apply, also

• Interfaces will change.

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

93

Recommended Implementation Patterns

• Expect to decompose initial components further as work
progresses and requirements expand

• Build systems (i.e. make) should be kept as simple as
possible
– Keep a subdirectory for port definitions and any implementation-

independent glue code derived from the ports

– Keep each component (and any wrapped code) in its own
subdirectory

– Keep application-wide flags in a configure script or an include file
common to all components and ports

– Consistency is key. Extract build flags from cca-spec-babel-
config and if possible compile & link with babel-libtool

CCA
Common Component Architecture

94

• Computational Facility for Reacting Flow Science (CFRFS)
– http://cfrfs.ca.sandia.gov
– Funded via SciDAC initiative (PI: H. Najm)

• Focus: A toolkit to perform simulations
of lab-sized unsteady flames
– Solve the Navier-Stokes w/detailed chemistry
– Various mechanisms up to ~50 species,

300 reactions

• Consequently:
– Disparity of length scales :

• use structured adaptively refined meshes
– Disparity of time scales (transport versus chemistry) :

• use an operator-split construction and solve chemistry implicitly
• adaptive chemistry: use computational singular perturbation to find and follow low

dimensional chemical manifolds
J. Ray, S. Lefantzi, J. Lee, C. Kennedy, W. Ashurst, K. Smith, M. Liu, N. Trebon, J. Ortega, C.

Safta, S. Chandra, H. Johansson

Case Study: Combustion Modeling

Common Component Architecture Tutorial

CCA
Common Component Architecture

95

Why Use CCA in the CFRFS Toolkit?

• Separate clearly the physics models, numerical algorithms,
and the “CS” parts of the toolkit
– Strictly functional!

• Realize the separation in software

• Tame software complexity

• Separate contributions by transient contributors
– Form the bulk of the developers

• Create “chunks” of well-defined functionality that can be
developed by experts (usually numerical analysts and
combustion researchers)

CCA
Common Component Architecture

96

Design Principles of the Toolkit / 1

• Principal Aim: Reduce software complexity
– We can deal with the rest

• Functional decomposition into components
– “Data Object” and Mesh components

– (Large) set of numerical algorithmic components
(integrators, linear/nonlinear solvers, etc.)

– (Large) set of physical models components (gas-phase
combustion chemistry, thermodynamics, fluid dynamic
quantities, e.g. viscous stress tensor)

– Handful of adaptors

Common Component Architecture Tutorial

CCA
Common Component Architecture

97

Design Principles of the Toolkit / 2
• Decomposition reflected in the port design and

implementation
– Most re-implemented port is the one

that exchanges a rectangular
sub-domain’s data for processing
by components

• Sparse connectivity between components
– i.e., components communicate with a few others
– Large apps (component assemblies) are composed by

assembling smaller, largely independent sub-
assemblies

• Sub-assemblies usually deal with a certain physics
– Intuitive way to assemble a multiphysics code

CCA
Common Component Architecture

98

The Code Transport subassembly

Diffusion
coefficients

Chemistry
reaction
subassembly

Separate component subsystems for transport (black) and for
reaction (orange) in a reaction-diffusion code. They two are
coupled at a relatively high level.

Common Component Architecture Tutorial

CCA
Common Component Architecture

99

CFRFS Toolkit Status
• Started in 2001
• 100+ components today, all

peers, independent, mixed and
matched for combustion and
shock hydrodynamics

• 8 external libraries
• Contributors: 13 in all, including

3 summer students
• Only 3 of the 13 contributors

are at SNL today
A Fitzhugh-Nagumo equation being solved on a block-structured adaptively refined mesh. The top image illustrates
Runge phenomena at coarse-fine interfaces (dashed ovals) when using high-order schemes (6th order interpolations
with 4th order discretizations). Filtering them with an 8th order filter removes them (bottom).

CCA
Common Component Architecture

100

Has the Toolkit Approach Helped
Tame Software Complexity?

• How has the code evolved?
– How often have new ports been added?
– How many rewrites have been done?

• How large are the components?
• How many ports do they have?

– How large are the ports?

• How many ports exist?
– i.e., Is the design general enough to support many

implementations?

• What is the connectivity of components in
application codes?

Common Component Architecture Tutorial

CCA
Common Component Architecture

101

Scalability: Capability Growth
without Rewrites

• Port designs typically occur
in spurts followed by long
component development
times.

• Ports may have multiple
implementations; hence the
number of ports is typically
less than the number of
components.

• As the toolkit has matured,
the number of ports is seen
to be asymptoting to a slow
growth rate.

Components and ports created

0

10

20

30

40

50

60

70

Ja
n-

01

A
pr

-0
1

Ju
l-0

1

N
ov

-0
1

Fe
b-

02

M
ay

-0
2

S
ep

-0
2

D
ec

-0
2

M
ar

-0
3

Ju
n-

03

O
ct

-0
3

Ja
n-

04

A
pr

-0
4

A
ug

-0
4

N
ov

-0
4

Fe
b-

05
time

N
um

be
r

Components Ports

CCA
Common Component Architecture

102

Taming Complexity: Lines of Code

• Most components are < 1000
lines, i.e., they are easily
maintainable

• Components based on GrACE
(M. Parashar, Rutgers) and
Chombo (P. Colella, LBNL) are
the largest in size: parallel mesh
libraries with load-balancers

Common Component Architecture Tutorial

CCA
Common Component Architecture

103

Taming Complexity: Code Size

• Most components are < 250 kB
• The larger the binary, the more

complexity is being hidden in
underlying (externally
contributed) libraries

Supplementary material for handouts

CCA
Common Component Architecture

104

Taming Complexity: Interface Size

• A CCA port is a unit of task
exchange and generally also a unit
of thought

• In CFRFS code, this is typically in
the range of 5-10 functions

• Exception : SAMR mesh data port

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

105

Taming Complexity: Implementations

• CFRFS ports may
have just one or
many imple-
mentations, as
needed, but ...

• Most ports have 1
or 2 implementations

• High-utility ports
exist, e.g., for
exchanging a patch’s
worth of data

Supplementary material for handouts

CCA
Common Component Architecture

106

Taming Complexity: Callers

• Most CFRFS
ports are used
by only a few
clients, but …

• Key ports are
used by many
components

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

107

Scientific Productivity
• Conventional Measures (May 2008)

– 5 journal papers in CFD/Numerics
– 4 software-oriented journal papers, 1 book chapter
– Over 15 conference papers, including best paper

award
– Over 60 presentations
– 1 MS and 2 PhD theses
– 6 test applications
– See papers at: http://cfrfs.ca.sandia.gov

• Unconventional Measures
– Did the toolkit spawn new research in app-focused

CS (e.g., performance
evaluation/enhancement/modeling?)

– Can the design accommodate software which were
themselves designed to be frameworks and not
components ?

H2O2 chemical subspecies
profile and associated
AMR mesh

CCA
Common Component Architecture

108

Using CCA: Summary
• Review of guidelines for developing high-performance

scientific components (both new code and wrappers for
existing code)

• CCA is an enabling technology for scientific applications
– Has enabled mathematicians, chemists, combustion scientists, and computer

scientists to contribute new strategies that are shrink-wrapped for easy re-use
– Apart from science research, also spawned new research directions in CS
– Has enabled research scientists to investigate unconventional approaches, for

example multilevel parallelism and dynamic adaptivity

• For more info on the CCA applications/case studies, see:
– Chemistry: http://www.cca-forum.org/~cca-chem
– Combustion: http://cfrfs.ca.sandia.gov

• Different facets of CCA components may be useful within
different projects … What are your needs and priorities?

Common Component Architecture Tutorial

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

109This work is licensed under a Creative Commons Attribution 2.5 License

A Few Notes in Closing

CCA
Common Component Architecture

110

Resources: Its All Online
• Information about all CCA tutorials, past, present, and

future:
http://www.cca-forum.org/tutorials/

• Specifically…
– Latest versions of hands-on materials and code:

http://www.cca-forum.org/tutorials/#sources
• Hands-On designed for self-study as well as use in an organized tutorial
• Should work on most Linux distributions, less tested on other unixen
• Still evolving, so please contact us if you have questions or problems

– Archives of all tutorial presentations:
http://www.cca-forum.org/tutorials/archives/

• Questions…
help@cca-forum.org or cca-tutorial@cca-forum.org

Common Component Architecture Tutorial

CCA
Common Component Architecture

111

Getting Help
• We want to help insure you have a good experience

with CCA, so let us know if you’re having problems!
• Tutorial or “start-up” questions

– help@cca-forum.org or cca-tutorial@cca-forum.org

• Problems with specific tools
– check documentation for updated contact info
– cca-tools bundle (includes Chasm, Babel, Ccaffeine): Rob

Armstrong, cca-tools@cca-forum.org
– Bocca: bocca-dev@cca-forum.org
– Chasm: Matt Sottile matt@cs.oregon.edu
– Babel: babel-users@llnl.gov
– Ccaffeine: ccafe-users@cca-forum.org

• General questions, or not sure who to ask?
– help@cca-forum.org

CCA
Common Component Architecture

112

CCA is Interactive
• Collectively, CCA developers and users span a broad

range of scientific interests.
– There’s a good chance we can put you in touch with others

with relevant experience with CCA

• CCA Forum Quarterly Meetings
– Meet many CCA developers and users
– http://www.cca-forum.org/meetings/

• “Coding Camps”
– Bring together CCA users & developers for a concentrated

session of coding
– Held as needed, typically 3-5 days
– May focus on a particular theme, but generally open to all

interested participants
– If you’re interested in having one, speak up (to individuals or

cca-forum@cca-forum.org)

• Visits, Internships, etc.

Common Component Architecture Tutorial

CCA
Common Component Architecture

113

Acknowledgements:
Tutorial Working Group

• People: Benjamin A. Allan, Rob Armstrong, David E. Bernholdt,
Randy Bramley, Tamara L. Dahlgren, Lori Freitag Diachin, Tony
Drummond, Wael Elwasif, Tom Epperly, Madhusudhan
Govindaraju, Ragib Hasan, Jim Kohl, Gary Kumfert, Lois Curfman
McInnes, Alan Morris, Stefan Muszala, Boyana Norris, Craig
Rasmussen, Jaideep Ray, Sameer Shende

• Institutions: ANL, Binghamton U, Indiana U, JPL, LANL, LLNL,
NASA/Goddard, ORNL, SNL, U Illinois, U Oregon

• Computer facilities provided by the Computer Science
Department and University Information Technology Services of
Indiana University, supported in part by NSF grants CDA-9601632
and EIA-0202048

• Supported in part by the Scientific Discovery through Advanced
Computing (SciDAC) program of the U.S. Dept. of Energy Office
of Science, Office of Advanced Scientific Computing Research

Supplementary material for handouts

CCA
Common Component Architecture

114

Acknowledgements: The CCA
• Ames Lab – Masha Sosonkina, …
• ANL –Steve Benson, Jay Larson, Ray Loy, Lois Curfman McInnes,

Boyana Norris, Everest Ong, Jason Sarich…
• Binghamton University - Madhu Govindaraju, Michael Lewis, …
• Indiana University - Randall Bramley, Dennis Gannon, …
• Iowa State University - Theresa Windus, …
• LANL - Craig Rasmussen, …
• LLNL – Tammy Dahlgren, Lori Freitag Diachin, Tom Epperly, Scott

Kohn, Gary Kumfert, …
• Louisiana State University – Dan Katz, …
• NASA/Goddard – Shujia Zhou
• ORNL - David Bernholdt, Wael Elwasif, Jim Kohl, Torsten Wilde, …
• PNNL – Manoj Krishnan, Jarek Nieplocha, Bruce Palmer, …
• SNL - Rob Armstrong, Ben Allan, Lori Freitag Diachin, Curt

Janssen, Jaideep Ray, …
• Tech-X Corp. – Johan Carlsson, Svetlana Shasharina, Ovsei

Volberg, Nanbor Wang
• University of Oregon – Allen Malony, Sameer Shende, Matt

Sottile…
• University of Utah – Koasta Damevski, Steve Parker, …
and many more… without whom we wouldn’t have much to talk about!

Supplementary material for handouts

Common Component Architecture Tutorial

CCA
Common Component Architecture

115

Thank You!

Thanks for attending this tutorial

We welcome feedback and questions

