
A Hands-On Guide to the Common Component
Architecture

Common Component Architecture Forum Tutorial Working Group

Version: 0.7.1

A Hands-On Guide to the Common Component Architecture
Common Component Architecture Forum Tutorial Working Group
Version: 0.7.1

Copyright c© 2010 Common Component Architecture Forum

Licensing Information
This document is distributed under the Creative Commons Attribution 2.5 License. See http://
creativecommons.org/licenses/by/2.5/legalcode for the complete license agree-
ment.
In summary, you are free:

• to copy, distribute, display, and perform the work.

• to make derivative works

• to make commercial use of the work

Under the following conditions:

• Attribution. You must attribute the work in the manner specified by the author or licensor.

• For any reuse or distribution, you must make clear to others the license terms of this work.

• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Requested Attribution
Common Component Architecture Forum Tutorial Working Group, A Hands-On Guide
to the Common Component Architecture, version 0.7.1, http://www.cca-forum.org/tutorials/.

Or in BIBTEX format:

@Manual{cca-tutorial:0.7.1,
title = {A Hands-On Guide to the Common Component Architecture},
author = {Common Component Architecture Forum Tutorial Working Group},
edition = {0.7.1},
year = 2010,
URL = {http://www.cca-forum.org/tutorials/}

}

http://creativecommons.org/licenses/by/2.5/legalcode
http://creativecommons.org/licenses/by/2.5/legalcode

Contents

Preface vii

1 Introduction 1
1.1 The CCA Software Environment . 2
1.2 Where to Go from Here . 2

1.2.1 For Self-Study Users . 3
1.2.2 For Organized Tutorial Participants . 3

2 Assembling and Running a CCA Application 5
2.1 Using the GUI Front-End to Ccaffeine . 6

2.1.1 Running the GUI Locally (GUI host and Ccaffeine host are Iden-
tical) . 7

2.1.2 Running the GUI Remotely (GUI host and Ccaffeine host are
Distinct) . 7

2.1.3 Assembling and Running an Application Using the GUI 9
2.2 Running Ccaffeine Using an rc File . 16
2.3 Notes on More Advanced Usage of the GUI . 23

3 Using Bocca : A Project Manager for SIDL or CCA 25
3.1 Creating a Bocca Project . 25
3.2 Creating Ports and Components . 27

3.2.1 Creating the Integrator and Function Components 29
3.3 How to Edit and Find Files in Bocca Projects . 31
3.4 Adding Methods to Ports . 33
3.5 Language-Specific Function, Integrator, and Driver Code 36

3.5.1 C++ Implementation . 36
3.5.2 Fortran9X Implementation . 46
3.5.3 C Implementation . 59
3.5.4 Python Implementation . 69
3.5.5 Java Implementation . 78

3.6 Automated Testing of Assemblies . 87
3.6.1 Creating a Portable Test . 87
3.6.2 Enabling Memory Testing with Valgrind 88

iii

iv CONTENTS

4 A Simple PDE Toolkit 89
4.1 Introduction . 89
4.2 A Problem and its Decomposition . 90
4.3 Components and Assemblies . 91
4.4 Tests . 93
4.5 Exercises . 96

4.5.1 Changing the Initial Conditions . 97
4.5.2 Modifying the Reaction Physics . 98

4.6 Conclusions . 99

5 Using TAU to Monitor the Performance of Components 101
5.1 Creating the Proxy Component . 101
5.2 Using the Proxy Generator . 103
5.3 Using the Proxy Component . 104

6 Understanding Arrays and Component State 107
6.1 Introduction . 107
6.2 The CDriver Component . 109

6.2.1 Using SIDL Raw Arrays . 109
6.2.2 Using SIDL Normal Arrays . 110

6.3 Linear Array Operations Components . 111
6.3.1 The CArrayOp Component . 111
6.3.2 The F77ArrayOp Component . 112
6.3.3 The F90ArrayOp Component . 114

6.4 Assignment: NonLinearOp Component and Driver 115

A What is a Region in the Mesh 119

B Ccaffeine Script File for PDE Example 1 121

C Details of the Mesh and the FieldVar Classes 123
C.1 Codes . 125
C.2 An Example . 127

D Remote Access for the CCA Environment 129
D.1 Commandline Access . 129
D.2 Graphical Access using X11 . 129

D.2.1 OpenSSH . 130
D.2.2 PuTTY . 130

D.3 Tunneling other Connections through SSH . 130
D.4 Tunneling with OpenSSH . 130
D.5 Tunneling with PuTTY . 131

CONTENTS v

E Building the CCA Tools and TAU and Setting Up Your Environment 133
E.1 The CCA Tools . 134

E.1.1 System Requirements . 134
E.2 Downloading and Building the CCA Tools Package 135

E.2.1 Local System Requirements . 136
E.3 Downloading and Installing TAU . 136
E.4 Setting Up Your Login Environment . 137

F Building the Tutorial Code Tree 139

vi CONTENTS

Preface

The Common Component Architecture (CCA) is an environment for component-based software
engineering (CBSE) specifically designed to meet the needs of high-performance scientific com-
puting. It has been developed by members of the Common Component Architecture Forum
[http://www.cca-forum.org].

This document is intended to guide the reader through a series of increasingly complex tasks
starting from composing and running a simple scientific application using pre-installed CCA com-
ponents and tools, to writing (simple) components of your own. It was originally designed and
used to guide the ‘hands-on’ portion of the CCA tutorial, but we hope that it will be useful for
self-study as well.

We assume that you’ve had an introduction to the terminology and concepts of CBSE and the
CCA in particular. If not, we recommend you peruse a recent version of the CCA tutorial presen-
tations [http://www.cca-forum.org/tutorials/] before undertaking to complete the
tasks in this Guide.

Help us Improve this Guide
If you find errors in this document, or have trouble understanding any portion of it, please let us
know so that we can improve the next release. Email us at cca-tutorial@cca-forum.org [mailto:
cca-tutorial@cca-forum.org] with your comments and questions.

Finding the Latest Version of the CCA Hands-On Exercises
The hands-on exercises and this Guide are evolving and improving. We will maintain links to
the current releases of this Guide, the tutorial code, and accompanying tools at http://www.cca-
forum.org/tutorials/#sources [http://www.cca-forum.org/tutorials/#sources]. If
you want older versions or intermediate ”release candidates”, follow the links there to the parent
download directories to see the full list of available files.

Typographic Conventions
• This style is used for file and directory names.

• $ This style
is used for user-issued shell commands.

• This style is used for code the user is expected to enter.

vii

http://www.cca-forum.org
http://www.cca-forum.org/tutorials/
mailto:cca-tutorial@cca-forum.org
mailto:cca-tutorial@cca-forum.org
http://www.cca-forum.org/tutorials/#sources

viii CONTENTS

• This font is used for ‘replaceable’ text or variables. Replaceable text is text that de-
scribes something you’re supposed to type, like a filename, in which the word ‘filename’
is a placeholder for the actual filename.

• The following fonts are used to denote various programming constructs: class names
(CCA ‘components’), interface names (CCA ‘ports’), and method names. Also
variable names and environment variables are marked up with special fonts.

• URLs are presented in square brackets after the name of the resource they describe in the
print version of this Guide [http://www.cca-forum.org/tutorials/#sources].

• Sometime we must break lines in computer output or program listings to fit the line widths
available. In these cases, the break will be marked by a ‘\’ character. In real computer
output, you see a long continuous line rather than a broken one. For program listings, unless
otherwise indicated, you can join up the broken lines. In shell commands, you can use the
‘\’ and break the input over multiple lines.

File and Directory Naming Conventions
Throughout this Guide, we refer to various files and directories, the precise location of which
depends on how and where things were built and installed. All such references will be based on
a few key directory locations, which will be determined when you build and install the software
(Appendix E and Appendix F). Wherever appropriate, we will write these as environment variables,
so that the text in the Guide can simply be pasted into your shell session (assuming your login
environment is setup as suggested in Section E.4).

Warning
Note that tools such as the Ccaffeine framework do not expand environment
variables. In these cases, you’ll need to type in the complete path, substituting
the placeholder (i.e., “TUTORIAL SRC”) with the actual path.

If you’re participating in an organized tutorial, you will be given information separately about
the particular paths corresponding to these locations.

CCA TOOLS ROOT ($CCA TOOLS ROOT) The installation location of the CCA tools. (See Sec-
tion E.1.)

TAU ROOT ($TAU ROOT) The installation location of the TAU Portable Profiling package. (See
Section E.3.)

TAU CMPT ROOT ($TAU CMPT ROOT) The installation location of the TAU performance com-
ponent. (See Section E.3.)

TUTORIAL SRC ($TUTORIAL SRC) The top of the tree where the “ODE” part of the tutorial
code has been built. (See Appendix F.) In an organized tutorial, this is likely to a central
location shared by all students, which may not be modified.

http://www.cca-forum.org/tutorials/#sources

CONTENTS ix

STUDENT SRC ($STUDENT SRC) The top of the student’s private copy of the ODE code tree. If
you’re doing this tutorial on your own, STUDENT SRC can be the same as TUTORIAL SRC,
but if you part of an organized tutorial, the STUDENT SRC tree is the one you can modify
and rebuild.

PDE SRC ($PDE SRC) The location containing the PDE example code tree. (See Appendix F.)
In an organized tutorial, this is likely to a central location shared by all students, which may
not be modified.

PDE STUDENT SRC ($PDE STUDENT SRC) The student’s private copy of the PDE code tree,
analagous to STUDENT SRC.

WORKDIR ($WORKDIR) This is the location of a working directory, in which you can carry out
all of the exercises in this Guide. The basic requirements are that you have write access
and sufficient disk space for the work (perhaps 100 MB), and if you’re working through
the tutorial independently, you can usually choose the WORKDIR based on your knowledge
of the system you’re using. If you’re part of an organized tutorial, you will be assigned a
WORKDIR.

Warning
If you’re part of an organized tutorial please be careful to use the WORKDIR
you are assigned! Often there are special considerations in such an environ-
ment, which might not be obvious to you as a participant. For example, it
is fairly common for all cluster nodes to mount user home directories from a
single NFS file server. An entire class of students working on I/O-intensive
activities (like building the tutorial code) at the same time has been known
to kill servers from time to time. So frequently, you will be asked to use
directories local to your assigned cluster node.

Acknowledgments
There are quite a few people active in the Tutorial Working Group who have contributed to the
general development of the CCA tutorial and this Guide in particular:

People Benjamin A. Allan, Rob Armstrong, David E. Bernholdt (chair), Randy Bramley, Tamara
L. Dahlgren, Lori Freitag Diachin, Wael Elwasif, Tom Epperly, Madhusudhan Govindaraju,
Ragib Hasan, Dan Katz, Jim Kohl, Gary Kumfert, Lois Curfman McInnes, Alan Morris,
Boyana Norris, Craig Rasmussen, Jaideep Ray, Sameer Shende, Torsten Wilde, Shujia Zhou

Institutions Argonne National Laboratory, Binghamton University - State University of New
York, Indiana University, Jet Propulsion Laboratory, Los Alamos National Laboratory, Lawrence
Livermore National Laboratory, NASA/Goddard, University of Illinois, Oak Ridge National
Laboratory, Sandia National Laboratories, University of Oregon

Finally, we must acknowledge the efforts of the numerous additional people who have worked
very hard to make the Common Component Architecture what it is today. Without them, we
wouldn’t have anything to present tutorials about!

x CONTENTS

Chapter 1

Introduction

In this Guide, we will take you step by step through a series of hands-on tasks with CCA com-
ponents in the CCA software environment. The initial set of exercises are based on an example
that’s intentionally chosen to be very simple from a scientific viewpoint, numerical integration in
one dimension, so that we can focus on the issues of the component environment. It may look like
overkill to have broken down such a simple task into multiple components, but once you have a ba-
sic understanding of how to use and create components, you should be able to extend the concepts
to components that are scientifically interesting to you and far more complex.

The exercises are laid out as follows:

• In Chapter 2, you will use pre-built components to assemble and run several different nu-
merical integration applications.

• In Chapter 3, you will construct your own components for the numerical integration example,
using the bocca tool.

• In Chapter 5, you will use the TAU performance observation tool [http://www.cs.
uoregon.edu/research/paracomp/tau/tautools/] to automatically instrument
a component interface and monitor the performance of the application.

• In Chapter 6, you will see examples of how to work with arrays in a multi-language environ-
ment, including writing your own component. (Languages: F77, F90, C)

You are strongly advised to at least read and understand Chapter 2 before going on to later
exercises. You’ll need to use the techniques of Chapter 2 to test the components you write later.

In Chapter 2, you’ll be working with a complete version, pre-built of the tutorial code tree.
Then in Chapter 3 you’ll start from scratch to create components on your own, replicating those in
Chapter 2. In this way, the separate complete tutorial code tree can always serve as a reference if
you run into problems. Of course if you’re working through this Guide as part of an organized tuto-
rial, there should be instructors around who can help you. And if you’re working on your own, you
can email us for help at cca-tutorial@cca-forum.org [mailto:cca-tutorial@cca-forum.
org].

1

http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
mailto:cca-tutorial@cca-forum.org
mailto:cca-tutorial@cca-forum.org

2 CHAPTER 1. INTRODUCTION

Tip
Some of these exercises can involve a fair amount of typing. You
may find it convenient to use the online HTML version of this
Guide (at http://www.cca-forum.org/tutorials/#sources [http://www.
cca-forum.org/tutorials/#sources]) to cut and paste the nec-
essary inputs. Note, however, that not everything can be cut-and-pasted di-
rectly. Take particular care with lines that had to be broken for purposes of
documentation, and for placeholder values such as “TUTORIAL SRC”.

1.1 The CCA Software Environment
The CCA is, at its heart, just a specification. There are several realizations of the CCA as a software
environment. In this Guide, we use the following tools to provide that software environment, which
are currently the most widely used for high-performance (as opposed to distributed) computing
using the CCA:

Babel A tool for language interoperability. It allows components written in different languages
to be connected together. The Scientific Interface Definition Language (SIDL) is defined
by Babel. For more information, see the Babel page [http://www.llnl.gov/CASC/
components/babel.html]. Babel uses Chasm for Fortran 90 array support. For more
information, see the Chasm repository [http://chasm-interop.sourceforge.
net].

Bocca A tool for generating and manipulating projects using CCA components or other SIDL
based code. Bocca is designed to simplify the tedious and mechanical aspects of CCA and
Babel. Before bocca, this Guide was a lot longer because we had to take you step by step
through writing all of this ”boilerplate” code for yourself.

Ccaffeine A CCA framework which emphasizes local and parallel high-performance computing,
and the most common CCA framework in real applications. For more information, see the
Ccaffeine page [http://www.cca-forum.org/ccafe/].

Many of the commands you will type are specific to the fact that you’re using these tools as your
CCA software environment. But the components you will use and create are independent of the
particular tools being used.

1.2 Where to Go from Here
Before starting the exercises, you’ll need to do a little bit of work to set things up. Depending
on whether you’re working through the Guide on your own (see Section 1.2.1) or participating in
an organized tutorial (see Section 1.2.2), this may include getting logged in to a remote system,
preparing the CCA environment, and building the tutorial code. Once you’ve setup everything as
outlined below, you should be ready to proceed to Chapter 2.

http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources
http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/components/babel.html
http://chasm-interop.sourceforge.net
http://chasm-interop.sourceforge.net
http://www.cca-forum.org/ccafe/

1.2. WHERE TO GO FROM HERE 3

1.2.1 For Self-Study Users
Getting Connected: If you’re working through the Guide on your own, you may choose to work

locally or remotely, depending on the resources you have available. If you’re working re-
motely, you may want to refer to the notes on using the CCA tools remotely in Appendix
D.

Preparing the CCA Environment: In this case, you will need to download and install the CCA
tools (Ccaffeine , Babel , and Bocca) and configure your login environment to use them,
following the instructions in Appendix E.

Building the Tutorial Code: You’ll also need to download and build the tutorial code tree fol-
lowing the instructions in Appendix F.

1.2.2 For Organized Tutorial Participants
If you’re participating in an organized tutorial, most of the preparatory work will have been done in
advance by the tutorial instructors. Usually, they will provide you with a separate set of instructions
tailored to the arrangements for the particular tutorial you’re attending.

Getting Connected: Look to the separate handout or the tutorial instructors for details of your
account, your machine assignment, etc. Appendix D should give you sufficient information
to get logged in to the remote machine. If you have any problems, ask the tutorial instructors.

Preparing the CCA Environment: In this case, the CCA tools (Ccaffeine , Babel , and Bocca
) will already have been built in a common area. The handout or tutorial instructors will
provide you with the procedures you might need to follow to setup your environment (the
PATH and other environment variables). Some general notes can be found in Section E.4.

Building the Tutorial Code: Once again, the tutorial code will already have been built in a central
location, and the details will be noted on the handout.

Tip
In some of the later exercises (starting with Section 4), you will need to build
your own copy of (parts of) the tutorial code tree so that you can modify them.
Depending on your hardware environment, this may be pretty time consum-
ing. If you’re pressed for time you may want to go ahead and start building
your own copy of the PDE and then ODE portions of the tutorial code tree
before starting the first exercise. Follow the instructions in Appendix F, and
you probably want to launch the build in a separate window. The tutorial in-
structors should be able to tell you whether this “pre-build” step is necessary.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Assembling and Running a CCA
Application

In this exercise, you will work with pre-built components from the integrator example to compose
several CCA-based applications and execute them. The integrator application is a simple example,
designed to illustrate the basics of creating, building, and running component-based applications
without scientific complexities a more realistic application would also present. The purpose of this
application is to numerically integrate a one-dimensional function. Several different integrators and
functions are available, in the form of components. A “driver” component controls the calculation,
and for the Monte Carlo integrator, a random number generator is also required. The specific
components available are shown in Table 2.1.

The Ccaffeine framework provide three different ways for users to interact with it in order
to assemble and run CCA applications. You can type commands in yourself at the framework’s
prompt, execute a script containing those same commands, or use a graphical user interface.1 The
graphical approach is the easiest for most people to get a feel for how components work, so we
will start with that (Section 2.1) and later discuss how actions in the GUI map onto instructions in
a script (see Section 2.2).

In practice, most users set the GUI interface aside after they become more comfortable with the
CCA environment in favor of the scripting approach. That’s especially true once they’ve developed
a bunch of components and want to run simulations with them in batch jobs, where GUIs tend not
to be so convenient. Of course it is entirely up to you which approach you use in the long run.

1It is also possible to control the assembly and execution of a CCA application entirely from within a program
using the BuilderService interface, a standard part of the CCA specification implemented by all CCA-compliant
frameworks, including Ccaffeine . This approach is not interactive (unless of course your program makes it so), and is
considered advanced CCA usage.

5

6 CHAPTER 2. ASSEMBLING AND RUNNING A CCA APPLICATION

Table 2.1: Integrator Application Components (details may vary depending on the languages your
CCA tools installation is configured for).
Components Notes
Drivers

Identical functionality, illustrating
components in different languages.

drivers.CXXDriver
drivers.F90Driver
drivers.PYDriver

Integrators Various integration algorithms
integrators.Boole
integrators.MonteCarlo
integrators.Midpoint
integrators.Simpson
integrators.Simpson38
integrators.Trapezoid

Functions
functions.CosFunction cos(x); integrates to sin(1) ≈ 0.841
functions.CubeFunction x3; integrates to 0.25
functions.LinearFunction x; integrates to 0.5
functions.PiFunction 4

1+x2 ; integrates to π
functions.QuinticFunction x5 − 4x4; integrates to 1

6
− 4

5
≈ −0.633

functions.SquareFunction x2; integrates to 1
3

Random Number Generators
randomgens.RandNumGenerator Required for Monte Carlo integration

2.1 Using the GUI Front-End to Ccaffeine

Note
At this point, you will start using the tutorial-src code tree. If you’re
doing this tutorial as a self-study exercise, you’ll need to make sure it has been
built according to the instructions in Appendix F. For organized tutorials, this
is generally done in advance by the tutorial instructors.

There is a graphical front-end for Ccaffeine (known as Ccaffeine GUI , or “the GUI” which
provides a fairly simple visual programming metaphor for the assembly of applications using CCA
components. In this exercise, we’ll use the Ccaffeine GUI to assemble and run several different
“applications” using the components already available in the tutorial-src tree.

Ccaffeine and its GUI are run as two separate processes, possibly on two different machines.
Depending on the specific circumstances, there are a variety of ways to invoke the GUI and the
Ccaffeine framework. Bocca generates two helper scripts in the project’s utils subdirectory,
which will serve most purposes. Which to use depends on whether the graphical display you’re us-
ing (the “GUI host ”) is directly attached to the machine on which you’re running the framework
(the “Ccaffeine host ”), or whether they’re separated by a network link.

2.1. USING THE GUI FRONT-END TO CCAFFEINE 7

2.1.1 Running the GUI Locally (GUI host and Ccaffeine host are
Identical)

When you’re working on a display that is directly attached to the Ccaffeine host , the Bocca
-generated utils/run-gui.sh script is the simplest one to use. It requires no arguments,
launches both Ccaffeine and the GUI, and automatically initializes the framework with a palette
consisting of all of the components in the Bocca project.

Tip
Always make sure you’re using the run-gui.sh script generated for
the particular project you’re working on because they’ll be initialized
with different sets of components. In this chapter, the command is
$TUTORIAL SRC/utils/run-gui.sh, but in later exercises it will be
different!

2.1.2 Running the GUI Remotely (GUI host and Ccaffeine host are
Distinct)

There are two different mechanisms to run the GUI remotely:

Using X11 on GUI host : If you have an X11 server on GUI host , you can use the run-gui.sh
command on Ccaffeine host and let X11 take care of the graphics. However many
users find the performance unacceptable using this approach, especially over slower network
connections. In that case, try the method below.

Using a socket connection: In this case, you run the GUI locally on GUI host (it is a Java
application, and works on Linux/unix, Mac, and Windows platforms) and connect to the
remote framework on Ccaffeine host over a TCP/IP socket.

Tip
Connections between the GUI and the framework can be tunneled through an
ssh connection. This may help in cases where firewalls or other network se-
tups that prevent direct point to point connections (i.e. cluster compute nodes
accessible only through the head node). See Appendix D and in particular
Section D.3.

Note
This procedure requires that you have GUI on your GUI host . This in-
cludes the simple-gui.sh (on Windows, simple-gui.bat) script and
the ccafe-gui.jar file. In a normal build of the CCA tools, you can find
these files in the $CCA TOOLS ROOT/lib directory. If you’re participating
ain an organized tutorial, they also have been made available on a web site or
other more convenient location. No special installation procedure is required,
but the script and the jar file do need to be in the same directory.

8 CHAPTER 2. ASSEMBLING AND RUNNING A CCA APPLICATION

On Ccaffeine host : First, launch the framework, using the Bocca -generated utility
script for your project, telling it what port to listen on for the connection from the
GUI: utils/bocca-gui-backend.sh --port port num. The script auto-
matically initializes the framework with a palette consisting of all of the components
in the Bocca project.
The port number must be in the range 1025–65535, and cannot be in use by another
application on the host (if it is, you will get an error message; simply try another port).
You must use the same port number for the framework and the GUI. In organized tuto-
rials, you may be assigned a port to help reduce the chances of collisions. If so, please
use it!

Tip
Always make sure you’re using the bocca-gui-backend.sh script gen-
erated for the particular project you’re working on because they’ll be ini-
tialized with different sets of components. In this chapter, the command is
$TUTORIAL SRC/utils/bocca-gui-backend.sh, but in later exer-
cises it will be different!

On GUI host : Start the GUI locally by executing the simple-gui.sh (on Windows,
simple-gui.bat) script, specify both the host and port the framework is listening
on: simple-gui.sh --port port num --host Ccaffeine host.

Tip
If you invoke the simple-gui.sh (simple-gui.bat) script without ar-
guments, the GUI will pop up a dialog box asking you to specify the host-
name and port number to connect to. Filling in these dialogs quickly gets
tedious, so you’re better off using the command line. (In Windows, launch
a Command Prompt window, and change directories to wherever you put
simple-gui.bat and the GUI jar file.) In both Windows and most Lin-
ux/unix shells, you can simply use the ↑ (up-arrow) key to recall the previous
command to be executed again.

Tip
We have on occasion observed problems with the Ccaffeine GUI interface
hanging (most often while populating the palette as the GUI starts up). We
think this is due to a subtle race condition in the GUI, which we haven’t yet
been able to isolate. The best advice seems to be to kill both the framework
and GUI and try launching them again.

Other Ways to Launch the GUI and Ccaffeine (OPTIONAL READING)
As your usage of the CCA becomes more sophisticated, you’re likely to encounter situations where
the Bocca -generated helper scripts don’t do exactly what you want. For example, you may need

2.1. USING THE GUI FRONT-END TO CCAFFEINE 9

to use a different rc file to initialize the framework. Is is therefore worth mentioning a couple of
the underlying tools, which are part of the CCA tools distribution:

gui-backend.sh This command underlies utils/bocca-gui-backend.sh. The dif-
ference is that gui-backend.sh requires an additional argument to specify the rc file to
initialize the framework, --ccafe-rc rc file.

gui.sh This command is equivalent to simple-gui.sh, but can be used on a machine with
the CCA tools installed without needing to worry about where the GUI’s jar file is.

2.1.3 Assembling and Running an Application Using the GUI
For the purposes of this exercise, we will assume that you are working in and environment in
which GUI host and Ccaffeine host are separate machines. If they are the same, you can
use $TUTORIAL SRC/utils/run-gui.sh as described in Section 2.1.1 instead of the first
two steps, below.

1. Run $TUTORIAL SRC/utils/bocca-gui-backend.sh --port port num on
the Ccaffeine host using the appropriate port.

In the Ccaffeine host terminal window, you will see something like:

my rank: -1, my pid: 9625
Type: Server

2. Run simple-gui.sh --port port num --host backend host (on Windows,
simple-gui.bat) on the GUI host .

Once the GUI connects to Ccaffeine , Ccaffeine begins running the rc file it was invoked
with. In the GUI host terminal window, you first see some startup messages from the
GUI itself, followed by a series of messages as Ccaffeine processes the rc file and the GUI
displays the results. These are debugging messages and can largely be ignored.

In the Ccaffeine host terminal, you should see some additional messages as Ccaffeine
processes the rc file, like:

CCAFFEINE configured with spec (0.8.2) and babel (1.0.4).

CCAFFEINE configured with classic (0.5.7).

CCAFFEINE configured without neo and neo components.
CmdLineClient parsing ...

CmdContextCCA::initRC: Found components/tests/test_gui_rc.
There are allegedly 11 classes in the component path

Finally, in the GUI host window, you should see some output associated with the GUI’s
initialization process, and the GUI itself should have appeared on your display, looking
something Figure 2.1.

Tip
The default layout has the palette area fairly narrow. You can click-and-drag
on the bar separating the palette and the arena to adjust the width.

10 CHAPTER 2. ASSEMBLING AND RUNNING A CCA APPLICATION

Figure 2.1: GUI with components in palette and empty arena (Step 2).

Note
You may see additional components in your palette , as we try to expand the
variety of examples we provide in the tutorial-src .

As mentioned above, the test gui rc sets up the path and loads the framework’s palette
with a set of available components. rc files are explained in detail in Section 2.2.

3. We will begin by instantiating a drivers.CXXDriver component. Click-and-drag the
component you want from the palette to the arena . When you release the mouse button
in the arena , a dialog box will pop up prompting you to name this instance of the compo-
nent. The default will be the last part of the component’s class name (i.e. CXXDriver for
drivers.CXXDriver) with a numerical suffix to insure the name is unique. The suffix
starts at 0 and simply counts up according to the number of instances of that component
you’ve created in that session. You can, of course, enter any instance name you like, as long
as it is unique across all components in the arena , but for simplicity, we will always accept
the default value in this Guide.

4. For the first application, follow the same procedure to instantiate:

• drivers.CXXDriver ,

• functions.PiFunction ,

• integrators.MonteCarlo ,

• randomgens.RandNumGenerator ,

(you may notice some debugging messages in the GUI host terminal window as you do
this), and your GUI should look something like Figure 2.2.

2.1. USING THE GUI FRONT-END TO CCAFFEINE 11

Figure 2.2: GUI with several components instantiated in arena (Step 4).

Tip
You can drag components around the arena to arrange them as suits you – just
click on the black area of the component and drag it to the new location. The
positions have no bearing on the operation of the GUI or your application.

5. The next step is to begin making connections between the ports of your components. Click-
and-release CXXDriver0 ’s integrate uses port, then click-and-release MonteCarlo0
’s integrate provides port and a red line should be drawn between the two (Figure 2.3).

Tip
If you hover the cursor over a particular port on a component, a “tool tip”
box will pop up with the port’s name and type based on the arguments to the
addProvidesPort or registerUsesPort calls in the component’s
setServices method. This can be useful for double checking to make
sure you’re connecting matching ports.
Also notice that when you hover over a particular port (either uses or pro-
vides), matching ports of the opposite type (either provides or uses) will be
highlighted.

Note
You can move components around even after their ports are connected – the
connections will automatically rearrange. There is no harm in connections
crossing each other, nor in connections passing behind other components
(though of course they may make it harder to interpret the “wiring diagram”
correctly).

12 CHAPTER 2. ASSEMBLING AND RUNNING A CCA APPLICATION

Figure 2.3: Driver’s integrator port connected to integrator’s integrator port (Step 5).

6. Complete the first application by making the following connections:

• CXXDriver0 ’s integrate to MonteCarlo0 ’s integrate

• MonteCarlo0 ’s function to PiFunction0 ’s function

• MonteCarlo0 ’s RandomGeneratorPort to RandNumGenerator0 ’s
RandomGeneratorPort .

At this point, your GUI should look something like Figure 2.4.

7. The application is now fully assembled and is ready to run. If you click-and-release the go
button on the CXXDriver0 component, you should see the result appear in the Ccaffeine
host terminal, “Value = 3.139160”2 and the message

“IN: ##specific go command successful” in the GUI host terminal.

Tip
Remember that your application is running within the framework. Unless the
application itself does something special, the output from the application will
appear in the window in which the framework is running.

8. Next, we’re going to use some of the other components to assemble a different application
using the

• integrators.Simpson and

• functions.CubeFunction
2Since Monte Carlo integration is based on random sampling, you will not get exactly the same result every time

you run it, but for this example, it should always be reasonably close to π

2.1. USING THE GUI FRONT-END TO CCAFFEINE 13

Figure 2.4: Fully connected application (Step 6).

components. Since they’re already in the palette , you can instantiate them in the same way
as Step 3. Your GUI should look like Figure 2.5.

Tip
As we’ve mentioned, wiring diagrams can become hard to interpret when they
become cluttered, as is the case with the screen shot above. To help interpret
the diagram, remember the following:

• “Wires” only connect to the sides of ports – on the left side of provides
ports (on the left side of the component), or on the right side of uses
ports. Connections are never made to the top or bottom of a component.

• The GUI’s wire-drawing algorithm is aware only of the two components
that are being connected. It will make no attempt to avoid other com-
ponents or other wires. So wires can pass behind components without
connecting to any of their ports, and wires may overlap.

• If you’re still uncertain how to interpret the connections try rearranging
the components slightly. Connections attached to the component will
follow as you drag it around, but others not associated with that compo-
nent will remain unchanged.

9. Next, we break the port connections we don’t need so we can reconnect to the new compo-
nents. Right-click on the integrate (either the user or the provider) and a dialog box
will pop up asking you to confirm that you want to break the connection.3 You will need to
break the following connections:

3A bug in the GUI causes this dialog box to appear twice sometimes. Just respond appropriately both times.

14 CHAPTER 2. ASSEMBLING AND RUNNING A CCA APPLICATION

Figure 2.5: Additional components instantiated (Step 8).

• CXXDriver0 ’s integrate to MonteCarlo0 ’s integrate

• MonteCarlo0 ’s function to PiFunction0 ’s function

There is no need to remove unused components from the arena – as long as they are not con-
nected to active components, they will not interfere.4 In fact in this case, neither MonteCarlo0
nor RandNumGenerator0 are used, so it is safe to leave them connected to each other.

Note
Steps 8 and 9 could have been done in either order.

10. Assemble the new application (Figure 2.6) by making the following connections:

• CXXDriver0 ’s integrate to Simpson0 ’s integrate

• Simpson0 ’s function to PiFunction0 ’s function

Click-and-release the go button on the CXXDriver0 component, you should see the re-
sult appear in the Ccaffeine host terminal, “Value = 3.141593” and the message
“IN: ##specific go command successful” in the GUI host terminal.

11. Finally, create a third application by replacing PiFunction0 with CubeFunction0
(Figure 2.7). When you click on the go you should get “Value = 0.250000”5 in the
Ccaffeine host terminal.

4A bug in the GUI makes it impossible to remove them anyway.
5With a deterministic integrator, the result should be repeatable

2.1. USING THE GUI FRONT-END TO CCAFFEINE 15

Figure 2.6: Another application, with additional unused components still in arena (Step 10).

Figure 2.7: A third application, with extraneous components still in arena (Step 11).

16 CHAPTER 2. ASSEMBLING AND RUNNING A CCA APPLICATION

12. At this point, you should understand how to instantiate components, how to connect and
disconnect their ports, and how to execute the application with the go port. Feel free to use
any and all of the components available in the palette to experiment with other integration
applications.

Note
Observe that as a user of CCA components, you have no idea what language
each component is implemented in. (Admittedly, the names of the drivers are
suggestive of the implementation language, but those names were chosen at
the convenience of the component developer, and they provide no guarantees
regarding the components’ implementations.) The language interoperability
features of Babel allow components to be hooked together regardless of im-
plementation language with complete transparency.

13. To politely exit the GUI, select File ⇒ Quit. This will terminate both the GUI and the
backend ccafe-client sessions.

Tip
If you’ve used the GUI to setup and start a long-running simulation, and you
don’t want to leave the GUI running continuously, you can use the File ⇒
Detach option to close the GUI but leave the backend running. However it is
currently impossible to reattach to a running session.

Tip
If the backend crashes while the GUI is running, exit the GUI by using De-
tach. Trying to Quit without a running backend will cause the GUI to hang.

2.2 Running Ccaffeine Using an rc File
In practice, most people don’t use the GUI all the time. And even die-hard GUI users will some-
times need to modify the rc file that does the initialization. Ccaffeine will also accept commands
interactively or in the form of a script (the rc file). This capability is very useful when you simply
want to run CCA-based applications that you already know how to assemble. In this section, we
will examine in detail an rc file that does everything you did in the GUI in the previous section.

When we’re not using the GUI, the Ccaffeine invocation is much simpler, and there is no need
for the helper scripts we used before (utils/bocca-gui-backend.sh or gui-backend.sh).
For direct use, Ccaffeine can be invoked as ccafe-single or ccafe-batch, depending
on whether you’re using it in a single-process (i.e. sequential) interactive situation, or in non-
interactive situations, including parallel jobs. These commands are part of the CCA tools installa-
tion, and should be in your path if you’ve followed the procedures in Appendix E.4.

2.2. RUNNING CCAFFEINE USING AN RC FILE 17

1. Change directories to your WORKDIR so that we can capture the output of running the
$TUTORIAL SRC/components/tests/task0.rc rc file.

Execute the command

$

ccafe-single \
--ccafe-rc $TUTORIAL SRC/components/tests/task0.rc \
> task0.out 2>&1

(if you’re using the csh or tcsh shell, the output redirection should be “>& task0.out”
instead of “> task0.out 2>&1”).

View the task0.out file satisfy yourself that the script ran. (Of course you can view
the script itself too, if you want.) Below we’ll work our way through each section of the
script and the corresponding output, but it may help you to see the input and output in their
entirety. The step numbers appearing in the script comments should correspond to the steps
in the preceding GUI procedure.

2. The beginning of the task0.rc script looks like this:

#!ccaffeine bootstrap file.
------- don’t change anything ABOVE this line.-------------

Step 2

path
path set /home/csm/bernhold/proj/cca/tutorial/tutorial/src-acts07/components/lib
path

palette
repository get-global drivers.CXXDriver
repository get-global drivers.F90Driver
repository get-global functions.CubeFunction
repository get-global functions.LinearFunction
repository get-global functions.QuinticFunction
repository get-global functions.SquareFunction
repository get-global integrators.MonteCarlo
repository get-global integrators.Simpson
repository get-global integrators.Trapezoid
repository get-global randomgens.RandNumGenerator
palette

The rc file begins with a “magic” line (a structured comment) indicating that the script is
meant to be processed by Ccaffeine . Ccaffeine expect to find such a line at the beginning of
all rc files.

Ccaffeine uses a “path” to determine where it should look for CCA components (specifically
the .cca files, which internally point to the actual libraries that comprise the component).
The rc file prints the path before and after setting the path for pedagogical reasons. In “real”
scripts, you might want to print the path out for debugging or documentation purposes.

Path-related commands in Ccaffeine include:

18 CHAPTER 2. ASSEMBLING AND RUNNING A CCA APPLICATION

path Prints the current path.

path append Adds a directory to the end of the current path.

path init Sets the path from the value of the $CCA COMPONENT PATH environment
variable.

path prepend Adds a directory to the beginning of the current path.

path set Sets the path to the value provided.

As you saw in the GUI, Ccaffeine has the concept of a palette of components from which
applications can be assembled. Unlike a typical unix shell, where putting an executable into
your path means you can use it directly, Ccaffeine has a two step process. Components
in the path can be added to the palette using the command repository get-global
class name, where class name is the component’s class name. This two step approach
gives you a little more control when there are large numbers of components in your path.
However in this case, we’ve simply loaded all of the components in the tutorial-src
tree.

The palette commands before and after the block of repository commands is simply
meant to illustrate that the framework’s palette starts empty, and ends up with the compo-
nents you requested. They aren’t needed in a “real” script.
The output from these commands should look something like this:

CCAFFEINE configured with spec (0.8.2) and babel (1.0.4).

CCAFFEINE configured with classic (0.5.7).

CCAFFEINE configured without neo and neo components.
my rank: -1, my pid: 27566
Type: One Processor Interactive

CmdContextCCA::initRC: Found task0_rc.

pathBegin
pathEnd! empty path.

There are allegedly 11 classes in the component path

pathBegin
pathElement /home/csm/bernhold/proj/cca/tutorial/tutorial/src-acts07/components/lib
pathEnd

Components available:

Loaded drivers.CXXDriver NOW GLOBAL .

Loaded drivers.F90Driver NOW GLOBAL .

Loaded functions.CubeFunction NOW GLOBAL .

Loaded functions.LinearFunction NOW GLOBAL .

Loaded functions.QuinticFunction NOW GLOBAL .

2.2. RUNNING CCAFFEINE USING AN RC FILE 19

Loaded functions.SquareFunction NOW GLOBAL .

Loaded integrators.MonteCarlo NOW GLOBAL .

Loaded integrators.Simpson NOW GLOBAL .

Loaded integrators.Trapezoid NOW GLOBAL .

Loaded randomgens.RandNumGenerator NOW GLOBAL .

Components available:
drivers.CXXDriver
drivers.F90Driver
functions.CubeFunction
functions.LinearFunction
functions.QuinticFunction
functions.SquareFunction
integrators.MonteCarlo
integrators.Simpson
integrators.Trapezoid
randomgens.RandNumGenerator

Note
rc files used to initialize the GUI should contain only the magic
line, path and repository get-global commands. You can view
$TUTORIAL SRC/components/tests/guitest.gen.rc as an ex-
ample.

3. Next we instantiate the components we’re going to use to assemble our first application, to
place them in the arena :

Steps 3-4

instances
instantiate drivers.CXXDriver CXXDriver0
instantiate functions.PiFunction PiFunction0
instantiate integrators.MonteCarlo MonteCarlo0
instantiate randomgens.RandNumGenerator RandNumGenerator0
instances

The command syntax is instantiate class name instance name. (The plain
instantiate commands before and after are, once again, for pedagogical purposes, to
list the contents of the arena .) The component’s class name is set in the SIDL file
where it is defined, and is also used in the repository get-global command. The
instance name is chosen by the user, and must simply be unique within the arena . You
may remember that the GUI suggests a default instance name when prompting you for
it, but that’s a feature of the GUI, not the framework. Here you have to enter it yourself. It
happens that we’ve used the same thing that the GUI would suggest.
The output from these commands should look something like this:

FRAMEWORK of type Ccaffeine-Support

20 CHAPTER 2. ASSEMBLING AND RUNNING A CCA APPLICATION

CXXDriver0 of type drivers.CXXDriver
successfully instantiated

PiFunction0 of type functions.PiFunction
successfully instantiated

MonteCarlo0 of type integrators.MonteCarlo
successfully instantiated

RandNumGenerator0 of type randomgens.RandNumGenerator
successfully instantiated

CXXDriver0 of type drivers.CXXDriver
FRAMEWORK of type Ccaffeine-Support
MonteCarlo0 of type integrators.MonteCarlo
PiFunction0 of type functions.PiFunction
RandNumGenerator0 of type randomgens.RandNumGenerator

4. Now we need to connect up the ports on the components we’ve instantiated in order to
assemble the application:

Steps 5-6

display chain
display component MonteCarlo0
connect CXXDriver0 integrate MonteCarlo0 integrate
connect MonteCarlo0 function PiFunction0 function
connect MonteCarlo0 RandomGeneratorPort RandNumGenerator0 RandomGeneratorPort
display chain

The command syntax is connect user component user port provider component
provider port.

The display command provides various kinds of information about the arena and compo-
nents therein. display chain details the connections between components. display
component component instance lists the uses and provides ports the component
has registered.
The output from these commands should look something like this:

Component CXXDriver0 of type drivers.CXXDriver
Component FRAMEWORK of type Ccaffeine-Support
Component MonteCarlo0 of type integrators.MonteCarlo
Component PiFunction0 of type functions.PiFunction
Component RandNumGenerator0 of type randomgens.RandNumGenerator

Instance name: MonteCarlo0
Class name: integrators.MonteCarlo

UsesPorts registered for MonteCarlo0

0. Instance Name: function Class Name: function.FunctionPort
1. Instance Name: RandomGeneratorPort Class Name: randomgen.RandomGeneratorPort

ProvidesPorts registered for MonteCarlo0

Instance Name: integrate Class Name: integrator.IntegratorPort

CXXDriver0))))integrate---->integrate((((MonteCarlo0

2.2. RUNNING CCAFFEINE USING AN RC FILE 21

connection made successfully

MonteCarlo0))))function---->function((((PiFunction0
connection made successfully

MonteCarlo0))))RandomGeneratorPort---->RandomGeneratorPort((((RandNumGenerator0
connection made successfully

Component CXXDriver0 of type drivers.CXXDriver
is using integrate connected to Port: integrate provided by component MonteCarlo0
Component FRAMEWORK of type Ccaffeine-Support
Component MonteCarlo0 of type integrators.MonteCarlo
is using function connected to Port: function provided by component PiFunction0
is using RandomGeneratorPort connected to Port: RandomGeneratorPort provided by component RandNumGenerator0
Component PiFunction0 of type functions.PiFunction
Component RandNumGenerator0 of type randomgens.RandNumGenerator

5. Now that we have a complete application, we can start it by invoking the driver’s go :

Step 7

go CXXDriver0 go

The command syntax is go component instance port name.
The output from these commands should look something like this:

Value = 3.140205
##specific go command successful

6. Now we use commands we already know to complete the rest of the operations that we
previously performed using the GUI:

Step 8

instantiate integrators.Simpson Simpson0
instantiate functions.CubeFunction CubeFunction0

Step 9

disconnect CXXDriver0 integrate MonteCarlo0 integrate
disconnect MonteCarlo0 function PiFunction0 function

Step 10

connect CXXDriver0 integrate Simpson0 integrate
connect Simpson0 function PiFunction0 function
display chain
go CXXDriver0 go

Step 11

disconnect Simpson0 function PiFunction0 function
connect Simpson0 function CubeFunction0 function
display chain
go CXXDriver0 go

22 CHAPTER 2. ASSEMBLING AND RUNNING A CCA APPLICATION

The output from these commands should look something like this:

Simpson0 of type integrators.Simpson
successfully instantiated

CubeFunction0 of type functions.CubeFunction
successfully instantiated

CXXDriver0))))integrate-\ \-integrate((((MonteCarlo0
connection broken successfully

MonteCarlo0))))function-\ \-function((((PiFunction0
connection broken successfully

CXXDriver0))))integrate---->integrate((((Simpson0
connection made successfully

Simpson0))))function---->function((((PiFunction0
connection made successfully

Component CXXDriver0 of type drivers.CXXDriver
is using integrate connected to Port: integrate provided by component Simpson0
Component CubeFunction0 of type functions.CubeFunction
Component FRAMEWORK of type Ccaffeine-Support
Component MonteCarlo0 of type integrators.MonteCarlo
is using RandomGeneratorPort connected to Port: RandomGeneratorPort provided by component RandNumGenerator0
Component PiFunction0 of type functions.PiFunction
Component RandNumGenerator0 of type randomgens.RandNumGenerator
Component Simpson0 of type integrators.Simpson
is using function connected to Port: function provided by component PiFunction0

Value = 3.141593
##specific go command successful

Simpson0))))function-\ \-function((((PiFunction0
connection broken successfully

Simpson0))))function---->function((((CubeFunction0
connection made successfully

Component CXXDriver0 of type drivers.CXXDriver
is using integrate connected to Port: integrate provided by component Simpson0
Component CubeFunction0 of type functions.CubeFunction
Component FRAMEWORK of type Ccaffeine-Support
Component MonteCarlo0 of type integrators.MonteCarlo
is using RandomGeneratorPort connected to Port: RandomGeneratorPort provided by component RandNumGenerator0
Component PiFunction0 of type functions.PiFunction
Component RandNumGenerator0 of type randomgens.RandNumGenerator
Component Simpson0 of type integrators.Simpson
is using function connected to Port: function provided by component CubeFunction0

Value = 0.250000
##specific go command successful

7. At the end of the rc files, it is important to remember to terminate the framework:

Step 13

2.3. NOTES ON MORE ADVANCED USAGE OF THE GUI 23

quit

The output from these commands should look something like this:

bye!
exit

Warning
If your rc file ends without a quit command, Ccaffeine will leave you
in interactive mode rather than terminating and returning you to the shell
prompt. If you make this mistake a Control-c will interrupt Ccaffeine and
return you to the shell prompt.

Feel free to copy $TUTORIAL SRC/components/tests/task0.rc to your workspace,
modify it, and run it yourself.

2.3 Notes on More Advanced Usage of the GUI
There are a couple of other features of the GUI and its interaction with the Ccaffeine backend that
are worth mentioning.

• The rc file used in conjunction with a GUI session need not be limited to path and
repository get-global commands – it is possible to include all Ccaffeine com-
mands, such as in the script of 2.2. The GUI will display all instantiated components, and
all connections between their ports. However, the GUI has no mechanism to place the
components intelligently in the arena , so it just puts them all on top of each other. You can,
of course, drag them into more reasonable positions.

• It is possible to save the visual state of the GUI in a “bld ” file using the “Save” or “Save
As...” button. The bld file can be loaded into the GUI and replayed by launching it with the
--buildFile file.bld option.

The syntax of the bld file is similar to that of the rc file, but they are not interchangeable.
The bld file can contain commands to instantiate and destroy components and to connect
and disconnect ports, as well as commands to move components within the arena , and it can
only be interpreted by the GUI. The path and repository get-global commands
must always be in the rc file, which is interpreted only by the Ccaffeine backend. Also,
Ccaffeine itself does not understand the movement commands of the bld file.

24 CHAPTER 2. ASSEMBLING AND RUNNING A CCA APPLICATION

Chapter 3

Using Bocca : A Project Manager for SIDL
or CCA

While the CCA specification allows you to create components “by hand”, it is much quicker to
use an application generator that provides templated code for components and a build system.
Naturally Bocca cannot create your implementation for you, but all of the glue code for multi-
language interoperability and component interfaces in a CCA application is created and maintained
with a few commands. The advantage of this approach is that a lot of build and component defaults
have been chosen for you. The downside is that, while some customization is possible, the project
directory and file structures are largely predetermined.

3.1 Creating a Bocca Project
If your CCA environment is configured properly (Section E) then the bocca command is already
in your command path and you are ready to go. Find a safe place to begin your Bocca project, such
as your WORKDIR:

$ cd $WORKDIR

The first thing to do is to create a project directory within which all of your components and
ports will reside. Normally you would choose a relevant project name but for now we will just call
it demo. Create the project directory now:

$ bocca create project demo --language=LANG

The project was created successfully in /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo

Here LANG specifies the default implementation language for components in this project, if
you don’t specifically indicate a language when creating the component (a project can contain
components in any mixture of Babel -supported languages). For this exercise, choose the one of c,
cxx, f90, java, or python with which you are most comfortable (some of these choices may
not be available if your Babel installation is not configured for them, but these are the languages for
which this Guide has detailed instructions). If you don’t specify a default language when creating
the project, Bocca will use C++.

25

26 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

Now that the project is created, we see that Bocca has created a lot of build scaffolding to
support the componentized application we will write. The first thing you notice is that Bocca has
created a directory:

$ ls -F

demo/

Feel free to poke around a bit:

$ ls -F demo

BOCCA/
buildutils/
components/
config/
configure*
configure.ac*
configure.ac1
depl/
external/
install/
Makefile
make.project
make.project.in
make.rules.user
make.vars.user
ports/
README
utils/

Before using a new Bocca project or working with an existing project just checked out from a
source code repository, you will need to configure it for the details of your local environment. For
a new project this is easy: ./configure from within your new project directory.

$ cd demo && ./configure

checking for bash... /bin/sh
checking for GNU make... make
checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
checking for openpty in -lutil... yes
checking for bocca... /usr/local/ACTS/cca/bin/bocca
c cxx f90 f77 python java
configure: Configuring with languages: c cxx f90 f77 python java
configure: Project source dir apparently /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo
configure: Using 4 processe(s) in calls to make.
checking whether make sets $(MAKE)... yes
configure: creating ./config.status
config.status: creating make.project
config.status: creating buildutils/make.vars.common
config.status: creating utils/run-gui.sh
config.status: creating utils/bocca-gui-backend.sh
config.status: creating utils/demo-config
config.status: creating utils/config-data
config.status: creating utils/demo-config.h
config.status: executing outmsg commands

3.2. CREATING PORTS AND COMPONENTS 27

3.2 Creating Ports and Components
Let’s create a component. First make sure that your current working directory is inside the project
directory:

$ pwd

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo

It is important to be in the project directory (or its subdirectories) when you invoke bocca
because it picks up all of the context for your project from there (similar to CVS or Subversion).
Go ahead and create the component now:

$ bocca create component emptyComponent

Babel updating the cxx implementation of component demo.emptyComponent ...

Notice that Bocca selected demo as the default package name for emptyComponent since
no package name was specified when creating the component. Normally, Bocca uses the project
name as the package name for both ports and components unless a different default package name
was specified when the project was created. We have named our component emptyComponent
because it has no uses nor provides ports and thus is rather uninteresting. Nonetheless, Bocca has
generated all of the necessary make system scaffolding and code for the component, including the
setServicescall. Listing the directory shows the files Bocca has generated (shown here for
LANG =cxx):

$ ls components/demo.emptyComponent

BOCCA
demo_emptyComponent_Impl.cxx
demo_emptyComponent_Impl.hxx
demo_emptyComponent_Impl.hxx.rej
glue
Makefile
make.rules.user
make.vars.user

Components created in Fortran, C, and Python will contain a similar set files appropriate to the
language. In the components directory a new directory, demo.emptyComponent, has been
created to hold your component. And inside there is the code already generated for the compo-
nent (again continuing with LANG = cxx) in the files: demo emptyComponent Impl.cxx,
demo emptyComponent Impl.hxx with some Babel glue code in the glue subdirectory.
Note the file ending in .rej named demo emptyComponent Impl.hxx.rej. This file is pro-
duced by the Bocca splicing process. It records code fragments that Bocca discarded while gener-
ating demo emptyComponent Impl.hxx and can usually be ignored and even deleted.

An Empty Component in Ccaffeine (OPTIONAL READING)
Although the component you’ve created can’t actually do anything useful at this point, it is a valid
component. You can build it and instantiate it in Ccaffeine if you like:

$ make

28 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

Figure 3.1: GUI showing the emptyComponent generated in Section 3.2 instantiated in the
arena .

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’
===
No SIDL files in external/sidl, skipping build for external
===
===
No SIDL files in ports/sidl, skipping build for ports
===
===
Building in components/clients/, languages: cxx
===
Building clients...
===
Building in components/, languages: cxx
===

[s] Building class/component demo.emptyComponent:
[s] using Babel to generate cxx implementation code from demo.emptyComponent.sidl...
[s] compiling sources...
[s] creating class/component library: libdemo.emptyComponent.la ...
[s] finished libtooling: components/demo.emptyComponent/libdemo.emptyComponent.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.emptyComponent_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

Build summary:
SUCCESS building demo.emptyComponent
To test instantiation of successfully built components, run ’make check’
################ Finished building everything #################
####### You can run some simple tests with ’make check’ #######
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’

(Your output should be substantially similar, but will at least have different paths.)

Now, you can run Ccaffeine and the GUI following the same procedure you used in Section 2.1.
If you instantiate the emptyComponent , you should see something similar to Figure 3.1. Of
course it lacks any uses or provides ports and thus cannot be used for anything, but it is a full-
fledged CCA component.

3.2. CREATING PORTS AND COMPONENTS 29

3.2.1 Creating the Integrator and Function Components
In order to have some exportable or importable functionality in a component we must have some
uses and provides ports. Bocca will also create the scaffolding and code for ports. Following the
model of the integrator application of Chapter 2, we will create a Function , an Integrator
, and a Driver . However before we can do that we will have to create some ports for these
components to use and provide .

Let’s begin by creating a FunctionPort and an Integration :

$ bocca create port Integration

Updating makefiles (for demo.Integration)...

$ bocca create port FunctionPort

Updating makefiles (for demo.FunctionPort)...

Notice that we are continuing to use the default package demo, though we could specify some-
thing different.

Now, create a set of components similar to those that you used in Chapter 2, specifying that
they will provide or use the appropriate ports:

$ bocca create component Function --provides=FunctionPort@fun

Babel updating the cxx implementation of component demo.Function ...

$

bocca create component Integrator \
--provides=Integration@integrate \
--uses=FunctionPort@odeRHS

Babel updating the cxx implementation of component demo.Integrator ...

$
bocca create component Driver --go=run \
--uses=Integration@integrate

Babel updating the cxx implementation of component demo.Driver ...

This last bocca create decorates our Driver component with a CCA standard go port,
which is not specified as part of this project. Since gov.cca.ports.GoPort is a part of the
CCA specification, Bocca takes care of knowing where to find the SIDL definition of this port.
The special --go option allows Bocca to generate a default go implementation which prefetches
the uses ports so that all the user needs to do for our example is add numerical code. In languages
which are not object-oriented, this substantially reduces the errors in handling ports, exceptions,
and memory deallocation.

Note
It is not necessary to know at component creation time all ports that will be
used or provided or other implementation details. Bocca provides various
commands for changing project entities, e.g. adding or removing uses and
provides ports.

30 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

As we have defined a number of new things, this would be a good time to rebuild the project:

$ make

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’
===
No SIDL files in external/sidl, skipping build for external
===
===
Building in ports/, languages: cxx
===
Building ports...

[c] using Babel to generate cxx client code for demo.FunctionPort...
[c] creating library: libdemo.FunctionPort-cxx.la...
[c] installing demo.FunctionPort.sidl
[c] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.FunctionPort_depl.xml ... 4458
[c] using Babel to generate cxx client code for demo.Integration...
[c] creating library: libdemo.Integration-cxx.la...
[c] installing demo.Integration.sidl
[c] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Integration_depl.xml ... 4790

===
Building in components/clients/, languages: cxx
===
Building clients...
===
Building in components/, languages: cxx
===

[s] Building class/component demo.Driver:
[s] using Babel to generate cxx implementation code from demo.Driver.sidl...
[s] compiling sources...
[s] creating class/component library: libdemo.Driver.la ...
[s] finished libtooling: components/demo.Driver/libdemo.Driver.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Driver_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.Function:
[s] using Babel to generate cxx implementation code from demo.Function.sidl...
[s] compiling sources...
[s] creating class/component library: libdemo.Function.la ...
[s] finished libtooling: components/demo.Function/libdemo.Function.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Function_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.Integrator:
[s] using Babel to generate cxx implementation code from demo.Integrator.sidl...
[s] compiling sources...
[s] creating class/component library: libdemo.Integrator.la ...
[s] finished libtooling: components/demo.Integrator/libdemo.Integrator.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Integrator_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.emptyComponent:

doing nothing -- library is up-to-date.
Build summary:
SUCCESS building demo.Driver
SUCCESS building demo.Function
SUCCESS building demo.Integrator
To test instantiation of successfully built components, run ’make check’
################ Finished building everything #################
####### You can run some simple tests with ’make check’ #######
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’

Note that this operation can be very time-consuming when your project is managing many ports
and components with the fully supported set of Babel language bindings.

Running make check will test whether the components you’ve created can be instantiated
successfully in the Ccaffeine framework:

$ make check

3.3. HOW TO EDIT AND FIND FILES IN BOCCA PROJECTS 31

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’
make --no-print-directory --no-builtin-rules -C components check
Test library load and instantiation for the following languages: cxx
Running instantiation tests only
###
LDPATH=/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/lib:/usr/local/ACTS/cca/lib:/usr/local/ACTS/cca/lib:/usr/local/packages/java-1.6.0_14/jre/lib/i386/client:/usr/local/packages/java-1.6.0_14/jre/lib/i386/server::/usr/local/packages/java-1.6.0_14/jre/lib/i386::/usr/local/ACTS/cca/lib:/usr/local/ACTS/CCAtk/components/TauPerformance-1.7.3:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib:/usr/local/packages/openmpi/lib:/usr/local/packages/papi/lib:/usr/local/packages/vampirtrace/lib:/usr/local/packages/vampir-server/lib:/usr/local/packages/perfsuite/lib:/usr/local/packages/tau/i386_linux/lib:/usr/local/packages/dyninstAPI/i386-unknown-linux2.4/lib:/usr/local/packages/periscope/lib
###
PYTHONPATH=/usr/local/ACTS/cca/lib/python2.5/site-packages:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/lib/python2.5/site-packages:/usr/local/ACTS/cca/lib/cca-spec-babel-0_8_6-babel-1.4.0/python2.5/site-packages:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:
###
CLASSPATH=/usr/local/ACTS/cca/lib/sidl-1.4.0.jar:/usr/local/ACTS/cca/lib/sidlstub_1.4.0.jar:/usr/local/ACTS/cca/lib/cca-spec.jar:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/lib/java:
###
Test script: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/tests/instantiation.gen.rc
Log file: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/tests/instantiation.gen.rc.log
SUCCESS:
==> Instantiation tests passed for all built components (see /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’

So far, with very little work, we have generated what appears to be an application but is really
just the componentized shell of an application. If you were to run the GUI (Section 2.1) or do the
command-line equivalent in Ccaffeine (Section 2.2), you would find that the components are dec-
orated with the ports you expect, and they can even be connected (an operation of the framework,
not of the components or ports). But if you attempted to run an application using these compo-
nents, nothing would happen because they’re only skeletons, providing the component-ness, but
not the functionality.

Note
Along with everything else it does, Bocca generates a set of util-
ity scripts which are tailored to the specific Bocca project (i.e. hav-
ing the right paths, the right sets of components, etc.). In Section
2 you ran Bocca-generated utility scripts in the pre-built tutorial tree
(i.e. $TUTORIAL SRC/utils/run-gui.sh). When you’re working in
your own Bocca projects, make sure you use the utility scripts associated with
that project, or things won’t work properly.

3.3 How to Edit and Find Files in Bocca Projects
The next step in developing components requires you implement the component’s intended func-
tionality within the Bocca -generated skeleton. There are two places that we have to change things
to make that happen: add methods to the interface definitions (.sidl file) and then put the imple-
mentation code into the components in the language chosen in Section 3.1.

Because Bocca generates all the files in the project, it knows where to find the code associated
with each SIDL symbol. Using the bocca edit command, you can specify the SIDL symbol
you’re interested in and Bocca will bring up the appropriate file in your editor of choice. Addition-
ally, after you exit the editor, Bocca regenerates all other source files that depend on the source file
edited.

• To edit the .sidl file defining a given symbol:

$ bocca edit SIDL SYMBOL

32 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

• To edit the header/module file of a given component class:

$ bocca edit -m SIDL CLASS

• To edit the implementation file of the given class or component:

$ bocca edit -i SIDL CLASS

• To edit the named method in the class or component:

$ bocca edit -i SIDL CLASS METHOD NAME

The last invocation requires that your editor support the +N option, which is used for specifying
the initial position in the file. All emacs and vi versions support this feature. If your favorite
editor does not support +N , omit the method name and search for it in the opened file using the
editor’s search capability.

If you replace edit in any of the above, with whereis, Bocca prints out the path of the file
that would be edited without starting up an editor.

The environment variable BOCCA EDITOR (and if that is not set, then EDITOR) controls what
editor gets invoked by bocca edit.

Tip
If you need to set BOCCA EDITOR to get the editor you want, you might
want to add the appropriate setting to your login files.

Tip
Users of emacs may want to set BOCCA EDITOR to “emacs -nw” when
editing on a remote cluster with slow or no X11 connections.

There is also a way for you to tell Bocca that you’ve edited a file by some means other than
bocca edit.

• Something was done to FunctionPort. Update its dependencies, if any:

$ bocca edit --touch FunctionPort

• Something was done to Driver code. Update its dependencies, if any:

$ bocca edit --touch -i Driver

If you do not tell Bocca about files you’ve modified, you might find that the project’s files are
not in a consistent state. For example, if you add a method to a .sidl file it will not appear it in
the implementation file until Bocca updates it.

3.4. ADDING METHODS TO PORTS 33

3.4 Adding Methods to Ports
In Section 3.2.1, we had Bocca create skeleton .sidl files for the Integration and FunctionPort
. Now we need to flesh out the ports by actually specifying the methods they contain.

$ bocca edit Integration

The SIDL code for Integration looks like this:

// DO-NOT-DELETE bocca.splicer.begin(demo.comment)

// Insert-UserCode-Here {demo.comment} (Insert your package comments here)
// DO-NOT-DELETE bocca.splicer.end(demo.comment)
package demo version 0.0 {

// DO-NOT-DELETE bocca.splicer.begin(demo.Integration.comment)

// Insert-UserCode-Here {demo.Integration.comment} (Insert your port comments here)
// DO-NOT-DELETE bocca.splicer.end(demo.Integration.comment)
interface Integration extends gov.cca.Port
{

// DO-NOT-DELETE bocca.splicer.begin(demo.Integration.methods)

// Insert-UserCode-Here {demo.Integration.methods} (Insert your port methods here)
// DO-NOT-DELETE bocca.splicer.end(demo.Integration.methods)

}
}

Insert the march method:

// DO-NOT-DELETE bocca.splicer.begin(demo.comment)

// Insert-UserCode-Here {demo.comment} (Insert your package comments here)
// DO-NOT-DELETE bocca.splicer.end(demo.comment)
package demo version 0.0 {

// DO-NOT-DELETE bocca.splicer.begin(demo.Integration.comment)

// Insert-UserCode-Here {demo.Integration.comment} (Insert your port comments here)
// DO-NOT-DELETE bocca.splicer.end(demo.Integration.comment)
interface Integration extends gov.cca.Port
{

// DO-NOT-DELETE bocca.splicer.begin(demo.Integration.methods)

double march(in double lowBound, in double upBound, in int count);

// DO-NOT-DELETE bocca.splicer.end(demo.Integration.methods)
}

}

34 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

After you quit the editor, bocca edit then automatically updates the components that de-
pend on the port edited:

Updating makefiles (for demo.Integration, demo.Driver, demo.Integrator)...
Using Babel to validate the SIDL for port demo.Integration ...
Babel updating the cxx implementation of component demo.Driver ...
Babel updating the cxx implementation of component demo.Integrator ...

Next edit the file FunctionPort.sidl:

$ bocca edit FunctionPort

Add two methods, init and evaluate so that function looks like this:

// DO-NOT-DELETE bocca.splicer.begin(demo.comment)

// Insert-UserCode-Here {demo.comment} (Insert your package comments here)
// DO-NOT-DELETE bocca.splicer.end(demo.comment)
package demo version 0.0 {

// DO-NOT-DELETE bocca.splicer.begin(demo.FunctionPort.comment)

// Insert-UserCode-Here {demo.FunctionPort.comment} (Insert your port comments here)
// DO-NOT-DELETE bocca.splicer.end(demo.FunctionPort.comment)
interface FunctionPort extends gov.cca.Port
{

// DO-NOT-DELETE bocca.splicer.begin(demo.FunctionPort.methods)

void init(in array<double,1> params);
double evaluate(in double x);

// DO-NOT-DELETE bocca.splicer.end(demo.FunctionPort.methods)
}

}

Again quit the editor and the dependent components are updated as indicated by this output
from bocca edit:

Updating makefiles (for demo.FunctionPort, demo.Integrator, demo.Function)...
Using Babel to validate the SIDL for port demo.FunctionPort ...
Babel updating the cxx implementation of component demo.Integrator ...
Babel updating the cxx implementation of component demo.Function ...

These files contain the language-independent specification of the ports and their methods, ex-
pressed using SIDL. When you type make all of the the new method information is propagated to
the language-dependent implementation files using Babel . Of course the methods will be unim-
plemented but the components will build anyway. So let’s do that now:

$ make && make check

3.4. ADDING METHODS TO PORTS 35

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’
===
No SIDL files in external/sidl, skipping build for external
===
===
Building in ports/, languages: cxx
===
Building ports...
[c] using Babel to generate cxx client code for demo.FunctionPort...
[c] creating library: libdemo.FunctionPort-cxx.la...

15,16c15,16
<
< // Insert-UserCode-Here {demo.FunctionPort.methods} (Insert your port methods here)

> void init(in array<double,1> params);
> double evaluate(in double x);

[c] installing modified demo.FunctionPort.sidl in /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca.
[c] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.FunctionPort_depl.xml ... 20968
[c] using Babel to generate cxx client code for demo.Integration...
[c] creating library: libdemo.Integration-cxx.la...

15,16c15
<
< // Insert-UserCode-Here {demo.Integration.methods} (Insert your port methods here)

> double march(in double lowBound, in double upBound, in int count);

[c] installing modified demo.Integration.sidl in /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca.
[c] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Integration_depl.xml ... 21278

===
Building in components/clients/, languages: cxx
===
Building clients...
===
Building in components/, languages: cxx
===

[s] Building class/component demo.Driver:
[s] using Babel to generate cxx implementation code from demo.Driver.sidl...
[s] compiling sources...
[s] creating class/component library: libdemo.Driver.la ...
[s] finished libtooling: components/demo.Driver/libdemo.Driver.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Driver_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.Function:
[s] using Babel to generate cxx implementation code from demo.Function.sidl...
[s] compiling sources...
[s] creating class/component library: libdemo.Function.la ...
[s] finished libtooling: components/demo.Function/libdemo.Function.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Function_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.Integrator:
[s] using Babel to generate cxx implementation code from demo.Integrator.sidl...
[s] compiling sources...
[s] creating class/component library: libdemo.Integrator.la ...
[s] finished libtooling: components/demo.Integrator/libdemo.Integrator.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Integrator_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.emptyComponent:

doing nothing -- library is up-to-date.
Build summary:
SUCCESS building demo.Driver
SUCCESS building demo.Function
SUCCESS building demo.Integrator
To test instantiation of successfully built components, run ’make check’
################ Finished building everything #################
####### You can run some simple tests with ’make check’ #######
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’
make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’
make --no-print-directory --no-builtin-rules -C components check
Test library load and instantiation for the following languages: cxx

36 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

Running instantiation tests only
###
LDPATH=/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/lib:/usr/local/ACTS/cca/lib:/usr/local/ACTS/cca/lib:/usr/local/packages/java-1.6.0_14/jre/lib/i386/client:/usr/local/packages/java-1.6.0_14/jre/lib/i386/server::/usr/local/packages/java-1.6.0_14/jre/lib/i386::/usr/local/ACTS/cca/lib:/usr/local/ACTS/CCAtk/components/TauPerformance-1.7.3:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib:/usr/local/packages/openmpi/lib:/usr/local/packages/papi/lib:/usr/local/packages/vampirtrace/lib:/usr/local/packages/vampir-server/lib:/usr/local/packages/perfsuite/lib:/usr/local/packages/tau/i386_linux/lib:/usr/local/packages/dyninstAPI/i386-unknown-linux2.4/lib:/usr/local/packages/periscope/lib
###
PYTHONPATH=/usr/local/ACTS/cca/lib/python2.5/site-packages:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/lib/python2.5/site-packages:/usr/local/ACTS/cca/lib/cca-spec-babel-0_8_6-babel-1.4.0/python2.5/site-packages:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:
###
CLASSPATH=/usr/local/ACTS/cca/lib/sidl-1.4.0.jar:/usr/local/ACTS/cca/lib/sidlstub_1.4.0.jar:/usr/local/ACTS/cca/lib/cca-spec.jar:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/lib/java:
###
Test script: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/tests/instantiation.gen.rc
Log file: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/tests/instantiation.gen.rc.log
SUCCESS:
==> Instantiation tests passed for all built components (see /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’

The methods you inserted into the SIDL port specifications have now been inserted into your
already generated components. At this point we are ready to insert the actual implementation into
the bodies of these methods. Notice that up to this point, you created the skeleton for an entire
application without having to write any code at all, except for the SIDL for the ports. Finally, it is
time to implement the components’ functionality in the programming language of your choice.

3.5 Language-Specific Function, Integrator, and Driver Code
Please jump to the appropriate section for the implementation language you chose in Section 3.1
and then continue with Section 3.6 (p. 87).

Language Section Page
C++ 3.5.1 36
F90 3.5.2 46
C 3.5.3 59
Python 3.5.4 69
Java 3.5.5 78

3.5.1 C++ Implementation

Note
Assumes you created the project with bocca create project demo
--language=cxx or did not specify a language (cxx is the default).

Edit the evaluate method in the implementation file (also known as “the impl”) that Bocca
has generated for you (by invoking Babel). Use the bocca edit -i to go directly to each
method.

$ bocca edit -i Function evaluate

The editor opens up in the place where the implementation code for evaluate must be put.
You see a default implementation generated by Babel for all user methods: the throwing of an
exception which says the method is not yet implemented.

double
demo::Function_impl::evaluate_impl (

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 37

/* in */double x)
{
// DO-NOT-DELETE splicer.begin(demo.Function.evaluate)
// Insert-Code-Here {demo.Function.evaluate} (evaluate method)
//
// This method has not been implemented
//
// DO-DELETE-WHEN-IMPLEMENTING exception.begin(demo.Function.evaluate)
::sidl::NotImplementedException ex = ::sidl::NotImplementedException::_create();
ex.setNote("This method has not been implemented");
ex.add(__FILE__, __LINE__, "evaluate");
throw ex;
// DO-DELETE-WHEN-IMPLEMENTING exception.end(demo.Function.evaluate)
// DO-NOT-DELETE splicer.end(demo.Function.evaluate)

}

As the comment suggests, this method is “not implemented”, but some code has been inserted
by Babel to make sure an exception is thrown to inform the user if this method is called by mis-
take. Delete this exception code and substitute an implementation for the PiFunction (i.e., the
integral from 0 to 1 of 4/(1 + x2) is an approximation of π).

// DO-NOT-DELETE splicer.begin(demo.Function.evaluate)

return 4.0 / (1.0 + x * x);

// DO-NOT-DELETE splicer.end(demo.Function.evaluate)

Now in the same file just above the evaluate method, find the second method for the
FunctionPort init method:

// DO-NOT-DELETE splicer.begin(demo.Function.init)

// Do nothing.

// DO-NOT-DELETE splicer.end(demo.Function.init)

We don’t have any initialization in this simple example, so we just eliminate the code that
throws the exception when the method is executed.

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited:

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/demo.Function/demo_Function_Impl.cxx

Similarly edit the march method in the Integrator with

$ bocca edit -i Integrator march

38 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

double
demo::Integrator_impl::march_impl (

/* in */double lowBound,
/* in */double upBound,
/* in */int32_t count)

{
// DO-NOT-DELETE splicer.begin(demo.Integrator.march)
// Insert-Code-Here {demo.Integrator.march} (march method)
//
// This method has not been implemented
//
// DO-DELETE-WHEN-IMPLEMENTING exception.begin(demo.Integrator.march)
::sidl::NotImplementedException ex = ::sidl::NotImplementedException::_create();
ex.setNote("This method has not been implemented");
ex.add(__FILE__, __LINE__, "march");
throw ex;
// DO-DELETE-WHEN-IMPLEMENTING exception.end(demo.Integrator.march)
// DO-NOT-DELETE splicer.end(demo.Integrator.march)

}

Again remove this boilerplate exception code and insert an implementation of the Trapezoid
rule for integration that uses the FunctionPort :

// DO-NOT-DELETE splicer.begin(demo.Integrator.march)

demo::FunctionPort odeRHS;
gov::cca::Port generalPort;

try {
generalPort = d_services.getPort("odeRHS");

} catch (::gov::cca::CCAException ex) {
// we cannot go on. add to the error report.
ex.add(__FILE__, __LINE__,

"odeRHS port not available in Integrator.march");
throw;

}

odeRHS = ::babel_cast< demo::FunctionPort >(generalPort);
if (odeRHS._is_nil()){

// we cannot go on. toss an exception after cleaning up.
try {

d_services.releasePort("odeRHS");
} catch (...) {

// suppress framework complaints; we’re already handling an exception.
}
::sidl::SIDLException ex = ::sidl::SIDLException::_create();
ex.setNote("Error: odeRHS port is nil. Weird.");
ex.add(__FILE__, __LINE__, "demo::Integrator::integrate_impl");
throw ex;

}

double h = (upBound - lowBound) / count;
double retval = 0.0;

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 39

double sum = 0.0;
for (int i = 1; i <= count; i++){

sum += odeRHS.evaluate(lowBound + (i - 1) * h) +
odeRHS.evaluate(lowBound + i * h);

}
retval = h/2.0 * sum;
d_services.releasePort("odeRHS");
return retval;

// DO-NOT-DELETE splicer.end(demo.Integrator.march)

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited:

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/demo.Integrator/demo_Integrator_Impl.cxx

Finally for the Driver component we have to implement the GoPort details to get things
going. Bocca will take you to the generated method, which looks like this:

$ bocca edit -i Driver go

int32_t
demo::Driver_impl::go_impl ()

{
// DO-NOT-DELETE splicer.begin(demo.Driver.go)

// User editable portion is in the middle at the next Insert-UserCode-Here line.

// Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoProlog)
int bocca_status = 0;
// The user’s code should set bocca_status 0 if computation proceeded ok.
// The user’s code should set bocca_status -1 if computation failed but might
// succeed on another call to go(), e.g. when a required port is not yet
// connected.
// The user’s code should set bocca_status -2 if the computation failed and
// can never succeed in a future call.
// The user’s code should NOT use return in this function.
// Exceptions that are not caught in user code will be converted to
// status -2.

gov::cca::Port port;

// nil if not fetched and cast successfully:
demo::Integration integrate;
// True when releasePort is needed (even if cast fails):
bool integrate_fetched = false;
// Use a demo.Integration port with port name integrate
try{

40 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

port = this->d_services.getPort("integrate");
} catch (::gov::cca::CCAException ex) {

// we will continue with port nil (never successfully assigned) and
// set a flag.

#ifdef _BOCCA_STDERR
std::cerr << "demo.Driver: Error calling getPort(\"integrate\") "

" at " << __FILE__ << ":" << __LINE__ -5 << ": " << ex.getNote()
<< std::endl;

#endif // _BOCCA_STDERR

}
if (port._not_nil()) {

// even if the next cast fails, must release.
integrate_fetched = true;
integrate = ::babel_cast< demo::Integration >(port);
if (integrate._is_nil()) {

#ifdef _BOCCA_STDERR
std::cerr << "demo.Driver: Error casting gov::cca::Port "

<< "integrate to type "
<< "demo::Integration" << std::endl;

#endif //_BOCCA_STDERR

goto BOCCAEXIT; // we cannot correctly continue. clean up and leave.
}

}

// Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoProlog)

// When this try/catch block is rewritten by the user, we will not change it.
try {

// All port instances should be rechecked for ._not_nil before calling in
// user code. Not all ports need be connected in arbitrary use.
// The uses ports appear as local variables here named exactly as on the
// bocca commandline.

// Insert-UserCode-Here {demo.Driver.go}

// REMOVE ME BLOCK.begin(demo.Driver.go)

#ifdef _BOCCA_STDERR
std::cerr << "USER FORGOT TO FILL IN THEIR GO FUNCTION HERE." << std::endl;

#endif

// REMOVE ME BLOCK.end(demo.Driver.go)

}
// If unknown exceptions in the user code are tolerable and restart is ok,
// return -1 instead. -2 means the component is so confused that it and

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 41

// probably the application should be destroyed.
// babel requires exact exception catching due to c++ binding of interfaces.
catch (gov::cca::CCAException ex) {

bocca_status = -2;
std::string enote = ex.getNote();

#ifdef _BOCCA_STDERR
std::cerr << "CCAException in user go code: " << enote << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;;

#endif

}
catch (sidl::RuntimeException ex) {

bocca_status = -2;
std::string enote = ex.getNote();

#ifdef _BOCCA_STDERR
std::cerr << "RuntimeException in user go code: " << enote << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;;

#endif

}
catch (sidl::SIDLException ex) {

bocca_status = -2;
std::string enote = ex.getNote();

#ifdef _BOCCA_STDERR
std::cerr << "SIDLException in user go code: " << enote << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;;

#endif

}
catch (sidl::BaseException ex) {

bocca_status = -2;
std::string enote = ex.getNote();

#ifdef _BOCCA_STDERR
std::cerr << "BaseException in user go code: " << enote << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;;

#endif

}
catch (std::exception ex) {

bocca_status = -2;

#ifdef _BOCCA_STDERR
std::cerr << "C++ exception in user go code: " << ex.what() << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;

#endif

}
catch (...) {

bocca_status = -2;

42 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

#ifdef _BOCCA_STDERR
std::cerr << "Odd exception in user go code " << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;

#endif

}

BOCCAEXIT:; // target point for error and regular cleanup. do not delete.
// Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoEpilog)

// release integrate
if (integrate_fetched) {

integrate_fetched = false;
try{

this->d_services.releasePort("integrate");
} catch (::gov::cca::CCAException ex) {

#ifdef _BOCCA_STDERR
std::cerr << "demo.Driver: Error calling releasePort("

<< "\"integrate\") at "
<< __FILE__ << ":" << __LINE__ -4 << ": " << ex.getNote()
<< std::endl;

#endif // _BOCCA_STDERR

}
// c++ port reference will be dropped when function exits, but we
// must tell framework.

}

return bocca_status;
// Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoEpilog)

//
// This method has not been implemented
//
// DO-NOT-DELETE splicer.end(demo.Driver.go)

}

Find the REMOVE block within the go method implementation, delete it, and insert the numeri-
cal logic needed to use the integrator.IntegratorPort port. Any required local variables
should be inserted just before the boccaGoProlog protected block.

The go subroutine will be called by the framework when the component’s run button (the
name of this particular GoPort instance) is pushed in the GUI. Bocca generates the code to the
Integration that the Driver is connected to. We just have to use it to compute the integral
and return the proper value for bocca status.

// DO-NOT-DELETE splicer.begin(demo.Driver.go)
// User editable portion is in the middle at the next Insert-UserCode-Here line.

// Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoProlog)

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 43

int bocca_status = 0;
// The user’s code should set bocca_status 0 if computation proceeded ok.
// The user’s code should set bocca_status -1 if computation failed but might
// succeed on another call to go(), e.g. when a required port is not yet
// connected.
// The user’s code should set bocca_status -2 if the computation failed and
// can never succeed in a future call.
// The user’s code should NOT use return in this function.
// Exceptions that are not caught in user code will be converted to
// status -2.

gov::cca::Port port;

// nil if not fetched and cast successfully:
demo::Integration integrate;
// True when releasePort is needed (even if cast fails):
bool integrate_fetched = false;
// Use a demo.Integration port with port name integrate
try{

port = this->d_services.getPort("integrate");
} catch (::gov::cca::CCAException ex) {

// we will continue with port nil (never successfully assigned) and
// set a flag.

#ifdef _BOCCA_STDERR
std::cerr << "demo.Driver: Error calling getPort(\"integrate\") "

" at " << __FILE__ << ":" << __LINE__ -5 << ": " << ex.getNote()
<< std::endl;

#endif // _BOCCA_STDERR

}
if (port._not_nil()) {

// even if the next cast fails, must release.
integrate_fetched = true;
integrate = ::babel_cast< demo::Integration >(port);
if (integrate._is_nil()) {

#ifdef _BOCCA_STDERR
std::cerr << "demo.Driver: Error casting gov::cca::Port "

<< "integrate to type "
<< "demo::Integration" << std::endl;

#endif //_BOCCA_STDERR

goto BOCCAEXIT; // we cannot correctly continue. clean up and leave.
}

}

// Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoProlog)

// When this try/catch block is rewritten by the user, we will not change it.
try {

// All port instances should be rechecked for ._not_nil before calling in

44 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

// user code. Not all ports need be connected in arbitrary use.
// The uses ports appear as local variables here named exactly as on the
// bocca commandline.

// Insert-UserCode-Here {demo.Driver.go}

double value;
int count = 100000;
double lowerBound = 0.0, upperBound = 1.0;

// operate on the port
value = integrate.march(lowerBound, upperBound, count);
std::cout << "Value = " << value << std::endl;

}
// If unknown exceptions in the user code are tolerable and restart is ok,
// return -1 instead. -2 means the component is so confused that it and
// probably the application should be destroyed.
catch (sidl::BaseException ex) {

bocca_status = -2;
std::string enote = ex.getNote();

#ifdef _BOCCA_STDERR
std::cerr << "Exception in user go code: " << enote << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;;

#endif

}
catch (std::exception ex) {

bocca_status = -2;

#ifdef _BOCCA_STDERR
std::cerr << "C++ exception in user go code: " << ex.what() << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;

#endif

}
catch (...) {

bocca_status = -2;

#ifdef _BOCCA_STDERR
std::cerr << "Odd exception in user go code " << std::endl;
std::cerr << "Returning -2 from go()" << std::endl;

#endif

}

BOCCAEXIT:; // target point for error and regular cleanup. do not delete.
// Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoEpilog)

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 45

// release integrate
if (integrate_fetched) {

integrate_fetched = false;
try{

this->d_services.releasePort("integrate");
} catch (::gov::cca::CCAException ex) {

#ifdef _BOCCA_STDERR
std::cerr << "demo.Driver: Error calling releasePort("

<< "\"integrate\") at "
<< __FILE__ << ":" << __LINE__ -4 << ": " << ex.getNote()
<< std::endl;

#endif // _BOCCA_STDERR

}
// c++ port reference will be dropped when function exits, but we
// must tell framework.

}

return bocca_status;
// Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoEpilog)

// DO-NOT-DELETE splicer.end(demo.Driver.go)

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited.

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/demo.Driver/demo_Driver_Impl.cxx

Now remake your project tree to finish the components:

$ make

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’
===
No SIDL files in external/sidl, skipping build for external
===
===
Building in ports/, languages: cxx
===
Building ports...
===
Building in components/clients/, languages: cxx
===
Building clients...
===
Building in components/, languages: cxx
===

[s] Building class/component demo.Driver:
[s] creating class/component library: libdemo.Driver.la ...
[s] finished libtooling: components/demo.Driver/libdemo.Driver.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Driver_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.Function:

46 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

[s] creating class/component library: libdemo.Function.la ...
[s] finished libtooling: components/demo.Function/libdemo.Function.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Function_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.Integrator:
[s] creating class/component library: libdemo.Integrator.la ...
[s] finished libtooling: components/demo.Integrator/libdemo.Integrator.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.Integrator_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.emptyComponent:

doing nothing -- library is up-to-date.
Build summary:
SUCCESS building demo.Driver
SUCCESS building demo.Function
SUCCESS building demo.Integrator
To test instantiation of successfully built components, run ’make check’
################ Finished building everything #################
####### You can run some simple tests with ’make check’ #######
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’

It is good practice to do a make check at this point:

$ make check

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’
make --no-print-directory --no-builtin-rules -C components check
Test library load and instantiation for the following languages: cxx
Running instantiation tests only
###
LDPATH=/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/lib:/usr/local/ACTS/cca/lib:/usr/local/ACTS/cca/lib:/usr/local/packages/java-1.6.0_14/jre/lib/i386/client:/usr/local/packages/java-1.6.0_14/jre/lib/i386/server::/usr/local/packages/java-1.6.0_14/jre/lib/i386::/usr/local/ACTS/cca/lib:/usr/local/ACTS/CCAtk/components/TauPerformance-1.7.3:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib:/usr/local/packages/openmpi/lib:/usr/local/packages/papi/lib:/usr/local/packages/vampirtrace/lib:/usr/local/packages/vampir-server/lib:/usr/local/packages/perfsuite/lib:/usr/local/packages/tau/i386_linux/lib:/usr/local/packages/dyninstAPI/i386-unknown-linux2.4/lib:/usr/local/packages/periscope/lib
###
PYTHONPATH=/usr/local/ACTS/cca/lib/python2.5/site-packages:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/lib/python2.5/site-packages:/usr/local/ACTS/cca/lib/cca-spec-babel-0_8_6-babel-1.4.0/python2.5/site-packages:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:
###
CLASSPATH=/usr/local/ACTS/cca/lib/sidl-1.4.0.jar:/usr/local/ACTS/cca/lib/sidlstub_1.4.0.jar:/usr/local/ACTS/cca/lib/cca-spec.jar:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/lib/java:
###
Test script: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/tests/instantiation.gen.rc
Log file: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/tests/instantiation.gen.rc.log
SUCCESS:
==> Instantiation tests passed for all built components (see /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’

You should now be able to instantiate these components, assemble them into an application,
and run the application, following the same procedures as in Section 2, and get a result that’s
reasonably close to pi.

3.5.2 Fortran9X Implementation

Note
Assumes you created the project with bocca create project demo
--language=f90.

Edit the evaluate method in the implementation file (also known as “the impl”) that Bocca
has generated for you (by invoking Babel). Use the bocca edit -i to go directly to each
method.

$ bocca edit -i Function evaluate

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 47

The editor opens up in the place where the implementation code for evaluate must be put.
You see a default implementation generated by Babel for all user methods: the throwing of an
exception which says the method is not yet implemented.

recursive subroutine demo_Function_evaluate_mi(self, x, retval, exception)
use sidl
use sidl_NotImplementedException
use sidl_BaseInterface
use sidl_RuntimeException
use demo_Function
use demo_Function_impl
! DO-NOT-DELETE splicer.begin(demo.Function.evaluate.use)
! Insert-Code-Here {demo.Function.evaluate.use} (use statements)
! DO-NOT-DELETE splicer.end(demo.Function.evaluate.use)
implicit none
type(demo_Function_t) :: self
! in
real (kind=sidl_double) :: x
! in
real (kind=sidl_double) :: retval
! out
type(sidl_BaseInterface_t) :: exception
! out

! DO-NOT-DELETE splicer.begin(demo.Function.evaluate)
! Insert-Code-Here {demo.Function.evaluate} (evaluate method)
!
! This method has not been implemented
!

! DO-DELETE-WHEN-IMPLEMENTING exception.begin(demo.Function.evaluate)
type(sidl_BaseInterface_t) :: throwaway
type(sidl_NotImplementedException_t) :: notImpl
call new(notImpl, exception)
call setNote(notImpl, ’Not Implemented’, exception)
call cast(notImpl, exception,throwaway)
call deleteRef(notImpl,throwaway)
return
! DO-DELETE-WHEN-IMPLEMENTING exception.end(demo.Function.evaluate)

! DO-NOT-DELETE splicer.end(demo.Function.evaluate)
end subroutine demo_Function_evaluate_mi

As the comment suggests, this method is “not implemented”, but some code has been inserted
by Babel to make sure an exception is thrown to inform the user if this method is called by mis-
take. Delete this exception code and substitute an implementation for the PiFunction (i.e., the
integral from 0 to 1 of 4/(1 + x2) is an approximation of π).

! DO-NOT-DELETE splicer.begin(demo.Function.evaluate)

retval = 4.0 / (1.0 + x * x)

48 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

! DO-NOT-DELETE splicer.end(demo.Function.evaluate)

Now in the same file just above the evaluate method, find the second method for the
FunctionPort init method:

! DO-NOT-DELETE splicer.begin(demo.Function.init)

! Do nothing

! DO-NOT-DELETE splicer.end(demo.Function.init)

We don’t have any initialization in this simple example, so we just eliminate the code that
throws the exception when the method is executed.

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited:

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/components/demo.Function/demo_Function_Impl.F90

Similarly edit the march method in the Integrator with

$ bocca edit -i Integrator march

recursive subroutine demo_Integrator_march_mi(self, lowBound, upBound, count, &
retval, exception)
use sidl
use sidl_NotImplementedException
use sidl_BaseInterface
use sidl_RuntimeException
use demo_Integrator
use demo_Integrator_impl
! DO-NOT-DELETE splicer.begin(demo.Integrator.march.use)
! Insert-Code-Here {demo.Integrator.march.use} (use statements)
! DO-NOT-DELETE splicer.end(demo.Integrator.march.use)
implicit none
type(demo_Integrator_t) :: self
! in
real (kind=sidl_double) :: lowBound
! in
real (kind=sidl_double) :: upBound
! in
integer (kind=sidl_int) :: count
! in
real (kind=sidl_double) :: retval
! out
type(sidl_BaseInterface_t) :: exception
! out

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 49

! DO-NOT-DELETE splicer.begin(demo.Integrator.march)
! Insert-Code-Here {demo.Integrator.march} (march method)
!
! This method has not been implemented
!

! DO-DELETE-WHEN-IMPLEMENTING exception.begin(demo.Integrator.march)
type(sidl_BaseInterface_t) :: throwaway
type(sidl_NotImplementedException_t) :: notImpl
call new(notImpl, exception)
call setNote(notImpl, ’Not Implemented’, exception)
call cast(notImpl, exception,throwaway)
call deleteRef(notImpl,throwaway)
return
! DO-DELETE-WHEN-IMPLEMENTING exception.end(demo.Integrator.march)

! DO-NOT-DELETE splicer.end(demo.Integrator.march)
end subroutine demo_Integrator_march_mi

Again remove this boilerplate exception code and insert an implementation of the Trapezoid
rule for integration that uses the FunctionPort :

! DO-NOT-DELETE splicer.begin(demo.Integrator.march.use)

! the port types we need go here.
use gov_cca_Port
use demo_FunctionPort

! DO-NOT-DELETE splicer.end(demo.Integrator.march.use)

! DO-NOT-DELETE splicer.begin(demo.Integrator.march)

! User’s local declarations. We follow the pattern generated for us in Driver.go()
type(gov_cca_Port_t) :: port
type(gov_cca_Services_t) :: services
type(SIDL_BaseInterface_t) :: throwaway
type(SIDL_BaseInterface_t) :: dumex
type(demo_Integrator_wrap) :: dp
logical dr_port ! if dr_X true, the deleteRef(X) is needed before return.

type(demo_FunctionPort_t) :: odeRHS__p
! odeRHS__p is non-null if specific uses port obtained.

logical odeRHS_fetched
! odeRHS_fetched true if releaseport is needed for this port.

! a small message catalog for exception reporting
character (LEN=*) errMsg00
character (LEN=*) errMsg0
character (LEN=*) errMsg1

50 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

character (LEN=*) errMsg2
character (LEN=*) errMsg3
character (LEN=*) errMsg4
parameter(errMsg00= &

’NULL d_services pointer in demo.Integrator.march()’)
parameter(errMsg0= &

’demo.Integrator: Error go() getPort(odeRHS) failed.’)
parameter(errMsg1= &

’demo.Integrator: Error casting odeRHS to FunctionPort’)
parameter(errMsg2= &

’demo.Integrator: Error in deleteRef(port) while getting odeRHS’)
parameter(errMsg3= &

’demo.Integrator: Error calling releasePort(odeRHS).’)
parameter(errMsg4= &

’demo.Integrator: Error in deleteRef for port odeRHS.’)

! numerical method variable, other than the call arguments:
real (kind=sidl_double) :: h, fvalueleft, fvalueright, sum, left, right
integer i

BOCCA_EXTERNAL
! not crashing if something fails .eq. good bookkeeping and exception handling.
! start with initialization
call set_null(odeRHS__p)
odeRHS_fetched = .false.
call set_null(services)
call set_null(port)
call set_null(throwaway)
call set_null(dumex)
dr_port = .false.
call demo_Integrator__get_data_m(self,dp);
services = dp%d_private_data%d_services
retval = -4.0

if (is_null(services)) then
call BOCCA_SIDL_THROW_F90(exception, errMsg00)

endif

! Use a demo.FunctionPort port with port name odeRHS
call getPort(services,"odeRHS", port, exception)
BOCCA_SIDL_CHECK_F90(exception, errMsg0)

odeRHS_fetched = .true.
! even if the next cast fails, must releasePort per odeRHS_fetched.
call cast(port, odeRHS__p, exception)
BOCCA_SIDL_CHECK_F90(exception, errMsg1)

! done with the generic port pointer. drop it.
call deleteRef(port, exception)
call set_null(port)
BOCCA_SIDL_CHECK_F90(exception, errMsg2)

!! here’s the numerical work

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 51

! the trapezoidal rule
h = (upBound - lowBound) / count
sum = 0.0
fvalueleft = 0.0
fvalueright = 0.0
do i = 1,count

left = lowBound + (i - 1) * h
call evaluate(odeRHS__p, left, fvalueleft, exception)
BOCCA_SIDL_CHECK_F90(exception, ’error calculating fvalueleft’)

right = lowBound + i * h
call evaluate(odeRHS__p, right, fvalueright, exception)
BOCCA_SIDL_CHECK_F90(exception, ’error calculating fvalueright’)

sum = sum + fvalueleft + fvalueright
enddo
retval = h/2.0 * sum;

!! the numerical work is done.

BOCCAEXIT continue ! target point for normal and error cleanup.

if (not_null(port)) then
call deleteRef(port,throwaway)
call checkException(self, throwaway, ’cleanup port error’, .false., dumex)
call set_null(port)

endif

! release odeRHS
if (odeRHS_fetched) then

odeRHS_fetched = .false.
call releasePort(services, ’odeRHS’, throwaway)
call checkException(self, throwaway, errMsg3, .false., dumex)

if (not_null(odeRHS__p)) then
call deleteRef(odeRHS__p, throwaway)
call checkException(self, throwaway, errMsg4, .false., dumex)
call set_null(odeRHS__p)

endif

endif

! DO-NOT-DELETE splicer.end(demo.Integrator.march)

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited:

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/components/demo.Integrator/demo_Integrator_Impl.F90

Finally for the Driver component we have to implement the GoPort details to get things
going. Bocca will take you to the generated method, which looks like this:

52 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

$ bocca edit -i Driver go

recursive subroutine demo_Driver_go_mi(self, retval, exception)
use sidl
use sidl_NotImplementedException
use sidl_BaseInterface
use sidl_RuntimeException
use demo_Driver
use demo_Driver_impl
! DO-NOT-DELETE splicer.begin(demo.Driver.go.use)

! Bocca generated code. bocca.protected.begin(demo.Driver.go.use)
use gov_cca_Port
use demo_Integration

! Bocca generated code. bocca.protected.end(demo.Driver.go.use)

! DO-NOT-DELETE splicer.end(demo.Driver.go.use)
implicit none
type(demo_Driver_t) :: self
! in
integer (kind=sidl_int) :: retval
! out
type(sidl_BaseInterface_t) :: exception
! out

! DO-NOT-DELETE splicer.begin(demo.Driver.go)

! Insert-User-Declarations-Here

! Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoProlog)

integer bocca_status
! The user’s code should set bocca_status 0 if computation proceeded ok.
! The user’s code should set bocca_status -1 if computation failed but might
! succeed on another call to go(), e.g. wheh a required port is not yet connected.
! The user’s code should set bocca_status -2 if the computation failed and can
! never succeed in a future call.
! The users’s code should NOT use return in this function;
! Exceptions that are not caught in user code will be converted to status -2.
!

type(gov_cca_Port_t) :: port
type(gov_cca_Services_t) :: services
type(SIDL_BaseInterface_t) :: throwaway
type(SIDL_BaseInterface_t) :: dumex
type(demo_Driver_wrap) :: dp
logical dr_port ! if dr_X true, the deleteRef(X) is needed before return.

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 53

type(demo_Integration_t) :: integrate__p ! non-null if specific uses port obtained.
logical integrate_fetched ! true if releaseport is needed for this port.
character (LEN=*) errMsg0_integrate
character (LEN=*) errMsg1_integrate
character (LEN=*) errMsg2_integrate
character (LEN=*) errMsg3_integrate
character (LEN=*) errMsg4_integrate
parameter(errMsg0_integrate= &

’demo.Driver: Error go() getPort(integrate) failed.’)
parameter(errMsg1_integrate= &

’demo.Driver: Error casting gov.cca.Port integrate to type demo.Integration’)
parameter(errMsg2_integrate= &

’demo.Driver: Error in deleteRef(port) while getting integrate’)
parameter(errMsg3_integrate= &

’demo.Driver: Error calling releasePort(integrate). Continuing.’)
parameter(errMsg4_integrate = &

’demo.Driver: Error in deleteRef for port integrate. Continuing.’)

BOCCA_EXTERNAL
! not crashing if something fails requires good bookkeeping and exception handling.
call set_null(services)
call set_null(port)
call set_null(throwaway)
call set_null(dumex)
dr_port = .false.
bocca_status = 0
call demo_Driver__get_data_m(self,dp);
services = dp%d_private_data%d_services

if (is_null(services)) then
call BOCCA_SIDL_THROW_F90(exception, ’NULL d_services pointer in demo.Driver.go()’)

endif

! Use a demo.Integration port with port name integrate
call getPort(services,"integrate", port, throwaway)
if (not_null(throwaway)) then

call set_null(port)
call checkException(self, throwaway, errMsg0_integrate, .false., dumex)
! we will continue with port null (never successfully assigned) and set a flag.

endif

call set_null(integrate__p)
integrate_fetched = .false.
if (not_null(port)) then

integrate_fetched = .true. ! even if the next cast fails, must releasePort.
call cast(port, integrate__p, exception)
BOCCA_SIDL_CHECK_F90(exception, errMsg1_integrate)
call deleteRef(port, exception)
call set_null(port)
BOCCA_SIDL_CHECK_F90(exception, errMsg2_integrate)

endif

54 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

! Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoProlog)

! When this block is rewritten by the user, we will not change it.
! All port instances should be rechecked for NULL before calling in user code.
! Not all ports need be connected in arbitrary use.
! The port instance names used in registerUsesPort appear as local variable
! names here with the suffix __p added.

! BEGIN REMOVE ME BLOCK
#ifdef _BOCCA_STDERR

write(*,*) ’USER FORGOT TO FILL IN THEIR FUNCTION demo.Driver.go.’
#endif
! END REMOVE ME BLOCK

! If unknown exceptions in the user code are tolerable and restart is ok,
! set bocca_status -1 instead.
! -2 means the component is so confused that it and probably the application
! should be destroyed.
!

BOCCAEXIT continue ! target point for normal and error cleanup. do not delete.
! Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoEpilog)

if (not_null(port)) then
call deleteRef(port,throwaway)
call checkException(self, throwaway, ’cleanup port error’, .false., dumex)
call set_null(port)

endif

! release integrate
if (integrate_fetched) then

integrate_fetched = .false.
call releasePort(services, ’integrate’, throwaway)
call checkException(self, throwaway, errMsg3_integrate, .false., dumex)

if (not_null(integrate__p)) then
call deleteRef(integrate__p, throwaway)
call checkException(self, throwaway, errMsg4_integrate, .false., dumex)
call set_null(integrate__p)

endif

endif

! Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoEpilog)

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 55

! Insert-User-Exception-Cleanup-Here

retval = bocca_status
!
! This method has not been implemented
!

! DO-NOT-DELETE splicer.end(demo.Driver.go)
end subroutine demo_Driver_go_mi

Find the REMOVE block within the go method implementation, delete it, and insert the numeri-
cal logic needed to use the integrator.IntegratorPort port. Any required local variables
should be inserted just before the boccaGoProlog protected block.

The go subroutine will be called by the framework when the component’s run button (the
name of this particular GoPort instance) is pushed in the GUI. Bocca generates the code to the
Integration that the Driver is connected to. We just have to use it to compute the integral
and return the proper value for bocca status.

! DO-NOT-DELETE splicer.begin(demo.Driver.go)
! Insert-User-Declarations-Here

! local variables for integration
real (kind=sidl_double) :: lowBound
real (kind=sidl_double) :: upBound
integer (kind=sidl_int) :: count
real (kind=sidl_double) :: value

! Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoProlog)

integer bocca_status
! The user’s code should set bocca_status 0 if computation proceeded ok.
! The user’s code should set bocca_status -1 if computation failed but might
! succeed on another call to go(), e.g. wheh a required port is not yet connected.
! The user’s code should set bocca_status -2 if the computation failed and can
! never succeed in a future call.
! The users’s code should NOT use return in this function;
! Exceptions that are not caught in user code will be converted to status -2.
!

type(gov_cca_Port_t) :: port
type(gov_cca_Services_t) :: services
type(SIDL_BaseInterface_t) :: throwaway
type(SIDL_BaseInterface_t) :: dumex
type(demo_Driver_wrap) :: dp
logical dr_port ! if dr_X true, the deleteRef(X) is needed before return.

type(demo_Integration_t) :: integrate__p ! non-null if specific uses port obtained.
logical integrate_fetched ! true if releaseport is needed for this port.
character (LEN=*) errMsg0_integrate

56 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

character (LEN=*) errMsg1_integrate
character (LEN=*) errMsg2_integrate
character (LEN=*) errMsg3_integrate
character (LEN=*) errMsg4_integrate
parameter(errMsg0_integrate= &

’demo.Driver: Error go() getPort(integrate) failed.’)
parameter(errMsg1_integrate= &

’demo.Driver: Error casting gov.cca.Port integrate to type demo.Integration’)
parameter(errMsg2_integrate= &

’demo.Driver: Error in deleteRef(port) while getting integrate’)
parameter(errMsg3_integrate= &

’demo.Driver: Error calling releasePort(integrate). Continuing.’)
parameter(errMsg4_integrate = &

’demo.Driver: Error in deleteRef for port integrate. Continuing.’)

BOCCA_EXTERNAL
! not crashing if something fails requires good bookkeeping and exception handling.
call set_null(services)
call set_null(port)
call set_null(throwaway)
call set_null(dumex)
dr_port = .false.
bocca_status = 0
call demo_Driver__get_data_m(self,dp);
services = dp%d_private_data%d_services

if (is_null(services)) then
call BOCCA_SIDL_THROW_F90(exception, ’NULL d_services pointer in demo.Driver.go()’)

endif

! Use a demo.Integration port with port name integrate
call getPort(services,"integrate", port, throwaway)
if (not_null(throwaway)) then

call set_null(port)
call checkException(self, throwaway, errMsg0_integrate, .false., dumex)
! we will continue with port null (never successfully assigned) and set a flag.

endif

call set_null(integrate__p)
integrate_fetched = .false.
if (not_null(port)) then

integrate_fetched = .true. ! even if the next cast fails, must releasePort.
call cast(port, integrate__p, exception)
BOCCA_SIDL_CHECK_F90(exception, errMsg1_integrate)
call deleteRef(port, exception)
call set_null(port)
BOCCA_SIDL_CHECK_F90(exception, errMsg2_integrate)

endif

! Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoProlog)

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 57

! When this block is rewritten by the user, we will not change it.
! All port instances should be rechecked for NULL before calling in user code.
! Not all ports need be connected in arbitrary use.
! The port instance names used in registerUsesPort appear as local variable
! names here with the suffix __p added.

! Initialize local variables
count = 100000
lowBound = 0.0
upBound = 1.0

if (not_null(integrate__p)) then
value = -1.0 ! nonsense number to confirm it is set

! operate on the port. if successful, set the status to 0 for ok.
bocca_status = -2
call march(integrate__p, lowBound, upBound, count, value, exception)
! jump to BOCCAEXIT if an error.
BOCCA_SIDL_CHECK_F90(exception,’Driver:go: problem calling integrate’)
write(*,*) ’Value = ’, value
bocca_status = 0

else
bocca_status = -1 ; ! integratorPort is not connected.
write(*,*) ’Driver: integrate port not connected. connect and try again’

endif

! If unknown exceptions in the user code are tolerable and restart is ok,
! set bocca_status -1 instead.
! -2 means the component is so confused that it and probably the application
! should be destroyed.
!

BOCCAEXIT continue ! target point for normal and error cleanup. do not delete.
! Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoEpilog)

if (not_null(port)) then
call deleteRef(port,throwaway)
call checkException(self, throwaway, ’cleanup port error’, .false., dumex)
call set_null(port)

endif

! release integrate
if (integrate_fetched) then

integrate_fetched = .false.
call releasePort(services, ’integrate’, throwaway)

58 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

call checkException(self, throwaway, errMsg3_integrate, .false., dumex)

if (not_null(integrate__p)) then
call deleteRef(integrate__p, throwaway)
call checkException(self, throwaway, errMsg4_integrate, .false., dumex)
call set_null(integrate__p)

endif

endif

! Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoEpilog)

! Insert-User-Exception-Cleanup-Here

retval = bocca_status

! DO-NOT-DELETE splicer.end(demo.Driver.go)

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited.

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/components/demo.Driver/demo_Driver_Impl.F90

Now remake your project tree to finish the components:

$ make

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo’
===
No SIDL files in external/sidl, skipping build for external
===
===
Building in ports/, languages: f90
===
Building ports...
===
Building in components/clients/, languages: f90
===
Building clients...
===
Building in components/, languages: f90
===

[s] Building class/component demo.Driver:
[s] creating class/component library: libdemo.Driver.la ...
[s] finished libtooling: components/demo.Driver/libdemo.Driver.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/install/share/cca/demo/demo.Driver_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.Function:
[s] creating class/component library: libdemo.Function.la ...
[s] finished libtooling: components/demo.Function/libdemo.Function.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/install/share/cca/demo/demo.Function_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.Integrator:
[s] creating class/component library: libdemo.Integrator.la ...

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 59

[s] finished libtooling: components/demo.Integrator/libdemo.Integrator.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/install/share/cca/demo/demo.Integrator_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.emptyComponent:

doing nothing -- library is up-to-date.
Build summary:
SUCCESS building demo.Driver
SUCCESS building demo.Function
SUCCESS building demo.Integrator
To test instantiation of successfully built components, run ’make check’
################ Finished building everything #################
####### You can run some simple tests with ’make check’ #######
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo’

It is good practice to do a make check at this point:

$ make check

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo’
make --no-print-directory --no-builtin-rules -C components check
Test library load and instantiation for the following languages: f90
Running instantiation tests only
###
LDPATH=/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/install/lib:/usr/local/ACTS/cca/lib:/usr/local/ACTS/cca/lib:/usr/local/packages/java-1.6.0_14/jre/lib/i386/client:/usr/local/packages/java-1.6.0_14/jre/lib/i386/server::/usr/local/packages/java-1.6.0_14/jre/lib/i386::/usr/local/ACTS/cca/lib:/usr/local/ACTS/CCAtk/components/TauPerformance-1.7.3:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib:/usr/local/packages/openmpi/lib:/usr/local/packages/papi/lib:/usr/local/packages/vampirtrace/lib:/usr/local/packages/vampir-server/lib:/usr/local/packages/perfsuite/lib:/usr/local/packages/tau/i386_linux/lib:/usr/local/packages/dyninstAPI/i386-unknown-linux2.4/lib:/usr/local/packages/periscope/lib
###
PYTHONPATH=/usr/local/ACTS/cca/lib/python2.5/site-packages:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/install/lib/python2.5/site-packages:/usr/local/ACTS/cca/lib/cca-spec-babel-0_8_6-babel-1.4.0/python2.5/site-packages:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:
###
CLASSPATH=/usr/local/ACTS/cca/lib/sidl-1.4.0.jar:/usr/local/ACTS/cca/lib/sidlstub_1.4.0.jar:/usr/local/ACTS/cca/lib/cca-spec.jar:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/install/lib/java:
###
Test script: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/components/tests/instantiation.gen.rc
Log file: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/components/tests/instantiation.gen.rc.log
SUCCESS:
==> Instantiation tests passed for all built components (see /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/f90/demo’

You should now be able to instantiate these components, assemble them into an application,
and run the application, following the same procedures as in Section 2, and get a result that’s
reasonably close to pi.

3.5.3 C Implementation

Note
Assumes you created the project with bocca create project demo
--language=c.

Edit the evaluate method in the implementation file (also known as “the impl”) that Bocca
has generated for you (by invoking Babel). Use the bocca edit -i to go directly to each
method.

$ bocca edit -i Function evaluate

The editor opens up in the place where the implementation code for evaluate must be put.
You see a default implementation generated by Babel for all user methods: the throwing of an
exception which says the method is not yet implemented.

60 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

double
impl_demo_Function_evaluate(

/* in */ demo_Function self,
/* in */ double x,
/* out */ sidl_BaseInterface *_ex)

{

*_ex = 0;
{

/* DO-NOT-DELETE splicer.begin(demo.Function.evaluate) */
/* Insert-Code-Here {demo.Function.evaluate} (evaluate method) */
/*
* This method has not been implemented

*/

/* DO-DELETE-WHEN-IMPLEMENTING exception.begin(demo.Function.evaluate) */
SIDL_THROW(*_ex, sidl_NotImplementedException, "This method has not been implemented");

EXIT:;
/* DO-DELETE-WHEN-IMPLEMENTING exception.end(demo.Function.evaluate) */
/* DO-NOT-DELETE splicer.end(demo.Function.evaluate) */

}
}

As the comment suggests, this method is “not implemented”, but some code has been inserted
by Babel to make sure an exception is thrown to inform the user if this method is called by mis-
take. Delete this exception code and substitute an implementation for the PiFunction (i.e., the
integral from 0 to 1 of 4/(1 + x2) is an approximation of π).

/* DO-NOT-DELETE splicer.begin(demo.Function.evaluate) */

return 4.0 / (1.0 + x * x);

/* DO-NOT-DELETE splicer.end(demo.Function.evaluate) */

Now in the same file just above the evaluate method, find the second method for the
FunctionPort init method:

/* DO-NOT-DELETE splicer.begin(demo.Function.init) */

/* Do nothing.*/

/* DO-NOT-DELETE splicer.end(demo.Function.init) */

We don’t have any initialization in this simple example, so we just eliminate the code that
throws the exception when the method is executed.

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited:

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 61

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/components/demo.Function/demo_Function_Impl.c

Similarly edit the march method in the Integrator with

$ bocca edit -i Integrator march

double
impl_demo_Integrator_march(

/* in */ demo_Integrator self,
/* in */ double lowBound,
/* in */ double upBound,
/* in */ int32_t count,
/* out */ sidl_BaseInterface *_ex)

{

*_ex = 0;
{

/* DO-NOT-DELETE splicer.begin(demo.Integrator.march) */
/* Insert-Code-Here {demo.Integrator.march} (march method) */
/*
* This method has not been implemented

*/

/* DO-DELETE-WHEN-IMPLEMENTING exception.begin(demo.Integrator.march) */
SIDL_THROW(*_ex, sidl_NotImplementedException, "This method has not been implemented");

EXIT:;
/* DO-DELETE-WHEN-IMPLEMENTING exception.end(demo.Integrator.march) */
/* DO-NOT-DELETE splicer.end(demo.Integrator.march) */

}
}

Again remove this boilerplate exception code and insert an implementation of the Trapezoid
rule for integration that uses the FunctionPort :

/* DO-NOT-DELETE splicer.begin(demo.Integrator.march) */

gov_cca_Port port = NULL;
gov_cca_Services services = NULL;
sidl_BaseInterface throwaway_excpt = NULL;
sidl_BaseInterface dummy_excpt = NULL;
struct demo_Integrator__data *pd = NULL;
const char *errMsg = NULL;
double retval = 0.0;

demo_FunctionPort odeRHS = NULL;
/* odeRHS non-null if specific uses port obtained. */

int odeRHS_fetched = FALSE;
/* odeRHS_fetched true if releaseport is needed for this port. */

pd = demo_Integrator__get_data(self);
if (pd == NULL) {

62 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

SIDL_THROW(*_ex, sidl_SIDLException,
"NULL object data pointer in demo.Integrator.march()");

}
services = pd->d_services;
if (services == NULL) {

SIDL_THROW(*_ex, sidl_SIDLException,
"NULL pd->d_services pointer in demo.Integrator.march()");

}

/* Use a demo.Integration port with port name odeRHS */
port =

gov_cca_Services_getPort(services,"odeRHS", _ex); SIDL_CHECK(*_ex);
odeRHS_fetched = TRUE;
/* even if the next cast fails, must releasePort. */

errMsg="demo.Integrator: Error casting odeRHS to FunctionPort";
odeRHS = gov_cca_Services__cast2(port,

"demo.FunctionPort",
_ex); SIDL_CHECK(*_ex);

gov_cca_Port_deleteRef(port, _ex); port = NULL; SIDL_CHECK(*_ex);

{
double h;
double sum = 0.0;
double left, right, fvalueleft, fvalueright;
int i;

h = (upBound - lowBound) / (1.0*count);
printf("Evaluating from %g to %g by %d\n",lowBound ,upBound, count);
for (i = 1; i <= count; i++){

left = lowBound + (i - 1) * h;
fvalueleft = demo_FunctionPort_evaluate(odeRHS,

left,_ex); SIDL_CHECK(*_ex);

right = lowBound + i * h;
fvalueright = demo_FunctionPort_evaluate(odeRHS,

right,_ex); SIDL_CHECK(*_ex);

sum += (fvalueleft + fvalueright);
}
retval = h * sum/2.0;
printf("IP returning %g\n",retval);

}
EXIT:; /* target point for normal and error cleanup. do not delete. */

/* release integrate */
if (odeRHS_fetched) {

odeRHS_fetched = FALSE;
gov_cca_Services_releasePort(services,"odeRHS",&throwaway_excpt);
if (throwaway_excpt != NULL) {

errMsg= "demo.Integrator: Error calling"
" releasePort(\"integrate\"). Continuing.";

demo_Integrator_checkException(self, throwaway_excpt, errMsg,

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 63

FALSE, &dummy_excpt);
}
if (odeRHS != NULL) {

demo_FunctionPort_deleteRef(odeRHS, &throwaway_excpt);
errMsg = "Error in demo_FunctionPort_deleteRef"

" for demo.Function port odeRHS";
demo_Integrator_checkException(self, throwaway_excpt, errMsg,

FALSE, &dummy_excpt);
odeRHS = NULL;

}
}

return retval;

/* DO-NOT-DELETE splicer.end(demo.Integrator.march) */

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited:

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/components/demo.Integrator/demo_Integrator_Impl.c

Finally for the Driver component we have to implement the GoPort details to get things
going. Bocca will take you to the generated method, which looks like this:

$ bocca edit -i Driver go

int32_t
impl_demo_Driver_go(

/* in */ demo_Driver self,
/* out */ sidl_BaseInterface *_ex)

{

*_ex = 0;
{

/* DO-NOT-DELETE splicer.begin(demo.Driver.go) */

/* User action portion is in the middle at the next Insert-UserCode-Here line. */

/* Insert-User-Declarations-Here */

/* Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoProlog) */

int bocca_status = 0;
/* The user’s code should set bocca_status 0 if computation proceeded ok.
// The user’s code should set bocca_status -1 if computation failed but might
// succeed on another call to go(), e.g. wheh a required port is not yet connected.
// The user’s code should set bocca_status -2 if the computation failed and can
// never succeed in a future call.
// The users’s code should NOT use return in this function;

64 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

// Exceptions that are not caught in user code will be converted to status -2.

*/

gov_cca_Port port = NULL;
gov_cca_Services services = NULL;
sidl_BaseInterface throwaway_excpt = NULL;
sidl_BaseInterface dummy_excpt = NULL;
struct demo_Driver__data *pd = NULL;
const char *errMsg = NULL;

demo_Integration integrate = NULL; /* non-null if specific uses port obtained. */
int integrate_fetched = FALSE; /* true if releaseport is needed for this port. */

pd = demo_Driver__get_data(self);
if (pd == NULL) {

SIDL_THROW(*_ex, sidl_SIDLException,
"NULL object data pointer in demo.Driver.go()");

}
services = pd->d_services;
if (services == NULL) {

SIDL_THROW(*_ex, sidl_SIDLException,
"NULL pd->d_services pointer in demo.Driver.go()");

}

/* Use a demo.Integration port with port name integrate */
port = gov_cca_Services_getPort(services,"integrate", &throwaway_excpt);
if (throwaway_excpt != NULL) {

port = NULL;
errMsg="go() getPort(integrate) failed.";
demo_Driver_checkException(self, throwaway_excpt, errMsg,

FALSE, &dummy_excpt);
/* we will continue with port NULL (never successfully assigned) and set a flag. */
BOCCA_FPRINTF(stderr,

"demo.Driver: Error calling getPort(\"integrate\") at %s:%d. Continuing.\n",
__FILE__ , __LINE__ -8);

}

if (port != NULL) {
integrate_fetched = TRUE; /* even if the next cast fails, must releasePort. */
errMsg="demo.Driver: Error casting gov.cca.Port integrate to type demo.Integration";
integrate = demo_Integration__cast(port, _ex); SIDL_CHECK(*_ex);
gov_cca_Port_deleteRef(port,_ex); port = NULL; SIDL_CHECK(*_ex);

}

/* Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoProlog) */

/* When this block is rewritten by the user, we will not change it.
All port instances should be rechecked for NULL before calling in user code.

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 65

Not all ports need be connected in arbitrary use.
The port instance names used in registerUsesPort appear as local variable
names here.
’return’ should not be used here; set bocca_status instead.

*/

/* Insert-UserCode-Here {demo.Driver.go} */

/* BEGIN REMOVE ME BLOCK */
BOCCA_FPRINTF(stderr,

"USER FORGOT TO FILL IN THEIR GO FUNCTION %s:%d.\n",
__FILE__,__LINE__);

/* END REMOVE ME BLOCK */

/* If unknown exceptions in the user code are tolerable and restart is ok,
set bocca_status -1 instead.
-2 means the component is so confused that it and probably the component
or application should be destroyed.

*/

EXIT:; /* target point for normal and error cleanup. do not delete. */
/* Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoEpilog) */

/* release integrate */
if (integrate_fetched) {

integrate_fetched = FALSE;
gov_cca_Services_releasePort(services,"integrate",&throwaway_excpt);
if (throwaway_excpt != NULL) {

errMsg= "demo.Driver: Error calling releasePort(\"integrate\"). Continuing.";
demo_Driver_checkException(self, throwaway_excpt, errMsg, FALSE, &dummy_excpt);

}
if (integrate != NULL) {

demo_Integration_deleteRef(integrate, &throwaway_excpt);
errMsg = "Error in demo_Integration_deleteRef for demo.Driver port integrate";
demo_Driver_checkException(self, throwaway_excpt, errMsg, FALSE, &dummy_excpt);
integrate = NULL;

}
}

/* Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoEpilog) */

/* Insert-User-Exception-Cleanup-Here */

return bocca_status;
/*
* This method has not been implemented

*/

/* DO-NOT-DELETE splicer.end(demo.Driver.go) */
}

}

66 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

Find the REMOVE block within the go method implementation, delete it, and insert the numeri-
cal logic needed to use the integrator.IntegratorPort port. Any required local variables
should be inserted just before the boccaGoProlog protected block.

The go subroutine will be called by the framework when the component’s run button (the
name of this particular GoPort instance) is pushed in the GUI. Bocca generates the code to the
Integration that the Driver is connected to. We just have to use it to compute the integral
and return the proper value for bocca status.

/* DO-NOT-DELETE splicer.begin(demo.Driver.go) */

/* User action portion is in the middle at the next Insert-UserCode-Here line. */

/* Insert-User-Declarations-Here */

/* Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoProlog) */

int bocca_status = 0;
/* The user’s code should set bocca_status 0 if computation proceeded ok.
// The user’s code should set bocca_status -1 if computation failed but might
// succeed on another call to go(), e.g. wheh a required port is not yet connected.
// The user’s code should set bocca_status -2 if the computation failed and can
// never succeed in a future call.
// The users’s code should NOT use return in this function;
// Exceptions that are not caught in user code will be converted to status -2.

*/

gov_cca_Port port = NULL;
gov_cca_Services services = NULL;
sidl_BaseInterface throwaway_excpt = NULL;
sidl_BaseInterface dummy_excpt = NULL;
struct demo_Driver__data *pd = NULL;
const char *errMsg = NULL;

demo_Integration integrate = NULL; /* non-null if specific uses port obtained. */
int integrate_fetched = FALSE; /* true if releaseport is needed for this port. */

pd = demo_Driver__get_data(self);
if (pd == NULL) {

SIDL_THROW(*_ex, sidl_SIDLException,
"NULL object data pointer in demo.Driver.go()");

}
services = pd->d_services;
if (services == NULL) {

SIDL_THROW(*_ex, sidl_SIDLException,
"NULL pd->d_services pointer in demo.Driver.go()");

}

/* Use a demo.Integration port with port name integrate */
port = gov_cca_Services_getPort(services,"integrate", &throwaway_excpt);

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 67

if (throwaway_excpt != NULL) {
port = NULL;
errMsg="go() getPort(integrate) failed.";
demo_Driver_checkException(self, throwaway_excpt, errMsg,

FALSE, &dummy_excpt);
/* we will continue with port NULL (never successfully assigned) and set a flag. */
BOCCA_FPRINTF(stderr,

"demo.Driver: Error calling getPort(\"integrate\") at %s:%d. Continuing.\n",
__FILE__ , __LINE__ -8);

}

if (port != NULL) {
integrate_fetched = TRUE; /* even if the next cast fails, must releasePort. */
errMsg="demo.Driver: Error casting gov.cca.Port integrate to type demo.Integration";
integrate = demo_Integration__cast(port, _ex); SIDL_CHECK(*_ex);
gov_cca_Port_deleteRef(port,_ex); port = NULL; SIDL_CHECK(*_ex);

}

/* Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoProlog) */

/* When this block is rewritten by the user, we will not change it.
All port instances should be rechecked for NULL before calling in user code.
Not all ports need be connected in arbitrary use.
The port instance names used in registerUsesPort appear as local variable
names here.
’return’ should not be used here; set bocca_status instead.

*/

/* Insert-UserCode-Here {demo.Driver.go} */

if (integrate == NULL) {
bocca_status = -1; /* not connected. skip computation. */

} else {
int count = 100000;
double value = -4;
double lowerBound = 0.0;
double upperBound = 1.0;
fprintf(stdout, "Initvalue = %g\n", value);
value = demo_Integration_march(integrate, lowerBound, upperBound,

count, _ex); SIDL_CHECK(*_ex);
fprintf(stdout, "Value = %g\n", value);
fflush(stdout);

}

/* If unknown exceptions in the user code are tolerable and restart is ok,
set bocca_status -1 instead.

68 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

-2 means the component is so confused that it and probably the component or application
should be destroyed.

*/

EXIT:; /* target point for normal and error cleanup. do not delete. */
/* Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoEpilog) */

/* release integrate */
if (integrate_fetched) {

integrate_fetched = FALSE;
gov_cca_Services_releasePort(services,"integrate",&throwaway_excpt);
if (throwaway_excpt != NULL) {

errMsg= "demo.Driver: Error calling releasePort(\"integrate\"). Continuing.";
demo_Driver_checkException(self, throwaway_excpt, errMsg, FALSE, &dummy_excpt);

}
if (integrate != NULL) {

demo_Integration_deleteRef(integrate, &throwaway_excpt);
errMsg = "Error in demo_Integration_deleteRef for demo.Driver port integrate";
demo_Driver_checkException(self, throwaway_excpt, errMsg, FALSE, &dummy_excpt);
integrate = NULL;

}
}

/* Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoEpilog) */

/* Insert-User-Exception-Cleanup-Here */

return bocca_status;
/* DO-NOT-DELETE splicer.end(demo.Driver.go) */

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited.

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/components/demo.Driver/demo_Driver_Impl.c

Now remake your project tree to finish the components:

$ make

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo’
===
No SIDL files in external/sidl, skipping build for external
===
===
Building in ports/, languages: c
===
Building ports...
===
Building in components/clients/, languages: c
===
Building clients...

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 69

===
Building in components/, languages: c
===

[s] Building class/component demo.Driver:
[s] creating class/component library: libdemo.Driver.la ...
[s] finished libtooling: components/demo.Driver/libdemo.Driver.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/install/share/cca/demo/demo.Driver_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.Function:
[s] creating class/component library: libdemo.Function.la ...
[s] finished libtooling: components/demo.Function/libdemo.Function.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/install/share/cca/demo/demo.Function_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.Integrator:
[s] creating class/component library: libdemo.Integrator.la ...
[s] finished libtooling: components/demo.Integrator/libdemo.Integrator.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/install/share/cca/demo/demo.Integrator_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.emptyComponent:

doing nothing -- library is up-to-date.
Build summary:
SUCCESS building demo.Driver
SUCCESS building demo.Function
SUCCESS building demo.Integrator
To test instantiation of successfully built components, run ’make check’
################ Finished building everything #################
####### You can run some simple tests with ’make check’ #######
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo’

It is good practice to do a make check at this point:

$ make check

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo’
make --no-print-directory --no-builtin-rules -C components check
Test library load and instantiation for the following languages: c
Running instantiation tests only
###
LDPATH=/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/install/lib:/usr/local/ACTS/cca/lib:/usr/local/ACTS/cca/lib:/usr/local/packages/java-1.6.0_14/jre/lib/i386/client:/usr/local/packages/java-1.6.0_14/jre/lib/i386/server::/usr/local/packages/java-1.6.0_14/jre/lib/i386::/usr/local/ACTS/cca/lib:/usr/local/ACTS/CCAtk/components/TauPerformance-1.7.3:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib:/usr/local/packages/openmpi/lib:/usr/local/packages/papi/lib:/usr/local/packages/vampirtrace/lib:/usr/local/packages/vampir-server/lib:/usr/local/packages/perfsuite/lib:/usr/local/packages/tau/i386_linux/lib:/usr/local/packages/dyninstAPI/i386-unknown-linux2.4/lib:/usr/local/packages/periscope/lib
###
PYTHONPATH=/usr/local/ACTS/cca/lib/python2.5/site-packages:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/install/lib/python2.5/site-packages:/usr/local/ACTS/cca/lib/cca-spec-babel-0_8_6-babel-1.4.0/python2.5/site-packages:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:
###
CLASSPATH=/usr/local/ACTS/cca/lib/sidl-1.4.0.jar:/usr/local/ACTS/cca/lib/sidlstub_1.4.0.jar:/usr/local/ACTS/cca/lib/cca-spec.jar:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/install/lib/java:
###
Test script: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/components/tests/instantiation.gen.rc
Log file: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/components/tests/instantiation.gen.rc.log
SUCCESS:
==> Instantiation tests passed for all built components (see /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/c/demo’

You should now be able to instantiate these components, assemble them into an application,
and run the application, following the same procedures as in Section 2, and get a result that’s
reasonably close to pi.

3.5.4 Python Implementation

Note
Assumes you created the project with bocca create project demo
--language=python.

70 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

Edit the evaluate method in the implementation file (also known as “the impl”) that Bocca
has generated for you (by invoking Babel). Use the bocca edit -i to go directly to each
method.

$ bocca edit -i Function evaluate

The editor opens up in the place where the implementation code for evaluate must be put.
You see a default implementation generated by Babel for all user methods: the throwing of an
exception which says the method is not yet implemented.

def evaluate(self, x):
#
sidl EXPECTED INCOMING TYPES
============================
double x
#

#
sidl EXPECTED RETURN VALUE(s)
=============================
double _return
#

DO-NOT-DELETE splicer.begin(evaluate)
#
This method has not been implemented
#

DO-DELETE-WHEN-IMPLEMENTING exception.begin(evaluate)
noImpl = sidl.NotImplementedException.NotImplementedException()
noImpl.setNote("This method has not been implemented.")
raise sidl.NotImplementedException._Exception, noImpl
DO-DELETE-WHEN-IMPLEMENTING exception.end(evaluate)

DO-NOT-DELETE splicer.end(evaluate)

As the comment suggests, this method is “not implemented”, but some code has been inserted
by Babel to make sure an exception is thrown to inform the user if this method is called by mis-
take. Delete this exception code and substitute an implementation for the PiFunction (i.e., the
integral from 0 to 1 of 4/(1 + x2) is an approximation of π).

DO-NOT-DELETE splicer.begin(evaluate)

return 4.0 / (1.0 + x * x)

DO-NOT-DELETE splicer.end(evaluate)

Now in the same file just above the evaluate method, find the second method for the
FunctionPort init method:

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 71

DO-NOT-DELETE splicer.begin(init)

Do nothing.
pass

DO-NOT-DELETE splicer.end(init)

We don’t have any initialization in this simple example, so we just eliminate the code that
throws the exception when the method is executed.

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited:

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/components/demo.Function/demo/Function_Impl.py

Similarly edit the march method in the Integrator with

$ bocca edit -i Integrator march

def march(self, lowBound, upBound, count):
#
sidl EXPECTED INCOMING TYPES
============================
double lowBound
double upBound
int count
#

#
sidl EXPECTED RETURN VALUE(s)
=============================
double _return
#

DO-NOT-DELETE splicer.begin(march)
#
This method has not been implemented
#

DO-DELETE-WHEN-IMPLEMENTING exception.begin(march)
noImpl = sidl.NotImplementedException.NotImplementedException()
noImpl.setNote("This method has not been implemented.")
raise sidl.NotImplementedException._Exception, noImpl
DO-DELETE-WHEN-IMPLEMENTING exception.end(march)

DO-NOT-DELETE splicer.end(march)

Again remove this boilerplate exception code and insert an implementation of the Trapezoid
rule for integration that uses the FunctionPort :

72 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

DO-NOT-DELETE splicer.begin(march)

Use a demo.FunctionPort port with port name odeRHS
try:

port = self.d_services.getPort("odeRHS")
except Exception,e:

if self.bocca_print_errs:
print "demo.Integrator: port odeRHS not connected."

e.args = "demo.Integrator: port odeRHS not connected:\n%s" \
% e.args

raise
odeRHS = demo.FunctionPort.FunctionPort(port);
if not odeRHS:

if self.bocca_print_errs:
print "demo.Integrator: Error casting port gov.cca.Port " \

+ "to odeRHS type demo.FunctionPort"
ex = sidl.SIDLException.SIDLException()
ex.setNote(__name__,0,

’Error casting self Port to demo.FunctionPort’)
raise sidl.SIDLException._Exception, ex

do the math
h = (upBound - lowBound) / count
retval = 0.0
sum = 0.0
for i in range(1,count+1):

sum += odeRHS.evaluate(lowBound + (i - 1) * h)
sum += odeRHS.evaluate(lowBound + i * h)

retval = h/2.0 * sum
self.d_services.releasePort("odeRHS")
return retval

DO-NOT-DELETE splicer.end(march)

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited:

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/components/demo.Integrator/demo/Integrator_Impl.py

Finally for the Driver component we have to implement the GoPort details to get things
going. Bocca will take you to the generated method, which looks like this:

$ bocca edit -i Driver go

def go(self):
#
sidl EXPECTED RETURN VALUE(s)

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 73

=============================
int _return
#

"""\

Execute some encapsulated functionality on the component.
Return 0 if ok, -1 if internal error but component may be
used further, and -2 if error so severe that component cannot
be further used safely.
"""
DO-NOT-DELETE splicer.begin(go)

Bocca generated code. bocca.protected.begin(go:boccaGoProlog)
bocca_status = 0
The user’s code should set bocca_status 0 if computation proceeded ok.
The user’s code should set bocca_status -1 if computation failed but might
succeed on another call to go(), e.g. when a required port is not yet connected.
The user’s code should set bocca_status -2 if the computation failed and can
never succeed in a future call.
The users’s code should NOT use return in this function;
Exceptions that are not caught in user code will be converted to status 2.

if bocca_status == 0: # skip this getport if a problem already occured.
Use a demo.Integration port with port name integrate
try:

port = self.d_services.getPort("integrate")
except sidl.BaseException._Exception, e:

port = None
if self.bocca_print_errs:

(etype, eobj, etb) = sys.exc_info()
msg="demo.Driver: Error calling getPort(’integrate’): " + eobj.exception.getNote()
print >>sys.stderr,’Exception:’, msg

integrate_fetched = False;
if not port:

if self.bocca_print_errs:
print ’demo.Driver: getPort("integrate") returned nil.’

else:
integrate_fetched = True # even if the next cast fails, must release.
integrate = demo.Integration.Integration(port);
if not integrate:

bocca_status = -1
if self.bocca_print_errs:

print "demo.Driver: Error casting port gov.cca.Port to " + "integrate type demo.Integration"

if bocca_status == 0: # all is ok so far and we do the user code, else cleanup and return.
user code indents to match this.

Bocca generated code. bocca.protected.end(go:boccaGoProlog)

If this try/catch block is rewritten by the user, we will not change it.

74 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

try:
try:

The user might not require all ports to be connected in all configurations.
Each uses port is available as the local variable with the same name.
Those that are properly connected will be a value other than None.
the proper test for an unavailable port is "if not portinstancename:"

BEGIN REMOVE ME BLOCK
ex = sidl.SIDLException.SIDLException()
ex.setNote("USER FORGOT TO FILL IN THEIR FUNCTION demo.Driver.go()")
raise sidl.SIDLException._Exception, ex
END REMOVE ME BLOCK

except sidl.BaseException._Exception, e:
bocca_status = -2
if self.bocca_print_errs:

(etype, eobj, etb) = sys.exc_info()
msg="demo.Driver: Error in go() execution: "+eobj.exception.getNote()
print >>sys.stderr,’Exception:’, msg

if specific exceptions in the user code are tolerable
and restart is ok, bocca_status -1 instead.
2 means the component is so confused that it and probably

the application should be destroyed.
except Exception,e:

bocca_status = -2
if self.bocca_print_errs:

print >> sys.stderr, ’Exception in demo.Driver go():’+str(e)
except:

bocca_status = -2
print >> sys.stderr, ’Unclassified Exception in demo.Driver go()’

finally:
always executed.
pass

This version of TryExceptFinally for compatibility with python 2.3 and up

Bocca generated code. bocca.protected.begin(go:boccaGoEpilog)
end user code.

end if bocca_status == 0.

release integrate
if integrate_fetched:

integrate_fetched = False
try:

self.d_services.releasePort("integrate")
except sidl.BaseException._Exception, e:

port = None
if self.bocca_print_errs:

(etype, eobj, etb) = sys.exc_info()
msg="demo.Driver: Error calling releasePort(’integrate’): " + eobj.exception.getNote()
print >>sys.stderr,’Exception:’, msg

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 75

return bocca_status
Bocca generated code. bocca.protected.end(go:boccaGoEpilog)

#
This method has not been implemented
#

DO-NOT-DELETE splicer.end(go)

Find the REMOVE block within the go method implementation, delete it, and insert the numeri-
cal logic needed to use the integrator.IntegratorPort port. Any required local variables
should be inserted just before the boccaGoProlog protected block.

The go subroutine will be called by the framework when the component’s run button (the
name of this particular GoPort instance) is pushed in the GUI. Bocca generates the code to the
Integration that the Driver is connected to. We just have to use it to compute the integral
and return the proper value for bocca status.

DO-NOT-DELETE splicer.begin(go)
Bocca generated code. bocca.protected.begin(go:boccaGoProlog)

bocca_status = 0
The user’s code should set bocca_status 0 if computation proceeded ok.
The user’s code should set bocca_status -1 if computation failed but might
succeed on another call to go(), e.g. when a required port is not yet connected.
The user’s code should set bocca_status -2 if the computation failed and can
never succeed in a future call.
The users’s code should NOT use return in this function;
Exceptions that are not caught in user code will be converted to status 2.

if bocca_status == 0: # skip this getport if a problem already occured.
Use a demo.Integration port with port name integrate
try:

port = self.d_services.getPort("integrate")
except sidl.BaseException._Exception, e:

port = None
if self.bocca_print_errs:

(etype, eobj, etb) = sys.exc_info()
msg="demo.Driver: Error calling getPort(’integrate’): " + eobj.exception.getNote()
print >>sys.stderr,’Exception:’, msg

integrate_fetched = False;
if not port:

if self.bocca_print_errs:
print ’demo.Driver: getPort("integrate") returned nil.’

else:
integrate_fetched = True # even if the next cast fails, must release.
integrate = demo.Integration.Integration(port);
if not integrate:

bocca_status = -1
if self.bocca_print_errs:

print "demo.Driver: Error casting port gov.cca.Port to " + "integrate type demo.Integration"

76 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

if bocca_status == 0: # all is ok so far and we do the user code, else cleanup and return.
user code indents to match this.

Bocca generated code. bocca.protected.end(go:boccaGoProlog)

If this try/catch block is rewritten by the user, we will not change it.
try:

try:
The user might not require all ports to be connected in all configurations.
Each uses port is available as the local variable with the same name.
Those that are properly connected will be a value other than None.
the proper test for an unavailable port is "if not portinstancename:"

count = 100000
lowerBound = 0.0
upperBound = 1.0

operate on the port
value = integrate.march(lowerBound, upperBound, count)
print ’Value =’, value

except sidl.BaseException._Exception, e:
bocca_status = -2
if self.bocca_print_errs:

(etype, eobj, etb) = sys.exc_info()
msg="demo.Driver: Error in go() execution: " \

+ eobj.exception.getNote()
print >>sys.stderr,’Exception:’, msg

if specific exceptions in the user code are tolerable
and restart is ok, bocca_status -1 instead.
2 means the component is so confused that it and probably

the application should be destroyed.
except Exception,e:

bocca_status = -2
if self.bocca_print_errs:

print >> sys.stderr, ’Exception in demo.Driver go():’+str(e)
except:

bocca_status = -2
print >> sys.stderr, ’Unclassified Exception in demo.Driver go()’

finally:
always executed.
pass

This version of TryExceptFinally for compatibility with python 2.3 and up

Bocca generated code. bocca.protected.begin(go:boccaGoEpilog)
end user code.

end if bocca_status == 0.

release integrate

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 77

if integrate_fetched:
integrate_fetched = False
try:

self.d_services.releasePort("integrate")
except sidl.BaseException._Exception, e:

port = None
if self.bocca_print_errs:

(etype, eobj, etb) = sys.exc_info()
msg="demo.Driver: Error calling releasePort(’integrate’): " + eobj.exception.getNote()
print >>sys.stderr,’Exception:’, msg

return bocca_status
Bocca generated code. bocca.protected.end(go:boccaGoEpilog)
DO-NOT-DELETE splicer.end(go)

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited.

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/components/demo.Driver/demo/Driver_Impl.py

Now remake your project tree to finish the components:

$ make

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo’
===
No SIDL files in external/sidl, skipping build for external
===
===
Building in ports/, languages: python
===
Building ports...
===
Building in components/clients/, languages: python
===
Building clients...
===
Building in components/, languages: python
===

[s] Building class/component demo.Driver:
make[3]: ‘.gencode’ is up to date.

[s] creating class/component library: libdemo.Driver.la ...
[s] finished libtooling: components/demo.Driver/libdemo.Driver.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/install/share/cca/demo/demo.Driver_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building class/component demo.Function:
make[3]: ‘.gencode’ is up to date.

[s] creating class/component library: libdemo.Function.la ...
[s] finished libtooling: components/demo.Function/libdemo.Function.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/install/share/cca/demo/demo.Function_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building class/component demo.Integrator:
make[3]: ‘.gencode’ is up to date.

[s] creating class/component library: libdemo.Integrator.la ...
[s] finished libtooling: components/demo.Integrator/libdemo.Integrator.la ...

78 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/install/share/cca/demo/demo.Integrator_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...

[s] Building class/component demo.emptyComponent:
make[3]: ‘.gencode’ is up to date.
doing nothing -- library is up-to-date.
Build summary:
SUCCESS building demo.Driver
SUCCESS building demo.Function
SUCCESS building demo.Integrator
To test instantiation of successfully built components, run ’make check’
################ Finished building everything #################
####### You can run some simple tests with ’make check’ #######
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo’

It is good practice to do a make check at this point:

$ make check

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo’
make --no-print-directory --no-builtin-rules -C components check
Test library load and instantiation for the following languages: python
Running instantiation tests only
###
LDPATH=/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/install/lib:/usr/local/ACTS/cca/lib:/usr/local/ACTS/cca/lib:/usr/local/packages/java-1.6.0_14/jre/lib/i386/client:/usr/local/packages/java-1.6.0_14/jre/lib/i386/server::/usr/local/packages/java-1.6.0_14/jre/lib/i386::/usr/local/ACTS/cca/lib:/usr/local/ACTS/CCAtk/components/TauPerformance-1.7.3:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib:/usr/local/packages/openmpi/lib:/usr/local/packages/papi/lib:/usr/local/packages/vampirtrace/lib:/usr/local/packages/vampir-server/lib:/usr/local/packages/perfsuite/lib:/usr/local/packages/tau/i386_linux/lib:/usr/local/packages/dyninstAPI/i386-unknown-linux2.4/lib:/usr/local/packages/periscope/lib
###
PYTHONPATH=/usr/local/ACTS/cca/lib/python2.5/site-packages:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/install/lib/python2.5/site-packages:/usr/local/ACTS/cca/lib/cca-spec-babel-0_8_6-babel-1.4.0/python2.5/site-packages:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:
###
CLASSPATH=/usr/local/ACTS/cca/lib/sidl-1.4.0.jar:/usr/local/ACTS/cca/lib/sidlstub_1.4.0.jar:/usr/local/ACTS/cca/lib/cca-spec.jar:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/install/lib/java:
###
Test script: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/components/tests/instantiation.gen.rc
Log file: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/components/tests/instantiation.gen.rc.log
SUCCESS:
==> Instantiation tests passed for all built components (see /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/python/demo’

You should now be able to instantiate these components, assemble them into an application,
and run the application, following the same procedures as in Section 2, and get a result that’s
reasonably close to pi.

3.5.5 Java Implementation

Note
Assumes you created the project with bocca create project demo
--language=java.

Edit the evaluate method in the implementation file (also known as “the impl”) that Bocca
has generated for you (by invoking Babel). Use the bocca edit -i to go directly to each
method.

$ bocca edit -i Function evaluate

The editor opens up in the place where the implementation code for evaluate must be put.
You see a default implementation generated by Babel for all user methods: the throwing of an
exception which says the method is not yet implemented.

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 79

public double evaluate_Impl (
/*in*/ double x)
throws sidl.RuntimeException.Wrapper

{
// DO-NOT-DELETE splicer.begin(demo.Function.evaluate)
// Insert-Code-Here {demo.Function.evaluate} (evaluate)
/*
* This method has not been implemented

*/

// DO-DELETE-WHEN-IMPLEMENTING exception.begin(demo.Function.evaluate)
sidl.NotImplementedException noImpl = new sidl.NotImplementedException();
noImpl.setNote("This method has not been implmented.");
sidl.RuntimeException.Wrapper rex = (sidl.RuntimeException.Wrapper) sidl.RuntimeException.Wrapper._cast(noImpl);
throw rex;
// DO-DELETE-WHEN-IMPLEMENTING exception.end(demo.Function.evaluate)
// DO-NOT-DELETE splicer.end(demo.Function.evaluate)

As the comment suggests, this method is “not implemented”, but some code has been inserted
by Babel to make sure an exception is thrown to inform the user if this method is called by mis-
take. Delete this exception code and substitute an implementation for the PiFunction (i.e., the
integral from 0 to 1 of 4/(1 + x2) is an approximation of π).

// DO-NOT-DELETE splicer.begin(demo.Function.evaluate)

return 4.0 / (1.0 + x * x);

// DO-NOT-DELETE splicer.end(demo.Function.evaluate)

Now in the same file just above the evaluate method, find the second method for the
FunctionPort init method:

// DO-NOT-DELETE splicer.begin(demo.Function.init)

// Do nothing.

// DO-NOT-DELETE splicer.end(demo.Function.init)

We don’t have any initialization in this simple example, so we just eliminate the code that
throws the exception when the method is executed.

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited:

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo/components/demo.Function/demo/Function_Impl.java

80 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

Similarly edit the march method in the Integrator with

$ bocca edit -i Integrator march

public double march_Impl (
/*in*/ double lowBound,
/*in*/ double upBound,
/*in*/ int count)
throws sidl.RuntimeException.Wrapper

{
// DO-NOT-DELETE splicer.begin(demo.Integrator.march)
// Insert-Code-Here {demo.Integrator.march} (march)
/*
* This method has not been implemented

*/

// DO-DELETE-WHEN-IMPLEMENTING exception.begin(demo.Integrator.march)
sidl.NotImplementedException noImpl = new sidl.NotImplementedException();
noImpl.setNote("This method has not been implmented.");
sidl.RuntimeException.Wrapper rex = (sidl.RuntimeException.Wrapper) sidl.RuntimeException.Wrapper._cast(noImpl);
throw rex;
// DO-DELETE-WHEN-IMPLEMENTING exception.end(demo.Integrator.march)
// DO-NOT-DELETE splicer.end(demo.Integrator.march)

Again remove this boilerplate exception code and insert an implementation of the Trapezoid
rule for integration that uses the FunctionPort :

// DO-NOT-DELETE splicer.begin(demo.Integrator.march)

gov.cca.Port port = null;
port = this.d_services.getPort("odeRHS");
demo.FunctionPort odeRHS;
odeRHS = (demo.FunctionPort.Wrapper)

demo.FunctionPort.Wrapper._cast((gov.cca.Port.Wrapper)port);
if (odeRHS == null) {

if (bocca_print_errs) {
System.err.println("demo.Integrator: Error casting gov.cca.Port"

+ " odeRHS to type demo.FunctionPort");
}
sidl.SIDLException ex = new sidl.SIDLException();
sidl.SIDLException.Wrapper msg = (sidl.SIDLException.Wrapper)

sidl.SIDLException.Wrapper._cast(ex);
throw msg;

}

double h = (upBound - lowBound) / count;
double retval = 0.0;
double sum = 0.0;
for (int i = 1; i <= count; i++){

sum += odeRHS.evaluate(lowBound + (i - 1) * h) +
odeRHS.evaluate(lowBound + i * h);

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 81

}
retval = h/2.0 * sum;

this.d_services.releasePort("odeRHS");
return retval;

// DO-NOT-DELETE splicer.end(demo.Integrator.march)

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited:

/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo/components/demo.Integrator/demo/Integrator_Impl.java

Finally for the Driver component we have to implement the GoPort details to get things
going. Bocca will take you to the generated method, which looks like this:

$ bocca edit -i Driver go

public int go_Impl ()
throws sidl.RuntimeException.Wrapper

{
// DO-NOT-DELETE splicer.begin(demo.Driver.go)

// Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoProlog)
int bocca_status = 0;
// The user’s code should set bocca_status 0 if computation proceeded ok.
// The user’s code should set bocca_status -1 if computation failed but might
// succeed on another call to go(), e.g. wheh a required port is not yet connected.
// The user’s code should set bocca_status -2 if the computation failed and can
// never succeed in a future call.
// The users’s code should NOT use return in this function;
// Exceptions that are not caught in user code will be converted to status 2.

gov.cca.Port port = null;

boolean integrate_fetched = false;
if (bocca_status == 0) { // skip further getports if problem occurs.

// Use a demo.Integration port with port name integrate, unless we’ve hit
// a problem already.
try{

port = this.d_services.getPort("integrate");
} catch (gov.cca.CCAException.Wrapper ex) {

// we will continue with port nil (never successfully assigned) and set a flag.
if (bocca_print_errs) {

System.err.println("Error calling getPort(\"integrate\")"
+ ex.getNote());

System.err.println("Continuing without integrate");
}

82 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

}
demo.Integration integrate;
if (port != null) {

integrate_fetched = true; // even if the next cast fails, must release.
integrate = (demo.Integration.Wrapper)

demo.Integration.Wrapper._cast((gov.cca.Port.Wrapper)port);
if (integrate == null) {

if (bocca_print_errs) {
System.err.println("demo.Driver: Error casting gov.cca.Port "

+ "integrate to type demo.Integration");
}
bocca_status = -1;

}
}

}

if (bocca_status == 0) {
// skip user code if we already have an unexpected error. go to cleanup.
// Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoProlog)

// If this try/catch block is rewritten by the user, we will not change it.
try {

// All port instances may be rechecked for null before calling in user code.
// Java will throw a null object exception when using the port if it’s null.
// The port instance names used in registerUsesPort appear as local variable
// names here.

// Insert-UserCode-Here {demo.Driver.go}

// BEGIN REMOVE ME BLOCK
sidl.SIDLException ex = new sidl.SIDLException();
ex.setNote("USER FORGOT TO FILL IN THEIR FUNCTION demo.Driver.go()");
sidl.BaseException.Wrapper bex =

(sidl.BaseException.Wrapper)sidl.BaseException.Wrapper._cast(ex);
throw bex;
// END REMOVE ME BLOCK

} catch (sidl.BaseException.Wrapper ex) {
bocca_status = -2;
if (bocca_print_errs) {

System.err.println("SIDL Exception in user go code: "+ ex.getNote());
System.err.println("Returning 2 from go()");

}
} catch (java.lang.Exception jex) {

bocca_status = -2;
if (bocca_print_errs) {

if (((sidl.BaseInterface)jex).isType("sidl.BaseException")) {
System.err.println("sidl Exception in user go code: "

+ ((sidl.BaseException)jex).getNote());
} else {

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 83

System.err.println("java Exception in user go code: "+ jex.getMessage());
}
System.err.println("Returning 2 from go()");

}
// If unknown exceptions in the user code are tolerable and restart is ok,
// use bocca_status -1 instead.
// 2 means the component is so confused that it and probably the application
// should be destroyed.

}

// Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoEpilog)
} // cleanup

// release integrate
if (integrate_fetched) {

integrate_fetched = false;
try{

this.d_services.releasePort("integrate");
} catch (gov.cca.CCAException.Wrapper ex) {

if (bocca_print_errs) {
System.err.println("demo.Driver: Error calling "

+ "releasePort(\"integrate\"): " + ex.getNote());
}

}
// java port reference will be dropped when function exits,
// but we must tell framework.

}

return bocca_status;
// Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoEpilog)

/*
* This method has not been implemented

*/

// DO-NOT-DELETE splicer.end(demo.Driver.go)

Find the REMOVE block within the go method implementation, delete it, and insert the numeri-
cal logic needed to use the integrator.IntegratorPort port. Any required local variables
should be inserted just before the boccaGoProlog protected block.

The go subroutine will be called by the framework when the component’s run button (the
name of this particular GoPort instance) is pushed in the GUI. Bocca generates the code to the
Integration that the Driver is connected to. We just have to use it to compute the integral
and return the proper value for bocca status.

// DO-NOT-DELETE splicer.begin(demo.Driver.go)
// Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoProlog)
int bocca_status = 0;
// The user’s code should set bocca_status 0 if computation proceeded ok.
// The user’s code should set bocca_status -1 if computation failed but might

84 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

// succeed on another call to go(), e.g. wheh a required port is not yet connected.
// The user’s code should set bocca_status -2 if the computation failed and can
// never succeed in a future call.
// The users’s code should NOT use return in this function;
// Exceptions that are not caught in user code will be converted to status 2.

gov.cca.Port port = null;

boolean integrate_fetched = false;
if (bocca_status == 0) { // skip further getports if problem occurs.

// Use a demo.Integration port with port name integrate, unless we’ve hit
// a problem already.
try{

port = this.d_services.getPort("integrate");
} catch (gov.cca.CCAException.Wrapper ex) {

// we will continue with port nil (never successfully assigned) and set a flag.
if (bocca_print_errs) {
System.err.println("Error calling getPort(\"integrate\")"

+ ex.getNote());
System.err.println("Continuing without integrate");

}
}
demo.Integration integrate;
if (port != null) {

integrate_fetched = true; // even if the next cast fails, must release.
integrate = (demo.Integration.Wrapper)

demo.Integration.Wrapper._cast((gov.cca.Port.Wrapper)port);
if (integrate == null) {

if (bocca_print_errs) {
System.err.println("demo.Driver: Error casting gov.cca.Port "

+ "integrate to type demo.Integration");
}
bocca_status = -1;

}
}

}

if (bocca_status == 0) {
// skip user code if we already have an unexpected error. go to cleanup.
// Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoProlog)

// If this try/catch block is rewritten by the user, we will not change it.
try {

// All port instances may be rechecked for null before calling in user code.
// Java will throw a null object exception when using the port if it’s null.
// The port instance names used in registerUsesPort appear as local variable
// names here.

double value;
int count = 100000;
double lowerBound = 0.0, upperBound = 1.0;

3.5. LANGUAGE-SPECIFIC FUNCTION, INTEGRATOR, AND DRIVER CODE 85

// operate on the port
value = integrate.march(lowerBound, upperBound, count);
System.out.println("Value = "+ value);

} catch (sidl.BaseException.Wrapper ex) {
bocca_status = -2;
if (bocca_print_errs) {

System.err.println("SIDL Exception in user go code: "+ ex.getNote());
System.err.println("Returning 2 from go()");

}
} catch (java.lang.Exception jex) {

bocca_status = -2;
if (bocca_print_errs) {

if (((sidl.BaseInterface)jex).isType("sidl.BaseException")) {
System.err.println("sidl Exception in user go code: "

+ ((sidl.BaseException)jex).getNote());
} else {

System.err.println("java Exception in user go code: " + jex.getMessage());
}
System.err.println("Returning 2 from go()");

}
// If unknown exceptions in the user code are tolerable and restart is ok,
// use bocca_status -1 instead.
// 2 means the component is so confused that it and probably the application
// should be destroyed.

}

// Bocca generated code. bocca.protected.begin(demo.Driver.go:boccaGoEpilog)
} // cleanup

// release integrate
if (integrate_fetched) {

integrate_fetched = false;
try{

this.d_services.releasePort("integrate");
} catch (gov.cca.CCAException.Wrapper ex) {

if (bocca_print_errs) {
System.err.println("demo.Driver: Error calling "

+ "releasePort(\"integrate\"): " + ex.getNote());
}

}
// java port reference will be dropped when function exits,
// but we must tell framework.

}

return bocca_status;
// Bocca generated code. bocca.protected.end(demo.Driver.go:boccaGoEpilog)

// DO-NOT-DELETE splicer.end(demo.Driver.go)

86 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

After quitting the editor the state of the source code tree is updated if there are any dependencies
on the edited implementation. Usually there are no dependencies on the implementation file, so
Bocca does very little after you exit the editor and all you see is the information from the edit
command about what file was edited.
/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo/components/demo.Driver/demo/Driver_Impl.java

Now remake your project tree to finish the components:

$ make

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo’
===
No SIDL files in external/sidl, skipping build for external
===
===
Building in ports/, languages: java
===
Building ports...
===
Building in components/clients/, languages: java
===
Building clients...
===
Building in components/, languages: java
===

[s] Building class/component demo.Driver:
make[3]: ‘.gencode’ is up to date.
doing nothing -- library is up-to-date.

[s] Building class/component demo.Function:
make[3]: ‘.gencode’ is up to date.
doing nothing -- library is up-to-date.

[s] Building class/component demo.Integrator:
make[3]: ‘.gencode’ is up to date.
doing nothing -- library is up-to-date.

[s] Building class/component demo.emptyComponent:
make[3]: ‘.gencode’ is up to date.
doing nothing -- library is up-to-date.
################ Finished building everything #################
####### You can run some simple tests with ’make check’ #######
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo’

It is good practice to do a make check at this point:

$ make check

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo’
make --no-print-directory --no-builtin-rules -C components check
Test library load and instantiation for the following languages: java
Running instantiation tests only
###
LDPATH=/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo/install/lib:/usr/local/ACTS/cca/lib:/usr/local/ACTS/cca/lib:/usr/local/packages/java-1.6.0_14/jre/lib/i386/client:/usr/local/packages/java-1.6.0_14/jre/lib/i386/server::/usr/local/packages/java-1.6.0_14/jre/lib/i386::/usr/local/ACTS/cca/lib:/usr/local/ACTS/CCAtk/components/TauPerformance-1.7.3:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib:/usr/local/packages/openmpi/lib:/usr/local/packages/papi/lib:/usr/local/packages/vampirtrace/lib:/usr/local/packages/vampir-server/lib:/usr/local/packages/perfsuite/lib:/usr/local/packages/tau/i386_linux/lib:/usr/local/packages/dyninstAPI/i386-unknown-linux2.4/lib:/usr/local/packages/periscope/lib
###
PYTHONPATH=/usr/local/ACTS/cca/lib/python2.5/site-packages:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo/install/lib/python2.5/site-packages:/usr/local/ACTS/cca/lib/cca-spec-babel-0_8_6-babel-1.4.0/python2.5/site-packages:/tau/i386_linux/lib/bindings-mpi-python-pdt:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/lib-dynload:/usr/local/packages/ptoolsrte-0.31/packages/python-2.5.2/lib/python2.5/site-packages:/usr/local/packages/ptoolsrte-0.31/packages/wx-2.8.9.1/lib:/usr/local/packages/ptoolsrte-0.31/packages/Mesa-7.2/lib64:/usr/local/packages/ptoolsrte-0.31/packages/boost/lib:
###
CLASSPATH=/usr/local/ACTS/cca/lib/sidl-1.4.0.jar:/usr/local/ACTS/cca/lib/sidlstub_1.4.0.jar:/usr/local/ACTS/cca/lib/cca-spec.jar:/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo/install/lib/java:
###
Test script: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo/components/tests/instantiation.gen.rc
Log file: /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo/components/tests/instantiation.gen.rc.log
SUCCESS:
==> Instantiation tests passed for all built components (see /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo/components/tests/instantiation.gen.rc.log).
make --no-print-directory --no-builtin-rules check-user
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/java/demo’

3.6. AUTOMATED TESTING OF ASSEMBLIES 87

You should now be able to instantiate these components, assemble them into an application,
and run the application, following the same procedures as in Section 2, and get a result that’s
reasonably close to pi.

3.6 Automated Testing of Assemblies
The gmake builder plugin that comes with Bocca provides support for automated regression testing
of a project. The tests are Ccaffeine rc files, as introduced in Section 2.2. Tests are stored in
the components/tests directory and end in the rc extension. The build system must be
informed of the tests to be run by setting or extending the components TESTS variable in
components/make.vars.user. Once this is done, make user-tests will run all the
tests defined in components TESTS.

3.6.1 Creating a Portable Test
Tests require installation-dependent path information to find the components. The process that
follows illustrates a portable test example.

1. Pick an suitably informative name for the test. Here we use “odetest”.

2. In components/tests/odetest.rc.in create the portable test script by omitting
any component path information:

create demo.Driver Driver
create demo.Integrator Integrator
create demo.Function Function
connect Driver integrate Integrator integrate
connect Integrator odeRHS Function fun
go Driver run
exit

3. Modify the post-build-user rule in components/make.rules.user to generate
the non-portable, complete test. Between the dprint statements, insert code to join the
build-generated instantiation test rc file to your portable test.

post-build-user::
$(dprint) "Build hook $@ in $(MYDIR) started"

cat tests/instantiation.gen.rc | \
grep -v instantiate | grep -v display | \
grep -v remove | grep -v quit > tests/load.gen.rc
cat tests/load.gen.rc \
tests/odetest.rc.in > tests/odetest.rc

$(dprint) "Build hook $@ in $(MYDIR) completed"

Remember that makefile lines must be tabbed, not started with spaces.

4. Add the completed test script to the test list by simply:

$ echo "components TESTS += odetest.rc" >> \
components/make.vars.user

As many tests as desired can be added to the list in this way.

88 CHAPTER 3. USING BOCCA : A PROJECT MANAGER FOR SIDL OR CCA

5. Run make again to cause generation of odetest.rc.

6. Run make user-tests run the completed test file.

If you have multiple tests to manage, you may wish to create and add suffix rules that perform this
conversion process. Future releases of Bocca will likely further automate the process of making
test scripts portable.

3.6.2 Enabling Memory Testing with Valgrind
If you have the Valgrid package installed, you can add memory and other Valgrind-supported
testing automatically by defining CCAFE VALGRIND in the environment. In bash, for example:

export CCAFE VALGRIND="valgrind -v"
In tcsh:

setenv CCAFE VALGRIND "valgrind -v"
The value of CCAFE VALGRIND is inserted before the Ccaffeine invocation, so tools other

than valgrind may also be usable in this manner. In particular, if you have MPI included in your
Ccaffeine framework build, you may be able to use CCAFE VALGRIND to automatically launch
with mpiexec. Note that if you have MPI included in your Ccaffeine framework, you may not be
able to use valgrind directly in this way.

Chapter 4

A Simple PDE Toolkit

Tip
For this chapter, you will need to have your own copy of the PDE code tree
built in your WORKDIR. If you haven’t done this already, you might want to
start it now, following the instructions in Appendix F. It takes a while to build.

4.1 Introduction
In this chapter, we will demonstrate how one builds a sophisticated software capability using a
large collection of components. These collections of components are known as “toolkits”, since
the components are generally selected to solve a certain class of problems, e.g. partial differential
equations (PDEs).

The toolkit being considered here is simple and rather incomplete with regard to its capabil-
ity to solve complicated physical problems. For educational purposes it is meant to solve PDEs
on Cartesian meshes. It has a mesh component (that takes care of the spatial discretization), a
data object (that stores the dependent variables of a PDE on the space discretized by the mesh), a
time-integrator, various components that model the physics and other components that enable data
writing to disk and visualization. The algorithms and models being encoded in the components
are simple, well known, easily understood and instructive in how a mathematical problem is de-
composed and rendered in component software. Thoughtful design of the software architecture –
component functionality and their level of granularity – is critical when designing toolkits. Design
decisions about interfaces or ports are fundamental, and can be very hard change later without
requiring wide-spread changes throughout the toolkit.

This simple toolkit is, however, quite complete from the software point of view. It contains a
set of interfaces that are sufficient for the simple PDE example it solves. However, these interfaces
can also serve quite well for the solution of nonlinearly coupled sets of PDEs and the numerical
algorithms that are usually associated with them. The methodology and the infrastructure that you
will learn, namely the interface design, the setup of a component using Bocca , the makefiles,
the SIDL files are theoretically and practically industrial strength; you will not need anything more
for research and publication-quality code.

In Section 4.2, we describe a PDE and its functional decomposition along numerical and
physical-model lines. The “work flow”, as relating to the algorithmic steps, is sketched out. In

89

90 CHAPTER 4. A SIMPLE PDE TOOLKIT

Section 4.3, the functional pieces are rendered into components which are thereafter connected
into a “code” (defined as a set of components, properly configured and connected, that can solve a
given PDE). In Section 4.4 we outline a few exercises with components that we have created. In
Section 4.5 we dig deeper into two components and suggest modifications; these can then become
additions to the toolkit. In Section 4.6, we draw some conclusions.

4.2 A Problem and its Decomposition
We will model a Belusov-Zhabotinsky oscillator in which we’ve crafted the initial conditions to
prevent oscillations, resulting in a travelling wave solution instead.

The system can be thought of as a reactant (φ1) turning into a product (φ2) in a temperature field
(φ0). The temperature, reactants, and products diffuse in space, from regions of higher concentra-
tion to regions of lower concentration. The initial conditions are such that the reactant is unevenly
distributed in space, so it starts diffusing while simultaneously producing products. These products
are produced only where the reactant is present, so they too start diffusing the moment they are
produced.

The reaction term for the reactant is such that it is always positive (think of the reactant being
produced from an infinite substrate), so it does not run out. It also diffuses out, thus forming a
traveling wave. The same thing is reflected in the product; however its production gets shut off
when it reaches a certain level, vis-a-vis the reactant concentration.

This system can be described by the following PDE on domain D

∂Φ

∂t
= D(Φ,∇Φ,∇2Φ, . . . ; kD) + R(Φ; kR)

Φ(x, t = 0) = Φ(0)

Φ(x, t) = q(x) on ∂D (4.1)

This equation consists of two terms (on the right hand side): D, which includes spatial derivatives
and R, which is a local term. Each of these terms are dependent on parameters kD and kR. Initial
and Dirichlet boundary conditions are also prescribed. We further define D and R to be

D =

 ε∇2φ0

ε∇2φ1

ε∇2φ2

 , R =

 0
1
ε

(φ1(1− φ1)(φ1 − φth))
(φ1 − φ2)

 (4.2)

where kD = ε, kR = {0, ε, 1} and φth = (φ2 + q)/f , q = 0.01, f = 0.3 . ∇2 is the Laplacian
operator.

We wish to solve this equation on the 2D unit square defined on 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
q(x) = {0.1, 0.1, 0.1}, ε = 10−3. The initial condition for φ0, φ2 are 0.1, while for φ1,

φ1(x, 0) = 0.1 + 0.01
(
exp(−a(x− x1)

2) + exp(−a(x− x2)
2)
)

(4.3)

where a = (0.03)−2,x1 = {0.35, 0.35},x2 = {0.65, 0.65}
While this equation can be solved in many ways, we will use second-order centered finite-

difference stencils for∇2, i.e.

∇2φ =
φi+1,j − 2φij + φi−1,j

(∆x)2
+
φi,j+1 − 2φij + φi,j−1

(∆y)2
(4.4)

4.3. COMPONENTS AND ASSEMBLIES 91

Figure 4.1: 2D central differences stencil.

where φij = φ(i∆x, j∆y). We will use a conventional RK2 time-integrator to solve this set of
equations. We will use a Nx ×Ny mesh (i.e. there will be Nx ×Ny grid cells) to discretize D and
a time step of ∆t; Nx, Ny and ∆t will be inputs into the code. Note, that Nx, Ny and ∆t are not
independent; ∆t ∝ min{Nx

−2, Ny
−2} for stability. Φ will be stored at cell-centers, and each cell

will be ∆x×∆y in size, ∆x = 1/Nx and ∆y = 1/Ny. Fig. 4.1 depicts the mesh.
Solving this equation requires the following functionalities:

• a Mesh, which discretizes the domain;

• a data object, that contains the dependent variables on the cell-centers of the mesh;

• initial conditions, to impose Φ(0);

• boundary conditions, to impose q(x);

• an RK2 integrator, to advance in time;

• physics components, to evaluate D and R;

• data output components, to store the data and a visualizer, to visualize the data; and

• a driver, to orchestrate the creation of variables, and the time-stepping.

These functionalities, implemented as components, can be used to solve the PDE and form a
starting point for a PDE-solving toolkit.

4.3 Components and Assemblies
In this section we describe the components mentioned in Section 4.2 and a way in which they may
be assembled together to solve Eq. 4.1. We start with the components:

92 CHAPTER 4. A SIMPLE PDE TOOLKIT

Mesh: The Mesh is an object (providing the mesh interface) that addresses the discretization
of the domain D using a Cartesian mesh. It decomposes the domain into a set of rectangular
subdomains called Regions (they have a certain minimum size, so that they do not end up being
just a single grid cell) which are then distributed among various processors (see Appendix A).
The Mesh also allows the creation of data objects (which provide the FieldVar interface) on
the Mesh. FieldVars can hold data at various times (this is required if one uses a multistep time-
integrator like Crank-Nicholson) and this is reflected in the Mesh; i.e. it has a concept of time steps.
The Mesh also provides the ability to define certain parameters which are common to all FieldVars
e.g. the number of cells in the halo around the domain boundary (so that, for example, Neumann
boundary conditions may be applied), and the radius of the spatial stencil (which determines the
width of the ghost-cell halos one keeps around subdomains when computing in parallel). It also
allows the specification of the domain (in terms of size and the Nx × Ny grid cells itself) as well
as the Collocation type (see Chapter C).

FieldVar: A FieldVar is a data object, containing domain-decomposed dependent variables. It
has the ability to supply the number of on-processor Regions and their particulars; the position in
the domain that the Region corresponds to, and the references to the arrays that store the dependent
variables declared in that Region. It has methods that allow the updating of ghost-cells and the
imposition of boundary conditions. The data is stored in 1D arrays, and the FieldVar provides
methods that translate the 2D (i, j) coordinates (as well as the 3D version) into an index into the
1D array which stores the variables.

RK2: A time-integrator that advances a field Φn at time n, to time n+ 1. For the ODE system

dΦ

dt
= F(Φ, t) (4.5)

it adopts the following algorithm

Φ(1) = Φn + ∆tF (Φn, n∆t) Stage 1

Φn+1 = Φn +
∆t

2

(
F (Φn, n∆t) + F (Φ(1), (n+ 1)∆t)

)
(4.6)

Therefore, the integrator has no idea of the dimensionality of space, but makes copious use of the
functionality in the FieldVar for the imposition of boundary conditions and ghost-cell updates.

Initial Conditions: Given a FieldVar (or a vector of them), this component will impose Φ(0).
This involves iterating through the various Regions and filling up the arrays containing Φ with
Φ(0).

Diffusion This is a component that operates on a Region-by-Region basis. Given a Region, it
computes the term D using Eq. 4.3.

Reaction: This component computes the term R, given a Region. Both D and R involve loop-
ing over all the points in a rectangular Region, accessing Φ for the each of the points (and their
neighbors) and computing the appropriate term.

RHSCombiner: This is an “adaptor” component that sums up D and R in a Region before
returning the result as a 1D “right-hand-side vector” F to the integrator.

Visualizer: This is a component that given a FieldVar, writes each of the constituent fields (in
our case, 3) to disk in a format readable by gnuplot.

4.4. TESTS 93

Figure 4.2: Example PDE application assembled from the components described in this section.

Driver: The Driver orchestrates the simulation. It declares the mesh (i.e. the unit square and
the resolutions Nx and Ny) and creates the FieldVar containing the correct number of fields (3). It
ensures that the Collocation is cell-centered. It then imposes the initial condition on the FieldVar
(by sending it to the Initial Condition component).

Once the initialization is complete, the Driver goes into a time-loop. For each time step, it
specifies a ∆t to the integrator and sends in the FieldVar to the integrator to be advanced forward
in time.

The integrator calls the RHSCombiner to obtain F, given a Φ. The RHSCombiner obtains D
and R separately from the Diffusion and Reaction components and returns the sum as F to the
integrator.

Every so often, the Driver sends the FieldVar to the Visualizer for conversion to images and
writing to disk.

This interaction among components described above can be seen in the connection diagram
Fig. 4.2.

4.4 Tests
In this section, we will carry out some numerical experiments with a PDE application based on the
toolkit just described.

The “code”, i.e. the set of components, properly configured and connected is in
PDE STUDENT SRC/components/tests/example1.rc; (see also Appendix B). Note that

94 CHAPTER 4. A SIMPLE PDE TOOLKIT

the connection between the RHSCombiner and Reaction is commented out.
The Driver has been designed with a parameter port (part of the CCA specification) which

allows you to change some of the basic simulation parameters without changing the code. In
example1.rc, the application is configured to take 2000 time steps of size dt = 1.0× 10−4.

We will now integrate forward in time and try to view the output of the code.

1. $ cd $PDE STUDENT SRC/components

2. In developing the PDE toolkit, we’ve added a user “test” to the build system, as described in
Section 3.6. This allows us to easily run the application with the command

$ make USER TESTS=example1.rc example1.rc

The simulation takes a few moments to execute, but at the end of the output from your make
command, you should see messages similar to:

Test script: /san/homedirs/bernhold/tutorial-src/obj/pde/components/tests/example1.rc
SUCCESS:
==> Test passed, go command(s) executed successfully (see /san/homedirs/bernhold/tutorial-src/obj/pde/components/tests/example1.rc.log).

3. While the build scripts are designed to check and report whether or not the test completed
successfully, it is a good idea to double check the log file until you become confident with
the CCA and the particular application.

Notice that the messages from the build system indicate where the log of the test is located
(in this case $PDE STUDENT SRC/components/tests/example1.rc.log). Edit
it, and jump to the bottom to confirm that it appears to have executed correctly.

What you’re seeing in this log is the output of the Ccaffeine session in which the application
was run. So you see the stdout and stderr streams from the application and from
Ccaffeine itself.
A message that is repeated throughout the log hints at an interesting point about the CCA
that we haven’t discussed yet:

!Info: Requested uses port dump in component RHSCombiner is not connected.

(and similarly for the reaction port). A CCA component can use and provide whatever
ports it wants, and use them in whatever way it considers appropriate. For example, a compo-
nent may consider some port connections as “optional” – to be used if the port is connected,
but if there is no connection, the component can do its job in some other way. In this case,
the RHSCombiner component can use a NamedPatchPort (which it refers to as dump)
to expose internal data for debugging or visualization purposes. But if it is not connected,
the component skips those logging activities.

4.4. TESTS 95

4. The application has also left us some more interesting and informative output in the directory
in which we ran it ($PDE STUDENT SRC/components). You should see files with names
like driver.ex1.step.1100.out.0,1 which were dumped every 100 time steps by
the application. These files are designed to be viewed using gnuplot (other visualization
components are under development).

Note
If you’re working remotely from the machine where you are running Ccaf-
feine , you’ll need to have an X11 server on your local machine in order to
view the simulation results using gnuplot. Linux/unix and Mac users may
need to make sure that the X11 protocol is being tunneled through their ssh
connection (see Appendix D.2). Windows users will need to run an X11
server (unfortunately, we have no documentation for that yet).

Let’s gnuplot and then use it to explore the simulation output a little:

$ gnuplot

(a) We’ve created an input file for gnuplot that sets up a reasonable way to view the output
from this application. To load it, type
load ’tests/show.gp’ at the “gnuplot>” prompt. You should see two “hot
spots” which were part of the initial conditions given for this run.

(b) To view other time steps (for example step 1500), enter a command like
splot ’driver.ex1.step.1500.out’ u 1:2:4 at the “gnuplot>” prompt.
Notice that the hot spots diffuse away over time.
The triplet 1:2:4 at the end of the command line above tells gnuplot to use columns
1, 2, and 4 of the data file. The data file contains five columns of numbers: x, y, φ0

(temperature), φ1 (reactant), and φ2 (product). So you can view other fields by changing
the final element of the triplet.

5. Now we will run another simulation by modifying the parameters in
$PDE STUDENT SRC/components/tests/example1.rc and re-running the sim-
ulation as in Step 2. Use the procedures of Step 4 to view the results.

Try changing the time step dt. Note that Changing the time step without corresponding
changes to the mesh resolutions (parameters NX and NY) will cause the time integration
algorithm to become unstable at some point, giving incorrect results. For example, with
dt set to 102 instead of 10−4, the system will rapidly become unstable, and you will see
the boundaries of the regions of high reactant concentration (φ1) become jagged instead of
smooth, and may cease to be simply connected. Also, to minimum and maximum values of
φ1 will grow without bound with time.

1This filename includes a .0 suffix to associate it with MPI rank 0. If you built the CCA tools without MPI support,
the filename will not have this suffix

96 CHAPTER 4. A SIMPLE PDE TOOLKIT

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

Initial Condition ’driver.ex1.step.0.out’ u 1:2:4

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Timestep 700 ’driver.ex1.step.700.out’ u 1:2:4

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Timestep 1200 ’driver.ex1.step.1200.out’ u 1:2:4

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Timestep 1600 ’driver.ex1.step.1600.out’ u 1:2:4

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 4.3: Traveling wave solution at t = 0, 700∆t, 1200∆t and 1600∆t, where ∆t is 10−4 (Step
6

6. Finally, we will modify the application itself. Once again, edit
$PDE STUDENT SRC/components/tests/example1.rc. First, restore the Driver
parameters to their original values (see Appendix B if you’ve forgotten them). The uncom-
ment the line that connects the RHSCombiner to the Reaction component. This changes
the simulation from a pure diffusion problem to a reaction-diffusion problem. If you run this
experiment and view the output, you should see traveling waves as shown in Fig. 4.3.

4.5 Exercises
In this section, we will learn to modify existing components to get “hands on” experience. This will
give you confidence that you can modify components properly and correctly, before implementing
components from scratch.

4.5. EXERCISES 97

4.5.1 Changing the Initial Conditions
The current initial conditions component, ICbzchem, has two hot spots, which are implemented
as Gaussian functions of radius radiusSize centered at {0.35, 0.35} (center1) and {0.65, 0.65}
(center2). It loops over all of the points in the given Region, and determines the point’s dis-
tances to the two Gaussian centers (d1 and d2). Based on these distances, the perturbation due
to the hot spots (perturb) is computed, and added to the background (var1Mag) to obtain
the final value for φ1, the concentration of the reactant. We’re going to add another hot spot at
{0.50, 0.65}.

1. Go to the top of the Bocca project for the PDE exercises:

$ cd $PDE STUDENT SRC

2. Edit the module (header) file for the ICbzchem component:

$ bocca edit -m ICbzchem

and find the declaration for the variables spotOne and spotTwo . Add spotThree to
this declaration.

(This component defines the locations of the hot spots in a rather quirky way. You’ll see in
moment how these variables are used.)

3. Edit the constructor for the ICbzchem component:

$ bocca edit -i ICbzchem ctor

and find where the variables spotOne and spotTwo are initialized. Add spotThree
= 0.50; to this declaration.

4. Now, edit the method that provides the initial conditions:

$ bocca edit -i ICbzchem setInitialConditions

Tip
This method is in the same file as the constructor you just edited, so you
could simply have continued your editing session from the previous step and
used the editor’s search capability to find the setInitialConditions
method.

(a) Locate the declaration of the variables center1 and center2 (as vectors) and add
center3. Then right below that, initialize center3 following the pattern you see
for the other two centers. To place the new hot spot at {0.50, 0.65}, you’ll need to use
spotThree and spotTwo in the two positions of the vector.
(I told you it was quirky!)

98 CHAPTER 4. A SIMPLE PDE TOOLKIT

(b) Next go down to the loops over the ix and iy points in the Region, and locate where
the distances d1 and d2 are computed. Add an analogous computation of the distance
to the third center, d3.

(c) Finally, add a third Gaussian to the definition of perturb using the distance d3.

5. Recompile the project and verify that the modified component passes the basic instantiation
tests:

$ make && make check

6. Use the procedures of Section 4.4 to run a simulation with the new initial conditions and
view the results. You should see three hot spots instead of two. Note that you’ve been
working in the $PDE STUDENT SRC, while for the Section 4.4 procedures you need to be
in $PDE STUDENT SRC/components.

4.5.2 Modifying the Reaction Physics
In this exercise we’re going to make a simple change to the model implemented by Reaction
component. Instead of the temperature (φ0) being constant, it will increase with time. Heat is
produced in a localized area, and diffuses away from the source.

1. Go to the top of the Bocca project for the PDE exercises:

$ cd $PDE STUDENT SRC

2. Edit the implementation of the compute method of the Reaction component:

$ bocca edit -i Reaction compute

3. Scroll down to the line

double r0 = 0.0 ; // Temperature does not change in a BZ reaction

and comment it out with a // at the beginning of the line. Insert a new definition for r0
after r1 and r2 are defined: double r0 = sqrt(r1*r2);.

4. Recompile the project and verify that the modified component passes the basic instantiation
tests:

$ make && make check

5. Use the procedures of Section 4.4 to run a simulation with the new initial conditions and
view the results. Now the φ0 field should show structure. Remember that you can plot this
field in gnuplot with the triplet 1:2:3 at the end of your splot command. Note that you’ve
been working in the $PDE STUDENT SRC, while for the Section 4.4 procedures you need
to be in $PDE STUDENT SRC/components.

4.6. CONCLUSIONS 99

4.6 Conclusions
We have the basis of a toolkit for solving PDEs. The toolkit allows the addition of new compo-
nents, which is necessary since the current set of components is rather simple. It also allows the
addition of new ports and interfaces. The exercises should give you some confidence in your abil-
ity to modify the component code in order to perform new simulations. Further, the current set of
components, especially Mesh and FieldVar are quite sophisticated and can be used in realistic
parallel codes. However, in order to use them properly, one has to understand their usage in detail.
This is described in Appendix C.

100 CHAPTER 4. A SIMPLE PDE TOOLKIT

Chapter 5

Using TAU to Monitor the Performance of
Components

In this exercise, you will use the TAU performance observation tools to automatically generate
a proxy component that monitors all of the method invocations on a port allowing you to track
their performance information. While this approach won’t provide all of the performance details
of what is going on inside each component, it gives you a very simple way to begin analyzing
the performance of a CCA-based application in order to identify which components might have
performance issues.

We will start by creating a proxy component for the Integration port. Note that you only
need to have completed Chapter 3 in order to follow these instructions. Though the proxy will be
implemented in C++, it can be used as a proxy for components implemented in any language.

You should start this exercise on at the top of the Bocca project tree you created in Chapter 3,

$ cd $WORKDIR/demo

5.1 Creating the Proxy Component
The proxy component relies on the Performance.Measurement port that is part of the TAU
CCA pacage installed in the directory $TAU CMPT ROOT. To enable the use of an externally-
defined entity in your project, the SIDL type of this remote entity needs to be added to the bocca-
generated build system. This can be done by adding a line of the form

CCA TYPE $(ENTITY NAME) = ENTITY TYPE

to the file components/make.vars.user in your project, where ENTITY TYPE can be
one of the values interface, port, class, or component.

In this case, we will be making use of the Performance.Measurement port. This means
that, using your favorite editor, you will need to add the line

CCA TYPE Performance.Measurement = port

101

102 CHAPTER 5. USING TAU TO MONITOR THE PERFORMANCE OF COMPONENTS

to the end of the file components/make.vars.user. You can then use Bocca to create
the proxy component for the Integration port using the following command :

$

bocca create component IntegratorProxy \
--language=cxx \
--provides=Integration@IntegrationProvide \
--uses=Integration@IntegrationUse \
--uses=Performance.Measurement@measurement@/$TAU CMPT ROOT/ports/Performance-1.7.3/Performance.sidl

Babel updating the cxx implementation of component demo.IntegratorProxy ...

Build the proxy component library:

$ make

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’
===
Building in external/, languages: cxx
===
Building external...

[c] using Babel to generate cxx client code for Performance.Measurement...
[c] creating library: libPerformance.Measurement-cxx.la...
[c] installing Performance.sidl
[c] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/Performance.Measurement_depl.xml ... 31321

===
Building in ports/, languages: cxx
===
Building ports...
===
Building in components/clients/, languages: cxx
===
Building clients...
===
Building in components/, languages: cxx
===

[s] Building class/component demo.Driver:
doing nothing -- library is up-to-date.

[s] Building class/component demo.Function:
doing nothing -- library is up-to-date.

[s] Building class/component demo.Integrator:
doing nothing -- library is up-to-date.

[s] Building class/component demo.IntegratorProxy:
[s] using Babel to generate cxx implementation code from demo.IntegratorProxy.sidl...
[s] compiling sources...
[s] creating class/component library: libdemo.IntegratorProxy.la ...
[s] finished libtooling: components/demo.IntegratorProxy/libdemo.IntegratorProxy.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.IntegratorProxy_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.emptyComponent:

doing nothing -- library is up-to-date.
Build summary:
SUCCESS building demo.IntegratorProxy
To test instantiation of successfully built components, run ’make check’
################ Finished building everything #################
####### You can run some simple tests with ’make check’ #######
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’

This will give us a new component, called IntegratorProxy that implements the Integration
.

5.2. USING THE PROXY GENERATOR 103

5.2 Using the Proxy Generator
1. In the components/demo.IntegratorProxy directory, invoke the proxy generator:

$ cd components/demo.IntegratorProxy

$

$TAU CMPT ROOT/bin/tau babel pg \
-f demo IntegratorProxy Impl.cxx \
-h ../../ports/demo.Integration/cxx/demo Integration.hxx
\
-p integrate -t demo.Integration

The usage of the proxy generator is as follows:

Usage: tau_babel_pg <filename> -h <header file> -p <port name> \
-t <port type> [-f] [-m]

The -h option specifies the header file that needs to be included to use the port.

The -p option specifies the name of the port. The generated proxy will have two ports named
with the port name given appended with “Provide” to distinguish them.

The -t option specifies the C++ type of the port. It can be found by examining the appro-
priate header file.

The -f option forces overwrite of the Impl.cc and file Impl.hh files.

The -m generates a MasterMind based proxy (not covered in this tutorial).

2. You can open demo IntegratorProxy Impl.cxx and look at the code that the proxy
generator inserted between the splicer blocks to get a feel for what is really going on.

3. Build the proxy component:

$ cd ../..

$ make

make[1]: Entering directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’
===
Building in external/, languages: cxx
===
Building external...

[c] using Babel to generate cxx client code for Performance.Measurement...
[c] creating library: libPerformance.Measurement-cxx.la...
[c] installing Performance.sidl
[c] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/Performance.Measurement_depl.xml ... 31321

===

104 CHAPTER 5. USING TAU TO MONITOR THE PERFORMANCE OF COMPONENTS

Building in ports/, languages: cxx
===
Building ports...
===
Building in components/clients/, languages: cxx
===
Building clients...
===
Building in components/, languages: cxx
===

[s] Building class/component demo.Driver:
doing nothing -- library is up-to-date.

[s] Building class/component demo.Function:
doing nothing -- library is up-to-date.

[s] Building class/component demo.Integrator:
doing nothing -- library is up-to-date.

[s] Building class/component demo.IntegratorProxy:
[s] using Babel to generate cxx implementation code from demo.IntegratorProxy.sidl...
[s] compiling sources...
[s] creating class/component library: libdemo.IntegratorProxy.la ...
[s] finished libtooling: components/demo.IntegratorProxy/libdemo.IntegratorProxy.la ...
[s] building /home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo/install/share/cca/demo/demo.IntegratorProxy_depl.xml ...
[s] creating Ccaffeine test script (components/tests/instantiation.gen.rc)...
[s] Building class/component demo.emptyComponent:

doing nothing -- library is up-to-date.
Build summary:
SUCCESS building demo.IntegratorProxy
To test instantiation of successfully built components, run ’make check’
################ Finished building everything #################
####### You can run some simple tests with ’make check’ #######
make[1]: Leaving directory ‘/home/livetau/workshop-acts/cca/WORK/tutorial-src/doc/scratch/cxx/demo’

5.3 Using the Proxy Component
1. Add the TAU performance component to the CCA path:

$ cp $TAU CMPT ROOT/components/TauPerformance-1.7.3/TauMeasurement.cca\
$WORKDIR/demo/install/share/cca

2. Next, add the following commands to construct the component assembly with the proxy
component in place.

Open components/tests/guitest.gen.rc, and add the following lines to the end
of the file.

repository get-global TauPerformance.TauMeasurement

create TauPerformance.TauMeasurement tau
create demo.Driver driver
create demo.Function function
create demo.Integrator integrator
create demo.IntegratorProxy IntegratorProxy

connect driver integrate IntegratorProxy integrateProvide
connect IntegratorProxy MeasurementPort tau MeasurementPort
connect IntegratorProxy integrateUse integrator integrate
connect integrator odeRHS function fun

5.3. USING THE PROXY COMPONENT 105

Figure 5.1: Integrator application with a proxy component to capture performance information for
the Integrator component (Step 3).

3. Now run the component assembly, following the procedures you learned in Section 2.1. You
GUI should look something like Figure 5.1.

4. Now look in the local directory and you should file a file called profile.0.0.0. This
file contains profile data for the last run. View it by executing pprof and you should get
output similar to this:

Reading Profile files in profile.*

NODE 0;CONTEXT 0;THREAD 0:
--
%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call
--
100.0 26 26 3 0 8826 \
IntegratorProxy::march double (in *double, in *double, in *int32_t)

Users are encouraged to visit and read the documentation for TAU available at http://www.
cs.uoregon.edu/research/paracomp/tau/tautools/.

http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

106 CHAPTER 5. USING TAU TO MONITOR THE PERFORMANCE OF COMPONENTS

Chapter 6

Understanding Arrays and Component
State

Tip
To complete the exercises towards the end of this Chapter, you will need
to have your own copy of the ODE code tree built in your WORKDIR. If
you haven’t done this already, you might want to start it now, following the
instructions in Appendix F. It takes a while to build.

In this exercise, you will develop a component that uses Babel arrays as arguments in the
ports that the component provides. Specifically, this exercise will introduce and use the following
concepts and artifacts

• Creating, changing and accessing “normal” SIDL arrays.

• Using “raw” SIDL arrays.

• Using object (component) state to store arbitrary data types (including arrays).

Note
This exercise is self-contained. Components and ports explained and devel-
oped here do not rely on components and/or ports used in the numerical inte-
gration exercises.

6.1 Introduction
In the first part of this exercise, we present the details of two components that work together
to evaluate a series of simple linear matrix operations. One component serves as the driver,
while the other provides the LinearOp port. The specification of this port is found in the file
$TUTORIAL SRC/ports/sidl/arrayop.LinearOp.sidl, partially reproduced here for
easy reference

107

108 CHAPTER 6. UNDERSTANDING ARRAYS AND COMPONENT STATE

...

/** This port can be used to evaluate a matrix operation of the form

* of the form

* R = Sum[i=1, N] {Alpha_i A_i v_i} + Sum[j=1, N] {Beta_j v_j}

* Where:

* alpha_i, Beta_j Double scalar

* A_i Double array of size [m, n]

* v_i, v_j Vector of size [n]

* A_i v_j Matrix vector multiplication

*/
interface LinearOp extends gov.cca.Port
{

/** Initialize (or Re-Initialize) internal state in preparation

* for accumulation.

*/
void init();

/** Evaluate Acc = Acc + alpha A x, where

* Acc The internal accumulator maintained by implementors

* of this interface

* return the result in vector y (of size m)

*/
int mulMatVec (in double alpha,

in rarray<double, 2> A(m, n),
in rarray<double, 1> x(n),
inout rarray<double, 1> y(m),
in int m,
in int n);

/** Evaluate Acc = Acc + beta v, where

* Acc The internal accumulator maintained by implementors

* of this interface

* return the result in vector y (of size m)

*/
int addVec (in double beta,

in array<double, 1> v,
out array<double, 1> r);

/** Get result of linear operators

*
int getResult (inout rarray<double, 1> r(m),

in int m);

}

...

6.2. THE CDRIVER COMPONENT 109

Note

• The port methods mulMatVec and getResult use SIDL raw ar-
rays (also referred to as r-arrays), which are designed to simplify im-
plementation in Fortran dialects (especially Fortran77). Raw arrays
are assumed to adhere to column-major memory layout, with zero-
based indexing. Further details of raw SIDL arrays are in the Ba-
bel User Guide [http://www.llnl.gov/CASC/components/
software.html].

• The port method addVec uses the ‘normal’ SIDL array class. This
class allows access to arrays through accessor functions. There are
also provisions that allow access to the underlying array memory for
more efficient operations. Refer to the Babel User Guide [http:
//www.llnl.gov/CASC/components/software.html] for
more details on normal SIDL arrays.

The tutorial source contains fully implemented three components that provide the LinearOp
port. The components F90ArrayOp, F77ArrayOp, and CArrayOp are in
$TUTORIAL SRC/components/, in the directories arrayOps.F90ArrayOp, arrayOps.
F77ArrayOp, and arrayOps.CArrayOp, respectively. In addition, a driver component that
uses the LinearOp port is in $TUTORIAL SRC/components/arrayDrivers.CDriver/.

In the following sections, we will present some of the aspects of using SIDL arrays, using the
code in the driver and the three arrayOps components as examples. You will then be asked to im-
plement a component that provides a NonLinearOp port and a driver, using the aforementioned
four components as a template.

6.2 The CDriver Component
The SIDL specification for the CDriver component can be found in the file
$TUTORIAL SRC/components/sidl/arrayDrivers.CDriver.sidl. The implemen-
tation of this component (in the C programming language) can be found at
$TUTORIAL SRC/components/arrayDrivers.CDriver/ in the two files
arrayDrivers CDriver Impl.c and
arrayDrivers CDriver Impl.h. Component implementation details include details of com-
ponent/framework interaction that should be now familiar, and will not be discussed further in this
exercise. We will focus on the handling of different types of SIDL arrays in the go method.

6.2.1 Using SIDL Raw Arrays
Raw arrays (and vectors) are used as arguments in the call to mulMatVec. Note that multidi-
mensional SIDL raw arrays are always assumed to use column-major storage. This requirement
necessitates special treatment when calling methods that use SIDL raw arrays as arguments from
languages that follow a default row-major array storage order (C and C++). The caller may choose
to alter the memory layout of the array argument throughout its entire lifetime, or alternatively per-

http://www.llnl.gov/CASC/components/software.html
http://www.llnl.gov/CASC/components/software.html
http://www.llnl.gov/CASC/components/software.html
http://www.llnl.gov/CASC/components/software.html

110 CHAPTER 6. UNDERSTANDING ARRAYS AND COMPONENT STATE

form a matrix transpose operation on ‘native’ arrays before and after every call to a SIDL method
that uses raw arrays. In the example presented here, we have chosen to adopt column-major stor-
age throughout the lifetime of the raw array argument A, as shown in the initialization code shown
below

/* _ _ _ _ _ _

* | 1.0 4.0 | | 1.0 | | 3.0 |

* A = | 2.0 5.0 | v1 = | 2.0 | sda1 = | 4.0 |

* | 3.0 6.0 | - - | 5.0 |

* - - - -

*
* Note that A needs to be stored in column-major order to make

* the call using SIDL raw arrays

*/
value = 0.0;
for (i = 0; i <= m; i++){

for (j = 0; j <= n; j++){
A[i*n+j] = (value += 1.0);

}
}

When making a call to a SIDL method that has SIDL raw arrays arguments, the dimensions of
those arrays must be explicitly included in the argument list in the SIDL specification. No special
‘wrapping’ of native arrays is needed to make a call using SIDL raw arrays arguments. This can
be seen in the call to the mulMatVec method.

retval = arrayop_LinearOp_mulMatVec(linopPort, alpha, A, v1, y, m , n,
&throwaway_excpt);

if (retval != 0){
fprintf(stderr, "Error:: %s:%d: Error in call to mulMatVec() \n",

__FILE__, __LINE__);
return(-1);

}

The requirement to use column-major memory layout is one of the restrictions imposed by
Babel to allow for the use of raw arrays. See the Babel User Guide [http://www.llnl.gov/
CASC/components/software.html] for the complete list.

6.2.2 Using SIDL Normal Arrays
SIDL ‘normal’ arrays are implemented in the Babel runtime, with bindings in all Babel supported
languages. SIDL normal arrays provided a more flexible array representation, with the ability to
directly access the underlying array memory in languages that support this capability (C, C++,
F90, and F77). In Python, there are situations where arrays must be copied when passing in and
out, but direct access is used wherever the Numerical Python package will allow. In Java, arrays
are accessed using the Java Native Interface. More information on SIDL normal arrays appears in
the Babel User Guide [http://www.llnl.gov/CASC/components/software.html].

In this exercise, the method addVec uses SIDL normal arrays (sda1, and sda2). The SIDL
specification of the addVec method designates sda1 as an input argument, therefore it needs to
be created (more specifically, associated with memory) on the caller side before the call is made.

http://www.llnl.gov/CASC/components/software.html
http://www.llnl.gov/CASC/components/software.html
http://www.llnl.gov/CASC/components/software.html

6.3. LINEAR ARRAY OPERATIONS COMPONENTS 111

The Babel runtime provides array manipulation bindings in Babel supported languages (except
Python, which uses NumPy arrays). The one-dimensional, SIDL double array sda1 is created
using the following code

sda1 = sidl_double__array_create1d(m);
if (!sda1){

fprintf(stderr, "Error:: %s:%d: Error creating sda1.\n",
__FILE__, __LINE__);

return(-1);
}

The Babel runtime C binding contains macros that allow direct access to underlying SIDL ar-
ray memory and properties (dimensions, strides, etc.), without having to go through the standard
set() and get() methods. One such macro is used in this example to access the underlying
memory of SIDL array sda1

sda1_data = sidlArrayAddr1(sda1, 0);
for (value =0.0, i = 0; i <= m; i++){

sda1_data[i] = (double) i + 3.0 ;
}

Other macros are used in the loop that prints the result returned in the SIDL out array sda2,
after the call to addVec.

printf("Result2 = ");
for (i = sidlLower(sda2, 0); i <= sidlUpper(sda2, 0); i++){

printf("%.2f ", sidlArrayElem1(sda2,i));
}
printf("\n");

Direct access to underlying SIDL array memory is also available in the Babel SIDL array binding
in F77, F90, and C++. Example of such use is available in the discussion in Section 6.3.

6.3 Linear Array Operations Components
In this section, we present some of the implementation details of (non-driver) components that
provide ports with SIDL arrays as arguments. The tutorial source contains implementation of three
components, CArrayOp, F77ArrayOp, and F90ArrayOp, implemented in C, F77, and F90
respectively.

6.3.1 The CArrayOp Component
Code for the CArrayOp component is in $TUTORIAL SRC/components/arrayOps.CArrayOp/,
in the two Impl files arrayOps CArrayOp Impl.c and arrayOps CArrayOp Impl.h.
Private component state is represented by entries in the struct arrayOps CArrayOp data
in the header file arrayOps CArrayOp Impl.h

struct arrayOps_CArrayOp__data {
...
...
double *myVector;
int myVecLen;
/* DO-NOT-DELETE splicer.end(arrayOps.CArrayOp._data) */

};

112 CHAPTER 6. UNDERSTANDING ARRAYS AND COMPONENT STATE

Private component data is initialized and associated with the component instance in the Bocca
-generated component constructor method impl arrayOps CArrayOp ctor

struct arrayOps_CArrayOp__data *dptr =
(struct arrayOps_CArrayOp__data*)malloc(sizeof(struct arrayOps_CArrayOp__data));
if (dptr) {

memset(dptr, 0, sizeof(struct arrayOps_CArrayOp__data));
}

arrayOps_CArrayOp__set_data(self, dptr);

Note the use of the built-in method arrayOps CArrayOp set data to associate the
newly allocated struct with this component instance. A corresponding method,
arrayOps CArrayOp get data is used to access this private data.

The method impl arrayOps CArrayOp mulMatVec uses SIDL raw arrays (array A, and
vectors x and y). Multi-dimension SIDL raw arrays are assumed to be stored in column-major
order, as shown in the code to multiply array A and vector x

for (i= 0; i <= m; i++){
y[i] = 0.0;
for (j = 0 ; j <= n; j++){

y[i] += alpha * A[j*m + i] * x[j]; /* Raw array A is column-major */
}
pd->myVector[i] += y[i];
y[i] = pd->myVector[i];

}

The method impl arrayOps CArrayOp addVec uses the more flexible SIDL normal ar-
rays. SIDL normal arrays are represented in C using a struct sidl XXX array, where XXX
is the actual type of array elements. In this example, the SIDL out normal array *r is created
(and underlying memory allocated) in the call

*r = sidl_double__array_create1d(n);

Direct access to a SIDL normal array’s underlying memory is acheived via the C macro
sidlArrayAddr1 (for 1-dimensional arrays *r and v).

6.3.2 The F77ArrayOp Component
Code for the F77ArrayOp component is in
$TUTORIAL SRC/components/arrayOps.F77ArrayOp/, in Impl file
arrayOps f77ArrayOp Impl.f. Private component state is represented by entries an an ar-
ray of SIDL opaque types. It is the responsibility of the programmer to ensure consistency of the
treatment of entries in this array across method calls (this is similar to the way entries into common
blocks are manipulated). Code for the creation and initialization of the private component state
is in the component constructor method arrayOps F77ArrayOp ctor fi.

tmp = 0
itmp = 0

call sidl_int__array_create1d_f(1, intArray)
if (intArray .ne. 0) then

6.3. LINEAR ARRAY OPERATIONS COMPONENTS 113

call sidl_opaque__array_set1_f(stateArray, 0, tmp)
call sidl_int__array_set1_f(intArray, 0, itmp)
call sidl_opaque__array_set1_f(stateArray, 1, intArray)
call sidl_opaque__array_set1_f(stateArray, 2, tmp)

else
. . .

The SIDL built-in method arrayOps F77ArrayOp set data f is used to associate the
newly created SIDL opaque array with this instance of the component. The method
arrayOps F77ArrayOp get data f is used to retrieve this private data for further manipu-
lation.

The method arrayOps F77ArrayOp mulMatVec fi uses SIDL raw arrays arguments.
In F77 implementation, SIDL raw arrays appear as regular F77 arrays, with zero-based indexing.
The component uses the SIDL normal array accVector to store the running sum of the linear
matrix operations. Note that this enables the dynamic sizing of this vector at runtime to match
the dimensions of the array and vector arguments. Direct access to the underlying memory for
SIDL normal arrays is done through the sidl double array access f method (for arrays
of SIDL type double). This method computes uses a reference array (nativeVec) of size one,
and computes the offset (refindex) that needs to be added to indices into nativeVec to access
memory associated with SIDL normal array accVector.

call sidl_double__array_access_f(accVector, nativeVec,
\$ lower, upper, stride, refindex)
do i = 0, m-1

y(i) = nativeVec(refindex + i)
do j = 0, n-1

y(i) = y(i) + alpha * A(i, j) * x(j)
end do
y(i) = y(i) + nativeVec(refindex + i)
nativeVec(refindex + i) = y(i)

end do

Accessing entries in a normal SIDL array can also be done through accessor subroutine calls.
In the case of arrays of SIDL type double, the accessor subroutines are
sidl opaque array set1 f and sidl opaque array get1 f (for single dimensional
arrays).

if (accVector .eq. 0) then
call sidl_double__array_create1d_f(m, accVector)
call sidl_int__array_set1_f(intArray, 0, m)
call sidl_opaque__array_set1_f(stateArray, 2, accVector)
dblTmp = 0.0
do i = 0, m-1

call sidl_double__array_set1_f(accVector, i, dblTmp)
end do

else
. . .

114 CHAPTER 6. UNDERSTANDING ARRAYS AND COMPONENT STATE

6.3.3 The F90ArrayOp Component
Code for the F90ArrayOp component is in
$TUTORIAL SRC/components/arrayOps.F90ArrayOp, in the Impl files
arrayOps F90ArrayOp Impl.F90 and arrayOps F90ArrayOp Mod.F90. Private com-
ponent state is represented by the type arrayOps F90ArrayOp priv in the file
arrayOps F90ArrayOp Mod.F90

type arrayOps_F90ArrayOp_priv
sequence

! DO-NOT-DELETE splicer.begin(arrayOps.F90ArrayOp.private_data)

! Bocca generated code. bocca.protected.begin(arrayOps.F90ArrayOp.private_data)
! Handle to framework Services object
type(gov_cca_Services_t) :: d_services

! Bocca generated code. bocca.protected.end(arrayOps.F90ArrayOp.private_data)

real (selected_real_kind(15, 307)), dimension(:), pointer :: myVectorP
integer (selected_int_kind(9)) :: myVecLen

! DO-NOT-DELETE splicer.end(arrayOps.F90ArrayOp.private_data)
end type arrayOps_F90ArrayOp_priv

The constructor subroutine arrayOps F90ArrayOp ctor mi contains the Bocca -generated
code for the allocation and initialization of the private data associated with this component instance

type(arrayOps_F90ArrayOp_wrap) :: dp
! Allocate memory and initialize
allocate(dp%d_private_data)
call set_null(dp%d_private_data%d_services)
dp%d_private_data%myVectorP => NULL()
call arrayOps_F90ArrayOp__set_data_m(self, dp)

The call to the built-in method arrayOps F90ArrayOp set data m associates the newly
created structure pointed to via dpwith this instance of the component. The corresponding method
arrayOps F90ArrayOp get data m is used to retrieve this private data for further process-
ing.

The subroutine that implements the mulMatVec method uses SIDL raw arrays (note that the
name of this subroutine is altered by Babel to accomodate F90 identifier length restrictions). SIDL
raw arrays manifest themselves in F90 implementations as regular F90 arrays that use zero-based
indexing.

real (selected_real_kind(15, 307)), dimension(0:m-1, 0:n-1) :: A ! in
real (selected_real_kind(15, 307)), dimension(0:n-1) :: x ! in
real (selected_real_kind(15, 307)), dimension(0:m-1) :: y ! inout

The subroutine that implements the addVec method uses SIDL normal arrays. SIDL normal
arrays are represented as user defined types, with a pointer data member (d datathat points
to an F90 array built on top of the underlying SIDL array memory. While access to SIDL normal
array entries can be achieved via accessor subroutines (set and get - defined for all native SIDL
types and user defined classes and interfaces), it is more convenient (and efficient) to access those
entries directly via the d data pointer.

6.4. ASSIGNMENT: NONLINEAROP COMPONENT AND DRIVER 115

vdata => v%d_data
rdata => r%d_data
rdata = pd%myVectorP + beta * vdata
pd%myVectorP = rdata

Note
When implementing a method that has SIDL normal arrays as arguments,
it should not be assumed that the array is contiguous in memory (stride=1).
SIDL normal arrays allow for different strides in all dimensions. The Babel
runtime builds the correct F90 array descriptor (dope vector) that correctly
reflects the strides used to create the SIDL array.

6.4 Assignment: NonLinearOp Component and Driver

Note
Although you have been looking at the source code in $TUTORIAL SRC,
this exercise should be done in the Bocca project you created in Chapter 3.

$ cd $WORKDIR/demo

In this section, you will use the LinearOp components and driver described earlier as a tem-
plate to develop a driver and a component that provides the NonLinearOp port. The specification
of this port is in $STUDENT SRC/ports/sidl/arrayop.NonLinearOp.sidl, and is re-
peated here for convenience.

/** This port can be used to evaluate a linear matrix operation

* of the form

* R = Sum[i=1, N] {Alpha_i log(A_i)} + Sum[j=1, N] {Beta_j A_j .* M_j}

* Where:

* alpha_i, Beta_j Double scalar

* A_i, M_j Double array of size [m, n]

* log(A_i) Elementwise log (base 10) of matrix A_i

* A_j .* M_j Elementwise multiplication of A_j and M_j

*/
interface NonLinearOp extends gov.cca.Port
{

/** Initialize (or Re-Initialize) internal state in preparation

* for accumulation.

*/
void init();

/** Evaluate Acc = Acc + alpha log(A) where

* log(A) Elementwise log (base 10) of array A

* Acc The internal accumulator maintained by implementors

* of this interafce

116 CHAPTER 6. UNDERSTANDING ARRAYS AND COMPONENT STATE

* return the result in array R

*/
int logMat (in double alpha,

in rarray<double, 2> A(m, n),
inout rarray<double, 2> R(m, n),
in int m,
in int n);

/** Evaluate Acc = Acc + beta A .* M, where

* .* denotes elementwise multiplications of arrays

* Acc the internal accumulator maintained by implementors

* of this interafce

* return the result in array R

*/
int mulMatMat (in double beta,

in array<double, 2> A,
in array<double, 2> M,
out array<, 2> R);

/** Get result of nonlinear operation accumulation.

*
int getResult (inout rarray<double, 2> R(m, n),

in int m,
in int n);

}

1. Use Bocca to create your own version of the NonLinearOp port specification by importing
the existing definition from $STUDENT SRC. This can be done using the command:

$
bocca create port arrayop.NonLinearOp \
--import-sidl=arrayop.NonLinearOp@\
$STUDENT SRC/ports/sidl/arrayop.NonLinearOp.sidl

2. Next you will create a component that provides the NonLinearOp port using the Bocca
command:

$
bocca create component arrayOps.NonLinearOp \
--provides=arrayop.NonLinearOp@NonLinearPort \
--lang=LANG

where LANG is your development language of choice from the list of languages supported
by Babel .

3. In this step, you will use Bocca to create a driver for the arrayDrivers.NLinearDriver
component, using the command:

$
bocca create component arrayDrivers.NLinearDriver \
--provides=gov.cca.ports.GoPort@Go \
--uses=arrayop.NonLinearOp@NonLinearPort --lang=LANG

where LANG is your development language of choice for the driver.

6.4. ASSIGNMENT: NONLINEAROP COMPONENT AND DRIVER 117

4. Edit the newly generated Impl files to implement the methods in the newly created driver
component (in the directory components/arrayDrivers.NLinearDriver) and the
nonlinear matrix operation component (in the directory components/arrayOps.NonLinearOp).
Build the new components (by running make in the top level directory of your project (this
will also build the required port code for the languages you use).

5. You can run the application using the technique you used in Chapter 2.

118 CHAPTER 6. UNDERSTANDING ARRAYS AND COMPONENT STATE

Appendix A

What is a Region in the Mesh

The Cartesian mesh (Nx×Ny cells in 2D) is decomposed by the Mesh object into a set (Np >= 1)
of rectangular non-overlapping patches which cover the mesh completely. A patch is fully defined
with a set of corners and an array of integers. However, the data in a patch need to be expanded
to accomodate the cell centered central difference stencil (ghost cells). That means that the data
arrays of neighboring patches are overlapping in grid cell coordinates, therefore each of them must
be described by a bigger “patch” called a Region. A Region is defined as a set of corners (Lower
Corner or lbbc, Upper Corner or ubbc), a 1D data array and a pointer (reference) to the patch that
corresponds to this Region. In Fig. A.1 we illustrate an example of a (3 × 3) patch and its ghost
cells.

Figure A.1: An example of a Region of a (3× 3) patch.

In memory the 1D data array for a Region maps to a 2D column-major array. Therefore given
i, j in global 2D indexing the 1D local index is

119

120 APPENDIX A. WHAT IS A REGION IN THE MESH

Appendix B

Ccaffeine Script File for PDE Example 1

create pde.Driver Driver
create pde.BCFactory BCFactory
create pde.ICbzchem ICbzchem
create pde.MeshFactory MeshFactory
create pde.RK2 RK2
create pde.RHSCombiner RHSCombiner
create pde.Diffusion Diffusion
create pde.Reaction Reaction
create pde.viewers.MeshPrinter viewer

connect Driver log viewer printer
connect Driver initCond ICbzchem ic
connect Driver bcSource BCFactory BCSource
connect Driver mesher MeshFactory MeshSource
connect Driver integrator RK2 integrator

connect RK2 rhs RHSCombiner RHS

connect RHSCombiner diffusion Diffusion diffusion
#connect RHSCombiner reaction Reaction reaction

parameter Driver userinput Nregions 1
parameter Driver userinput NX 50
parameter Driver userinput NY 50
parameter Driver userinput Nsteps 2000
parameter Driver userinput dt 0.0001
parameter Driver userinput DumpFreq 100

go Driver GO

121

122 APPENDIX B. CCAFFEINE SCRIPT FILE FOR PDE EXAMPLE 1

Appendix C

Details of the Mesh and the FieldVar
Classes

Figure C.1: A domain and its boundary halo.

This chapter explains some of the terms com-
monly used in meshes. There are no standard-
ized definitions for these terms, so we define a
few here.

Fig. C.1 shows a domainD in black of length
Lx × Ly. It is divided into Nx × Ny cells. We
will define fields (variables) on this discretized
domain. The lower left corner of the domain
corresponds to the origin of a coordinate system.
The grid-cell size ∆x×∆y is Lx/Nx×Ly/Ny.

Certain variables are stored at the center of
cells and have a Mesh Collocation Type of Cell-
centered; the blue circle shows a position where
a cell-centered variable will be stored. However
one may store variables at other places too e.g.
a horizontal velocity stored on a face which has
its face-normal in the horizontal direction. Such
a variable is said to have a FaceCenteredX mesh
collocation type. Other mesh collocation types are FaceCenteredY, FaceCenteredZ and VertexCen-
tered, where the variables are stored at cell corners. Fig. C.2 shows these positions clearly.

Sometimes one may need to keep a halo of cells outside the domain D to help implement
boundary conditions. The width of the boundary halo of cells, b, may be anything; it does not have
to be equal to the width of any finite-difference/finite-volume stencil that you might be using. It
might even be 0, for example, when implementing Dirichlet boundary conditions using second-
order central difference. Fig. C.1 shows a boundary halo, 1 cell wide, in red.

Variables defined on the discretized domain are kept in arrays. However, when operating on
arrays, it is frequently crucial to know the spatial locations of the domain where the variables are
kept. The rectangular region is space, whose field variables are stored in an array V, is called the
patch associated with the array V.

A patch of cells is defined by the lower and upper bounding box corners in integer cell coordi-

123

124 APPENDIX C. DETAILS OF THE MESH AND THE FIELDVAR CLASSES

k

u(i,j,k)

s(i,j,k)

s(i,j,k)

s(i,j,k)

j

i

u(i+1,j,k)

v(i,j,k)

w(i,j,k) w(i,j,k+1)

v(i,j+1,k)

Figure C.2: Locations of variables. The black dot is the position where CellCentered variables
are collocated, the blue dots are FaceCenteredX, the red one FaceCenteredY and the green ones
FaceCenteredZ. The corners of the cube store VertexCentered variables.

nates. Patches are non-overlapping and completely cover the domain. The locations of these cor-
ners are described using an integer index stored in vectors firstIndices[2] and lastIndices[2].
These are 3 long for 3D meshes. For Fig. C.1, point A is the lower bounding box corner and has
indices {-1, -1}; point B has indices {Nx + 1, Ny + 1}. However, note that the spatial
location of A is (−∆x,−∆y) and B is (Lx+ ∆x, Ly + ∆y).

However, the patch is an abstract concept and is rarely used. A more useful (and practical)
concept is the Region. This is a consequence of parallel computing and the necessity of applying
various types of boundary conditions. Consider Fig. C.4 which shows the situation in a domain-
decomposed parallel computing paradigm. Subdomain S2 is shown with a red boundary halo (of
width 1) and green ghost-cell halo of width 2. Generally, these widths are different - the ghost-
cells halo width is determined by the width of spatial discretization stencils while the bounday halo
width is determined by the boundary condition treatment. This is clearly seen in Fig. C.1, where
the cell-centered variable in boundary halo interacts directly with the cell immediately inside the
domain. On the other hand, in Fig. C.4, the discretization stencil has a radius of 2. These are
specified separately when setting up the mesh. The ghost-cell halo is updated using MPI. The
bounding box corners now play an important part in identifying the spatial location of an array. In
Fig. C.4, F denotes the lower bounding box corner and has indices {1, -1} and spatial locations
(∆x,−∆y). The locations of all other points can be calculated with respect to F. The union of the
patch (black cells in Fig. C.4), the ghost halo (green cells in Fig. C.4) and the boundary cells (red
cells in the same figure) constitute the Region.

Variables are defined on Regions, not patches. A Region has a position in space, defined by its
lowerCorner and upperCorner, as shown in Fig. C.3.. A real variable spread on a Region is
stored as a 1-D double-precision array sized to account for the collocation type, boundary condi-
tions, and stencils. The FieldVar interface provides access to the Regions and their corresponding
data arrays. The each axis of a data array is as large or larger than the corresponding dimension
in the Region (this is explained further in the next paragraph). The bounds of the data array are
stored in vectors lowerCorner[2] and upperCorner[2]. These are 3 long for 3D meshes.

Consider a cell-centered variable C and a FaceCenteredX variable U defined on the patch in

C.1. CODES 125

Figure C.3: A region showing the indexing of cells (and data arrays).

red Fig. C.1. Note that the dimensions of the arrays (in our terminology, their shape) containing
the two variables are C[Nx+2][Ny+2] and U[Nx+3][Ny+2]. Whenever one operates on a
variable (stored in an array), one also fetches the shape of the array, though one can calculate these
based on the shape of the Region and the collocation type of the variable. However, it is a good
programming practive to also fetch the corners of the Region and check whether the size of the
Region and that of the array are consistent.

C.1 Codes
Below, we list some of the parameters defined above and means of obtaining their values from the
mesh and field-variable methods

1. boundary width : Mesh::getBoundaryWidth()

2. stencil width (alternatively, width of the ghost-cell halo) : Mesh::getStecilWidth()

3. size of the domain i.e Lx, Ly : Mesh::getDistances()

4. resolution of the domain i.e. Nx,Ny : Mesh::getShape()

5. lower bounding box corner of a patch : FieldVar::getLowerCorner()

6. upper bounding box corner of a patch :FieldVar::getUpperCorner()

7. shape of the array living on that patch : FieldVar::getShape()

8. number of different field variables in that array : FieldVar::getNVars()

9. the pointer to the data: FieldVar::get data raw(in int time, in int patchID,
)

126 APPENDIX C. DETAILS OF THE MESH AND THE FIELDVAR CLASSES

Figure C.4: Above: The domain D divided into 2 subdomains S1 and S2 along the thick green
line. Below: The subdomain S2, showing the boundary halo in red and the ghost cells in green.

C.2. AN EXAMPLE 127

C.2 An Example
In the following I provide a C++ code snippet that initializes a FieldVar. References to an
FieldVar and a Mesh are passed in. The FieldVar is assumed to hold 3 fields e.g temperature,
pressure and concentration, which are all cell-centered and initialized using analytical functions.

#include <cassert>
#include ‘‘math.h’’

void initializeFieldVar(FieldVar &fv, Mesh &mesh)
{

double Pi = 3.1416 ;

// Make sure we’re working in 2D
assert(mesh.getDimension() == 2);

// get deltax, deltay
double dx = mesh.getDistances()[0] / mesh.getShape()[0];
double dy = mesh.getDistances()[1] / mesh.getShape()[1];

// make sure that the incoming fieldvariable has 3 fields
assert(fv.getNVars() == 3);

// make sure it is cell-centered
assert(fv.getMeshColl() == CENTERS) ;

/*
Time to start looping over all the patches on this processor
stored on this proc. Figure out how many patches exist.

*/
int npatches = fv.getPatchCount();

// loop over patches
for(int ipatch = 0; ipatch < npatches; ipatch++)
{

// get the spatial starting locations of the cell-centered arrays.
double startX = fv.getLowerCorner(ipatch)[0] * dx + 0.5*dx ;
double startY = fv.getLowerCorner(ipatch)[1] * dy + 0.5*dy ;

// get the dimensions of the patch
int nx = fv.getShape(ipatch)[0] ;
int ny = fv.getShape(ipatch)[1] ;

/*
get the current time and fetch the data pointer for the array
which is supposed to hold the data for the current time

*/
int itime = fv.getCurrentTime() ;
double *data = (double *) fv.get_data_raw(itime, ipatch)

// OK, all done. time to initialize. loop over all fields in
// the FieldVar.
for(int ifield = 0; ifield < fv.getNVars(); ifield++)

128 APPENDIX C. DETAILS OF THE MESH AND THE FIELDVAR CLASSES

{
// loop over all points in this patch
for (int j = 0; j < ny; j++)

for (int i = 0; i < nx; i++)
{

// figure out the x and y of this cell
double x = startX + i*dx ;
double y = startY + j*dy ;

// figure out the stride for this cell and field;
int index = i + j*nx + ifield*nx*ny ;

if (ifield == 0) // Temperature field
data[index] = cos(Pi*x) ;

else if (ifield == 1) // pressure field
data[index] = sin(Pi*x) ;

else // concentration
data[index] = tanh(x) ;

} // End of loop over points

} // end of loop over fields

} // End of loop over patches

// all done; return

return ;
}

Appendix D

Remote Access for the CCA Environment

There is really nothing special about using the CCA environment on a remote system compared to
any other tools routinely used in technical computing. But there are a few things you can do that
might make it more convenient to work remotely. So here are some notes intended to point you to
the appropriate places in the manuals for the software you’re using.

D.1 Commandline Access
Everything associated with the CCA can be done using only commandline access to the remote
system. The primary tool for this kind of access at present is the Secure Shell protocol, (SSH).
Both free and commercial implementations of ssh are widely available. Among the most common
are OpenSSH [http://www.openssh.org] for Linux(-like) systems and PuTTY [http:
//www.chiark.greenend.org.uk/˜sgtatham/putty/] for Windows. When we de-
scribe specifically how to do something with an SSH client, we will describe it for these two pack-
ages. However we won’t be using any unusual capabilities of SSH, so most other implementions
probably have an equivalent.

D.2 Graphical Access using X11
Your remote CCA environment will be on a Linux(-like) system (because at present, the CCA
tools do not run directly on Windows), in which graphical tools (such as text editors, debuggers,
performance tools, etc.) typically use the X11 environment. If you wish to use these graphical
tools remotely, you’ll need an X11 environment on your local system. This is standard on most
Linux(-like) systems. On Windows, you will probably have to install an X11 server.

Warning
Running X11 tools remotely can be annoyingly slow, especially over a long-
haul connection or a slow network. You may prefer to stick to commandline
tools

Most SSH clients are capable of forwarding X11 traffic through your SSH session. If this
option is available to you, it is probably the most convenient and definitely the most secure way of
running X11 tools remotely. (It is possible for the administrator of the remote system to configure
the SSH server to prevent X11 forwarding, but we try to insure that this is not the case on the
systems we use for organized tutorials.)

129

http://www.openssh.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

130 APPENDIX D. REMOTE ACCESS FOR THE CCA ENVIRONMENT

D.2.1 OpenSSH
In most cases, SSH will forward X11 traffic by default, so the simplest thing is to go ahead and try
it. To explicitly enable X11 forwarding use the -X option to ssh. If you want to disable it for some
reason (for instance, it is too slow for your taste and you have a tendency to inadvertently start up
graphical tools instead of commandline ones), then use the -x option.

D.2.2 PuTTY
In PuTTY, there is a checkbox to “⇒ Enable X11 forwarding” on the “Connection ⇒ SSH
⇒ Tunnels” configuration page.

D.3 Tunneling other Connections through SSH
Similar to X11 forwarding, most SSH clients have the ability to tunnel other network connections
through an SSH session, also known as port forwarding. Tunnels connect a port on your local
system to a port on a remote system, so that you can make a connection to the port on your local
system and, via the tunnel, it will be forwarded to the designated port of the remote system. (Other
tunneling setups are possible, but we do not use them in this Guide.) The remote system could be
the system you SSH into, or a system reachable from the system you SSH into. The two primary
uses for tunnels in the context of the CCA are working on clusters where internal nodes don’t have
direct access to the external network, and making connections through firewalls, for example to
run the GUI (of course the firewall must pass the SSH connection that carries the tunnel).

An important thing to note about tunneling is that the port numbers on both ends of the tunnel
must be made explicit. Only one application at a time can listen on a port, so port numbers on
both ends of the tunnel must be selected to avoid conflicts. Assuming you’re the only user on
your local system, you must select non-privileged port numbers (1025-65565) that don’t conflict
with each other, or with any servers or other applications that might already be using ports on your
system. In the examples below, we use port 2022 on the localhost side of a tunnel for an SSH
connection. The same rules apply to the ports on the remote system. If you’re sharing the system
on which you’re running the exercises, you’ll need to be sure to select ports not being used by other
users. Though statistically, the chances of a collision are relatively small, we avoid such problems
in organized tutorials by assigning each user a port number to use for the Ccaffeine GUI (in the
examples below, we use port 3314). If you’re working on your own and are encountering problems
finding a free port, the netstat (netstat -a -t -u on Linux-like systems, or netstat -a at the Windows
command prompt) can give you a list of the ports currently in use.

D.4 Tunneling with OpenSSH
The -L localPort:remoteHost:remotePort option to ssh is used to setup tunnels. The
following are examples of some tunneling arrangements that might be useful in a CCA context:

• Establishing an SSH connection to the head node of a cluster which will forward SSH con-
nections to an internal node. Then using the tunnel to make a direct connection to the internal
node:

$ ssh -L 2022:clusterInternalNode:22 clusterHeadNode

D.5. TUNNELING WITH PUTTY 131

$ ssh -p 2022 localhost

• Establishing an SSH connection to a firewalled machine which will forward connections
from the Ccaffeine GUI running locally to the Ccaffeine framework backend running re-
motely:

$ ssh -L 3314:remoteHost:3314 remoteHost

$ simple-gui.sh --port 3314 --host localhost

• Establishing tunnels to an internal node of a cluster for both SSH and Ccaffeine GUI con-
nections:

$ ssh -L 2022:clusterInternalNode:22 \
-L 3314:clusterInternalNode:3314 clusterHeadNode

which can be used precisely as in the preceeding examples.

D.5 Tunneling with PuTTY
In PuTTY, tunnels are specified on the “Connection ⇒ SSH ⇒ Tunnels” configuration page. To
configure a tunnel, you need to go to the “Add new forwarded port” section of the page. “Source
port” is the port on your local system that you will connect to in order to use the tunnel. In the
OpenSSH instructions above, it is labeled localPort and is the first part of the argument of the
-L option. In PuTTY, the “Destination” field is remotHost:remotePort, or the second and
third pieces of the OpenSSH -L argument. The “Local” button should always be checked (meaning
that the tunnel will be setup to forward from your local system to the destination system).

Tip
You might want to take advantage of PuTTY’s ability to save “sessions” to
save and easily reuse complicated (or tedious) SSH configurations, particu-
larly those including multiple tunnels.

In order to use a tunnel once it is setup, you simply enter give the application localhost
and the appropriate port number to connect to. To initiate a tunneled SSH session with PuTTY,
you would enter this information in the “Session ⇒ Host Name and Session ⇒ Port” fields. In
the examples given earlier for OpenSSH (Section D.4), a connection to localhost port 2022
would give you an ssh connection to directly to clusterInternalNode. And the Ccaffeine GUI would
be invoked in the same way as above (modulo unix vs. Windows details in the command itself).

132 APPENDIX D. REMOTE ACCESS FOR THE CCA ENVIRONMENT

Appendix E

Building the CCA Tools and TAU and
Setting Up Your Environment

The primary tools you’ll be using are the Ccaffeine CCA framework [http://www.cca-forum.
org/ccafe/] and the Babel language interoperability tool [http://www.llnl.gov/CASC/
components/babel.html]. This section provides brief instructions on how to download and
install a distribution of these tools (named, creatively enough, “cca-tools”) that has been tested for
compatibility with the tutorial code.

Caution
These tools are still under development as we extend their capabilities. Con-
sequently, it is possible to find numerous releases and snapshots of the indi-
vidual tools, any given combination of which may not have been tested for
compatibility. Don’t use the individual tool distributions unless you’ve got a
particular reason, usually based on direct conversations with their developers.
The latest version of the “cca-tools” package is the recommended distribution
for routine use and will provide you with a matched set of tools that will work
together properly.

The TAU performance measurement tools [http://www.cs.uoregon.edu/research/
paracomp/tau/tautools/] can be used in conjunction with the CCA to provide simple in-
strumentation and monitoring at the level of component interfaces as illustrated in Chapter 5 (and
of course it can be used to instrument a component internally just like any other piece of code). If
you wish to use TAU it will also be necessary for you to install it on your system.

133

http://www.cca-forum.org/ccafe/
http://www.cca-forum.org/ccafe/
http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/components/babel.html
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

134 APPENDIX E. BUILDING TOOLS AND SETTING ENVIRONMENT

E.1 The CCA Tools
E.1.1 System Requirements

Note
We strongly recommend using a Linux platform to work through these ex-
ercises, since this is currently the most extensively tested and most eas-
ily supported platform for the CCA tools. If this is not possible, or
you have a specific need to use another platform while working through
these exercises, please contact us at cca-tutorial@cca-forum.org [mailto:
cca-tutorial@cca-forum.org]to discuss the best way to proceed.
We’re also interested to hear what platforms you would like to run your CCA
applications on in the longer term in order to help us focus our porting and
testing efforts.

The requirements to build the CCA tools on Linux platforms are listed below. Requirements
for other platforms will vary somewhat.

• gcc >= 3.2

• Java Software Development Kit >= 1.4. The java commands must be in your execution
path.

Note
We have on occasion observed problems with the Ccaffeine GUI interface
hanging (most often while populating the palette as the GUI starts up). This
seems to happen less often with version 1.4 than with more recent versions.

• Gnome XML C Parser Library (libxml2) - most recent Linux distro’s already have it, re-
gardless of whether Gnome is installed. Make sure you have the development package, e.g.,
libxml2-devel.

• A connection to the internet. (A network connection is required both to download the code
cca-tools package and during the build process.)

• Python>= 2.3 built with --enable-shared (on platforms that support shared libraries),
and Numerical Python (Numpy). If you have multiple versions of Python installed and prefer
to have a version in your execution path that does not meet the criteria above, you should set
the PYTHON environment variable to point to a suitable version for the CCA tools prior to
configuring them. You can check the python version with python -V.

mailto:cca-tutorial@cca-forum.org
mailto:cca-tutorial@cca-forum.org

E.2. DOWNLOADING AND BUILDING THE CCA TOOLS PACKAGE 135

Additional Optional Software

There are also a number of other packages which are not required in order to build the CCA tools,
but can be used if present (and may be required in order to obtain certain functionality). If you
want to use them, they should be installed before you begin to install the CCA tools.

• MPI: recent versions of MPICH and OpenMPI are known to work. At present, the automatic
configuration tools do not handle other MPI implementations, and Ccaffeine has not yet been
extensively tested against other implementations.

• Fortran 90: A variety of Fortran 90 compilers are supported. Because Babel needs to know
about the format of the array descriptors used internally by the compiler, the CCA tools
will have to be configured with both the path to the compiler and information about which
compiler it is. Here is the list of currently supported compilers and the associated labels
recognized by the CCA tools configuration script.

Compiler CCA Tools “VENDOR” Label
Absoft Absoft
HP Compaq Fortran Alpha
Cray Fortran Cray
GNU gfortran GNU
IBM XL Fortran IBMXL
Intel v8 and later Intel
Intel v7 Intel 7
Lahey Lahey
NAG NAG
SGI MIPS Pro MPISpro
SUN Solaris SUNWspro

You should have the compiler in your execution path, and any relevant .so libraries in your
LD LIBRARY PATH . These are required to properly configure the CCA tools package.

• GNU autotools >= 2.59 (>= 2.60 recommended). These are not required by the CCA tools
themselves, but would be needed if your development activities require adding to the basic
configure script generated by Bocca .

E.2 Downloading and Building the CCA Tools Package
1. The latest version of the CCA Tools package can be found at http://www.cca-forum.

org/tutorials/#sources [http://www.cca-forum.org/tutorials/#sources]
with a filename starting with cca-tools-installer-.

2. Untar the cca-tools tar ball some place that is convenient to build and follow the instructions
in the README to configure and build it.

http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources

136 APPENDIX E. BUILDING TOOLS AND SETTING ENVIRONMENT

Caution
Remember that you need to have internet connectivity during the build pro-
cess! During the installation process the appropriate versions of required
software are downloaded automatically.

The CCA tools build procedure has been tested on a variety of systems with a range of dif-
ferent configuration options, and it works the majority of the time. However it is possible your
platform or configuration requirements will confuse it, and it will not build properly for you.
If an error occurs, all logs are automatically archived in your home directory, in a file named
cca-tools-logs.tar.bz2. You will be prompted to send an email as soon as the er-
ror occurs; you can also contact us at cca-tutorial@cca-forum.org [mailto:cca-tutorial@
cca-forum.org]with the output of your attempt to configure and build the package, and any
pertinent information about your system. We want to help you get a working CCA environment
and improve the packaging of the tools for future users.

E.2.1 Local System Requirements
These requirements apply to both Linux-like and Windows systems.

• Java Software Development Kit >= 1.4. The java command must be in your execution
path.

E.3 Downloading and Installing TAU

Note
Note that TAU is only needed for Chapter 5. If you’re not planning to do that
exercise, or want to delay installing TAU until then, everything else should
work fine without it.

1. The latest version of the TAU Portable Profiling package can be found at http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
[http://www.cs.uoregon.edu/research/paracomp/tau/tautools/]. Also
needed for the CCA environment is the Performance component, available at http://www.cs.uoregon.edu/research/paracomp/proj/tau/cca/
[http://www.cs.uoregon.edu/research/paracomp/proj/tau/cca/].

2. Untar the tau version.tar.gz file in a convenient place.

3. Next, configure TAU with ./configure options. You can specify an installation pre-
fix with the -prefix=TAU ROOT option (the default is use the directory in which you
build TAU). There are many other configuration options available (type ./configure
-help for a complete list).

mailto:cca-tutorial@cca-forum.org
mailto:cca-tutorial@cca-forum.org
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/
http://www.cs.uoregon.edu/research/paracomp/proj/tau/cca/

E.4. SETTING UP YOUR LOGIN ENVIRONMENT 137

Note
In these exercises, MPI is not needed, but if you want to build TAU with
it, you’ll need to use the -mpiinc and -mpilib options. Also, for these
exercises, TAU does not need to be compiled with Fortran support. Fortran
support would be required to work with Fortran code you directly instrument.
In these exercises, you will be using TAU via a the TAU performance com-
ponent, which is written in C++.

4. Build TAU using make install

5. Untar the performance-version.tar.gz file someplace convenient to build.

6. Configure the performance component using ./configure -ccafe=CCA TOOLS ROOT
-taumakefile=TAU ROOT/include/Makefile -without-classic -without-proxygen
-ccatk=TAU CMPT ROOT . CCA TOOLS ROOT and TAU ROOT are the installation roots
for the CCA tools and TAU that you specified in previous steps. TAU CMPT ROOT is the
directory into which you want the performance component tools installed.

7. Build the performance component using make ; make install

E.4 Setting Up Your Login Environment
Once the CCA tools (and TAU , if needed) have been built, you will need to setup your login
environment so that the appropriate commands are added to your execution path, and libraries are
added to your LD LIBRARY PATH .

Tip
If you’re a participant in an organized tutorial, we’ve already prepared a login
file with these commands, and others needed for the tutorial, which you sim-
ply source in your login file. Specific instructions on how to set this up should
have been provided to you along with your tutorial account information.

Wherever you installed the tools above, we will use the following notation in this section:

CCA TOOLS ROOT The fully qualified path to where the CCA tools were installed (the --prefix
directory, or the default ./install expanded to be complete paths, rather than relative
paths)

TAU ROOT The fully qualified path to TAU ’s install directory (the -prefix directory)

TAU CMPT ROOT The fully qualified path to the TAU performance component (the -ccatk di-
rectory).

TAU VERSION The version number of the TAU package you built.

Then the following commands should work, depending on which shell you use:

138 APPENDIX E. BUILDING TOOLS AND SETTING ENVIRONMENT

csh, tcsh, and Related Shells

set path=(CCA TOOLS ROOT TAU CMPT ROOT $path)
setenv LD LIBRARY PATH CCA TOOLS ROOT/lib\
:TAU COMPT ROOT/components/TauPerformance-TAU VERSION\
:$LD LIBRARY PATH

bash, ksh, sh, and Related Shells

export PATH=CCA TOOLS ROOT:TAU CMPT ROOT:$PATH
export LD LIBRARY PATH=CCA TOOLS ROOT/lib\
:TAU COMPT ROOT/components/TauPerformance-TAU VERSION\
:$LD LIBRARY PATH

Warning
Note that LD LIBRARY PATH values are colon-separated lists, without
white space. We show the variable definition folded onto multiple lines for
presentation purposes, but in practice you would usually want to make it a
single long line. It is very easy to inadvertently introduce extraneous white
space, causing errors.

These commands could be added to your own login files ($HOME/.cshrc or $HOME/.profile),
put in a file somewhere else and sourced in your login files (this is the approach we use in the or-
ganized tutorials), or, if appropriate, added to the system login setup by your system administrator.

Appendix F

Building the Tutorial Code Tree

The file tutorial-src-0.7.1-0.tar.gz (or a mode recent version) at http://www.
cca-forum.org/tutorials/#sources has the full code for all of the components dis-
cussed in this Guide. If you’re part of an organized tutorial, there will be a copy of the source code
on the system you’re using, so you can just copy it instead of downloading it over the network.

Note
In this release of the tutorial source code, we’re experimenting with a new
approach to organizing and building the code. It is likely there are some
rough edges, so please don’t hesitate to contact us at cca-tutorial@cca-
forum.org [mailto:cca-tutorial@cca-forum.org] if you’re hav-
ing problems building it.

1. Make sure you have installed the CCA tools, and configured your environment according to
Appendix E. This critical, since the build for the tutorial source tree keys off of the environ-
ment variables setup in Appendix E.4.

2. $ cd $WORKDIR

3. Download or copy the tutorial-src-0.7.1-0.tar.gz tarball to your $WORKDIR.

4. Unpack the tarball:

$ tar zxf tutorial-src-0.7.1-0.tar.gz

5. $ cd tutorial-src

6. To build the “PDE” portion of the code tree, type

$./pde-make all

139

http://www.cca-forum.org/tutorials/#sources
http://www.cca-forum.org/tutorials/#sources
mailto:cca-tutorial@cca-forum.org

140 APPENDIX F. BUILDING THE TUTORIAL CODE TREE

The build will take some time.

Caution
After the build is complete, it tries to perform several basic tests on the com-
ponents. Some of these tests are currently written to launch the Ccaffeine
GUI, which may not work if you don’t have an X11 connection to the ma-
chine you’re building on. This is not a problem as long as the main build
process completed successfully (scroll back through the make output a bit to
check.) If you have problems, as for assistance (from tutorial instructors or
at cca-tutorial@cca-forum.org [mailto:cca-tutorial@cca-forum.
org]). We’re working on improving this.

7. To build the “ODE” portion of the code tree, type

$./ode-make all

The build will take some time.

Caution
After the build is complete, it tries to perform several basic tests on the com-
ponents. Some of these tests are currently written to launch the Ccaffeine
GUI, which may not work if you don’t have an X11 connection to the ma-
chine you’re building on. This is not a problem as long as the main build
process completed successfully (scroll back through the make output a bit to
check.) If you have problems, as for assistance (from tutorial instructors or
at cca-tutorial@cca-forum.org [mailto:cca-tutorial@cca-forum.
org]). We’re working on improving this.

If (a) you’re part of an organized tutorial, and (b) you use the provided shell configuration frag-
ments to setup your environment, and (c) you follow the directions above as to where to unpack and
build the tutorial code tree, you should find that the environment variables $STUDENT SRC and
$PDE STUDENT SRC are already pointing to the tops of the Bocca project trees, in the directories
obj/ode and obj/pde below the build directory (which should be you current directory).

If you’re working through this Guide on your own, you should be sure to add to your environ-
ment the appropriate variable definitions: $TUTORIAL SRC (interchangable with $STUDENT SRC
in this case) and $PDE SRC (interchangable with $PDE STUDENT SRC in this case).

Note
If you want to do a clean build of either code tree, you can use (Sub-
stitute “ode” for “pde” as appropriate): ./pde-make clean and then
./pde-make all. The “clean” operation actually copies the obj/pde
tree to a backup copy with a time-stamped directory name. If you’re running
out of disk space, you might need to clean up some of these backups.

mailto:cca-tutorial@cca-forum.org
mailto:cca-tutorial@cca-forum.org
mailto:cca-tutorial@cca-forum.org
mailto:cca-tutorial@cca-forum.org

	Preface
	Introduction
	The CCA Software Environment
	Where to Go from Here
	For Self-Study Users
	For Organized Tutorial Participants

	Assembling and Running a CCA Application
	Using the GUI Front-End to Ccaffeine
	Running the GUI Locally (GUI host and Ccaffeine host are Identical)
	Running the GUI Remotely (GUI host and Ccaffeine host are Distinct)
	Assembling and Running an Application Using the GUI

	Running Ccaffeine Using an rc File
	Notes on More Advanced Usage of the GUI

	Using Bocca : A Project Manager for SIDL or CCA
	Creating a Bocca Project
	Creating Ports and Components
	Creating the Integrator and Function Components

	How to Edit and Find Files in Bocca Projects
	Adding Methods to Ports
	Language-Specific Function, Integrator, and Driver Code
	C++ Implementation
	Fortran9X Implementation
	C Implementation
	Python Implementation
	Java Implementation

	Automated Testing of Assemblies
	Creating a Portable Test
	Enabling Memory Testing with Valgrind

	A Simple PDE Toolkit
	Introduction
	A Problem and its Decomposition
	Components and Assemblies
	Tests
	Exercises
	Changing the Initial Conditions
	Modifying the Reaction Physics

	Conclusions

	Using TAU to Monitor the Performance of Components
	Creating the Proxy Component
	Using the Proxy Generator
	Using the Proxy Component

	Understanding Arrays and Component State
	Introduction
	The CDriver Component
	Using SIDL Raw Arrays
	Using SIDL Normal Arrays

	Linear Array Operations Components
	The CArrayOp Component
	The F77ArrayOp Component
	The F90ArrayOp Component

	Assignment: NonLinearOp Component and Driver

	What is a Region in the Mesh
	Ccaffeine Script File for PDE Example 1
	Details of the Mesh and the FieldVar Classes
	Codes
	An Example

	Remote Access for the CCA Environment
	Commandline Access
	Graphical Access using X11
	OpenSSH
	PuTTY

	Tunneling other Connections through SSH
	Tunneling with OpenSSH
	Tunneling with PuTTY

	Building the CCA Tools and TAU and Setting Up Your Environment
	The CCA Tools
	System Requirements

	Downloading and Building the CCA Tools Package
	Local System Requirements

	Downloading and Installing TAU
	Setting Up Your Login Environment

	Building the Tutorial Code Tree

